Skip to main content
Erschienen in: Journal of Materials Science 23/2015

01.12.2015 | Original Paper

Preparation and hydrophobicity of solid–liquid bulk composite using porous glass and fluorinated oil

verfasst von: Yasuhiro Takada, Munetoshi Sakai, Toshihiro Isobe, Sachiko Matsushita, Akira Nakajima

Erschienen in: Journal of Materials Science | Ausgabe 23/2015

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Hydrophobic porous glass plates were prepared by coating a fluorosilane (FAS17) onto a commercial porous glass (average pore size, approx. 1 μm) with surface modification by colloidal silica (approx. 100 nm). Then porous glass–fluorinated oil composites were prepared by subsequent impregnation of two fluorinated oils with similar surface energy but differing viscosity. Both the sliding angle (~5° → ~0°) and contact angle (~150° → ~115°) were decreased by impregnating fluorinated oil into the porous glass. The composites possessed excellent sustainability of their small sliding angle under exposure in turbulent water flow. The composite exhibited higher sliding velocity than that of a normal hydrophobic coating. The composite with high-viscosity oil exhibited a lower sliding velocity for a water droplet than that with low-viscosity oil. Particle image velocimetry revealed that the dominant sliding mode for water droplets on the composites was slipping. Results suggest that viscous dissipation at the wetting ridge (oil meniscus at the three-phase contact line) plays an important role in the moving behavior of water droplet on the composites. The superiority in dynamic hydrophobicity for the composites was retained even when the droplet was sandwiched between two parallel samples.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Nakajima A, Hashimoto K, Watanabe T (2001) Recent studies on super-hydrophobic films. Monatsh Chem 132:31–41CrossRef Nakajima A, Hashimoto K, Watanabe T (2001) Recent studies on super-hydrophobic films. Monatsh Chem 132:31–41CrossRef
2.
Zurück zum Zitat Feng X, Jiang L (2006) Design and creation of superwetting/antiwetting surfaces. Adv Mater 18:3063–3078CrossRef Feng X, Jiang L (2006) Design and creation of superwetting/antiwetting surfaces. Adv Mater 18:3063–3078CrossRef
3.
Zurück zum Zitat Ma M, Hill RM (2006) Superhydrophobic surfaces. Curr Opin Colloid Interace Sci 11:193–202CrossRef Ma M, Hill RM (2006) Superhydrophobic surfaces. Curr Opin Colloid Interace Sci 11:193–202CrossRef
4.
Zurück zum Zitat Blossey R (2003) Self-cleaning surfaces: virtual realities. Nat Mater 2:301–306CrossRef Blossey R (2003) Self-cleaning surfaces: virtual realities. Nat Mater 2:301–306CrossRef
5.
Zurück zum Zitat Nakajima A (2011) Design of hydrophobic surfaces for liquid droplet control. NPG Asia Mater 3:49–56CrossRef Nakajima A (2011) Design of hydrophobic surfaces for liquid droplet control. NPG Asia Mater 3:49–56CrossRef
6.
Zurück zum Zitat Zhang X, Wang L, Levänen E (2013) Superhydrophobic surfaces for the reduction of bacterial adhesion. RSC Adv 3:12003–12020CrossRef Zhang X, Wang L, Levänen E (2013) Superhydrophobic surfaces for the reduction of bacterial adhesion. RSC Adv 3:12003–12020CrossRef
7.
Zurück zum Zitat Nguyen TPN, Brunet P, Coffinier Y, Boukherroub R (2010) Quantitative testing of robustness on superomniphobic surfaces by drop impact. Langmuir 26:18369–18373CrossRef Nguyen TPN, Brunet P, Coffinier Y, Boukherroub R (2010) Quantitative testing of robustness on superomniphobic surfaces by drop impact. Langmuir 26:18369–18373CrossRef
8.
Zurück zum Zitat Bartolo D, Bouamrirene F (2006) Bouncing or sticky droplets: impalement transitions on superhydrophobic micropatterned surfaces. Europhys Lett 74:299–305CrossRef Bartolo D, Bouamrirene F (2006) Bouncing or sticky droplets: impalement transitions on superhydrophobic micropatterned surfaces. Europhys Lett 74:299–305CrossRef
9.
Zurück zum Zitat Sakai M, Nakajima A, Fujishima A (2010) Removing an air layer from a superhydrophobic surface in flowing water. Chem Lett 39:482–484CrossRef Sakai M, Nakajima A, Fujishima A (2010) Removing an air layer from a superhydrophobic surface in flowing water. Chem Lett 39:482–484CrossRef
10.
Zurück zum Zitat Nakajima A, Hashimoto K, Watanabe T, Takai K, Yamauchi G, Fujishima A (2000) Transparent superhydrophobic thin films with self-cleaning properties. Langmuir 16:7044–7047CrossRef Nakajima A, Hashimoto K, Watanabe T, Takai K, Yamauchi G, Fujishima A (2000) Transparent superhydrophobic thin films with self-cleaning properties. Langmuir 16:7044–7047CrossRef
11.
Zurück zum Zitat Wong T-S, Kang SH, Tang SKY, Smythe EJ, Hatton BD, Grinthal A, Aizenberg J (2011) Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity. Nature 477:443–447CrossRef Wong T-S, Kang SH, Tang SKY, Smythe EJ, Hatton BD, Grinthal A, Aizenberg J (2011) Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity. Nature 477:443–447CrossRef
12.
Zurück zum Zitat Qiu R, Zhang Q, Wang P, Jiang L, Hou J, Guo W, Zhang H (2014) Fabrication of slippery liquid-infused porous surface based on carbon fiber with enhanced corrosion inhibition property. Colloids Surf A Physicochem Eng Asp 453:132–141CrossRef Qiu R, Zhang Q, Wang P, Jiang L, Hou J, Guo W, Zhang H (2014) Fabrication of slippery liquid-infused porous surface based on carbon fiber with enhanced corrosion inhibition property. Colloids Surf A Physicochem Eng Asp 453:132–141CrossRef
13.
Zurück zum Zitat Chen L, Geissler A (2014) Transparent, slippery surfaces made with sustainable porous cellulose lauroyl ester films. ACS Appl Mater Int 6:6969–6976CrossRef Chen L, Geissler A (2014) Transparent, slippery surfaces made with sustainable porous cellulose lauroyl ester films. ACS Appl Mater Int 6:6969–6976CrossRef
14.
Zurück zum Zitat Yao X, Hu Y, Grinthal A, Wong T-S, Mahadevan L, Aizenberg J (2013) Adaptive fluid-infused porous films with tunable transparency and wettability. Nat Mater 12:529–534CrossRef Yao X, Hu Y, Grinthal A, Wong T-S, Mahadevan L, Aizenberg J (2013) Adaptive fluid-infused porous films with tunable transparency and wettability. Nat Mater 12:529–534CrossRef
15.
Zurück zum Zitat Yang J, Song H, Ji H, Chen B (2014) Slippery lubricant-infused textured aluminum surfaces. J Adhes Sci Technol 28:1949–1957CrossRef Yang J, Song H, Ji H, Chen B (2014) Slippery lubricant-infused textured aluminum surfaces. J Adhes Sci Technol 28:1949–1957CrossRef
16.
Zurück zum Zitat Lee C, Kim H, Nam Y (2014) Drop impact dynamics on oil-Infused nanostructured surfaces. Langmuir 30:8400–8407CrossRef Lee C, Kim H, Nam Y (2014) Drop impact dynamics on oil-Infused nanostructured surfaces. Langmuir 30:8400–8407CrossRef
17.
Zurück zum Zitat Subramanyam S, Rykaczewski K, Varanasi K (2013) Ice adhesion on lubricant-impregnated textured surfaces. Langmuir 29:13414–13418CrossRef Subramanyam S, Rykaczewski K, Varanasi K (2013) Ice adhesion on lubricant-impregnated textured surfaces. Langmuir 29:13414–13418CrossRef
18.
Zurück zum Zitat Chen J, Dou R, Cui D, Zhang Q (2013) Robust prototypical anti-icing coatings with a self-lubricating liquid water layer between ice and substrate. ACS Appl Mater Int 5:4026–4030 Chen J, Dou R, Cui D, Zhang Q (2013) Robust prototypical anti-icing coatings with a self-lubricating liquid water layer between ice and substrate. ACS Appl Mater Int 5:4026–4030
19.
Zurück zum Zitat Tsuruki Y, Sakai M, Isobe T, Matsushita S, Nakajima A (2014) Static and dynamic hydrophobicity of alumina-based porous ceramics impregnated with fluorinated oil. J Mater Res 29:1546–1555CrossRef Tsuruki Y, Sakai M, Isobe T, Matsushita S, Nakajima A (2014) Static and dynamic hydrophobicity of alumina-based porous ceramics impregnated with fluorinated oil. J Mater Res 29:1546–1555CrossRef
20.
Zurück zum Zitat Sunny S, Vogel N, Howell C, Vu TL, Aizenberg J (2014) Lubricant-infused nanoparticulate coatings assembled by layer-by-layer deposition. Adv Funct Mater 24:6658–6667CrossRef Sunny S, Vogel N, Howell C, Vu TL, Aizenberg J (2014) Lubricant-infused nanoparticulate coatings assembled by layer-by-layer deposition. Adv Funct Mater 24:6658–6667CrossRef
21.
Zurück zum Zitat Boreyko J (2014) Polizos G (2014) Air-stable droplet interface bilayers on oil-infused surfaces. Proc Natl Acad Sci 111:7588–7593CrossRef Boreyko J (2014) Polizos G (2014) Air-stable droplet interface bilayers on oil-infused surfaces. Proc Natl Acad Sci 111:7588–7593CrossRef
22.
Zurück zum Zitat Anand S, Rykaczewski K, Subramanyam SB, Beysens D, Varanasi KK (2014) How droplets nucleate and grow on liquids and liquid impregnated surfaces. Soft Matter 11:69–80CrossRef Anand S, Rykaczewski K, Subramanyam SB, Beysens D, Varanasi KK (2014) How droplets nucleate and grow on liquids and liquid impregnated surfaces. Soft Matter 11:69–80CrossRef
23.
Zurück zum Zitat Lafuma A, Quéré D (2011) Slippery pre-suffused surfaces. Europhys Lett 96:56001CrossRef Lafuma A, Quéré D (2011) Slippery pre-suffused surfaces. Europhys Lett 96:56001CrossRef
24.
Zurück zum Zitat Solomon B, Khalil K, Varanasi K (2014) Drag reduction using lubricant-impregnated surfaces in viscous laminar flow. Langmuir 30:10970–10976CrossRef Solomon B, Khalil K, Varanasi K (2014) Drag reduction using lubricant-impregnated surfaces in viscous laminar flow. Langmuir 30:10970–10976CrossRef
25.
Zurück zum Zitat Daniel D, Mankin MN, Belisle RA, Wong T-S, Aizenberg J (2013) Lubricant-infused micro/nano-structured surfaces with tunable dynamic omniphobicity at high temperatures. Appl Phys Lett 102:231603CrossRef Daniel D, Mankin MN, Belisle RA, Wong T-S, Aizenberg J (2013) Lubricant-infused micro/nano-structured surfaces with tunable dynamic omniphobicity at high temperatures. Appl Phys Lett 102:231603CrossRef
26.
Zurück zum Zitat Smith JD, Dhiman R, Anand S, Reza-Garduno E, Cohen RE, McKinley GH, Varanasi KK (2013) Droplet mobility on lubricant-impregnated surfaces. Soft Matter 9:1772–1780CrossRef Smith JD, Dhiman R, Anand S, Reza-Garduno E, Cohen RE, McKinley GH, Varanasi KK (2013) Droplet mobility on lubricant-impregnated surfaces. Soft Matter 9:1772–1780CrossRef
27.
Zurück zum Zitat Zhigang Z, Jinsheng X, Mu P, Runzhang Y (2006) Characteristics of droplet and film water motion in the flow channels of polymer electrolyte membrane fuel cells. J Power Sources 160:1–9CrossRef Zhigang Z, Jinsheng X, Mu P, Runzhang Y (2006) Characteristics of droplet and film water motion in the flow channels of polymer electrolyte membrane fuel cells. J Power Sources 160:1–9CrossRef
28.
Zurück zum Zitat Pit R, Hervet H, Léger L (2000) Direct experimental evidence of slip in hexadecane: solid interfaces. Phys Rev Lett 31:980–983CrossRef Pit R, Hervet H, Léger L (2000) Direct experimental evidence of slip in hexadecane: solid interfaces. Phys Rev Lett 31:980–983CrossRef
29.
Zurück zum Zitat Tretheway DC, Meinhart CD (2002) Apparent fluid slip at hydrophobic microchannel walls. Phys Fluids 14:L9–L12CrossRef Tretheway DC, Meinhart CD (2002) Apparent fluid slip at hydrophobic microchannel walls. Phys Fluids 14:L9–L12CrossRef
30.
Zurück zum Zitat Schmatko T, Hervet H, Léger L (2006) Effect of nanometric-scale roughness on slip at the wall of simple fluids. Langmuir 22:6843–6850CrossRef Schmatko T, Hervet H, Léger L (2006) Effect of nanometric-scale roughness on slip at the wall of simple fluids. Langmuir 22:6843–6850CrossRef
31.
Zurück zum Zitat Cao B-Y, Chen M, Guo Z-Y (2006) Liquid flow in surface-nanostructured channels studied by molecular dynamics simulation. Phys Rev E 74:066311–066316CrossRef Cao B-Y, Chen M, Guo Z-Y (2006) Liquid flow in surface-nanostructured channels studied by molecular dynamics simulation. Phys Rev E 74:066311–066316CrossRef
32.
Zurück zum Zitat Xu J, Li Y (2007) Boundary conditions at the solid–liquid surface over the multiscale channel size from nanometer to micron. Int J Heat Mass Transf 50:2571–2581CrossRef Xu J, Li Y (2007) Boundary conditions at the solid–liquid surface over the multiscale channel size from nanometer to micron. Int J Heat Mass Transf 50:2571–2581CrossRef
33.
Zurück zum Zitat Suzuki S, Nakajima A, Sakai M, Hashimoto A, Yoshida N, Kameshima Y, Okada K (2008) Rolling and slipping motion of a water droplet sandwiched between two parallel plates coated with fluoroalkylsilanes. Appl Surf Sci 255:3414–3420CrossRef Suzuki S, Nakajima A, Sakai M, Hashimoto A, Yoshida N, Kameshima Y, Okada K (2008) Rolling and slipping motion of a water droplet sandwiched between two parallel plates coated with fluoroalkylsilanes. Appl Surf Sci 255:3414–3420CrossRef
34.
Zurück zum Zitat Nakajima A, Miyamoto T, Sakai M, Isobe T, Matsushita S (2014) Comparative study of the impact and sliding behavior of water droplets on two different hydrophobic silane coatings. Appl Surf Sci 292:990–996CrossRef Nakajima A, Miyamoto T, Sakai M, Isobe T, Matsushita S (2014) Comparative study of the impact and sliding behavior of water droplets on two different hydrophobic silane coatings. Appl Surf Sci 292:990–996CrossRef
35.
Zurück zum Zitat Sakai M, Hashimoto A, Yoshida N, Suzuki S, Kameshima Y, Nakajima A (2007) An image analysis system for evaluating sliding behavior of a liquid droplet on a hydrophobic surface. Rev Sci Inst 78:045103CrossRef Sakai M, Hashimoto A, Yoshida N, Suzuki S, Kameshima Y, Nakajima A (2007) An image analysis system for evaluating sliding behavior of a liquid droplet on a hydrophobic surface. Rev Sci Inst 78:045103CrossRef
36.
Zurück zum Zitat Suzuki S, Nakajima A, Sakai M, Sakurada Y, Yoshida N, Hashimoto A, Kameshima Y, Okada K (2008) Slipping and rolling ratio of sliding acceleration for a water droplet sliding on fluoroalkylsilane coatings of different roughness. Chem Lett 37:58–59CrossRef Suzuki S, Nakajima A, Sakai M, Sakurada Y, Yoshida N, Hashimoto A, Kameshima Y, Okada K (2008) Slipping and rolling ratio of sliding acceleration for a water droplet sliding on fluoroalkylsilane coatings of different roughness. Chem Lett 37:58–59CrossRef
37.
Zurück zum Zitat Cassie ABD, Baxter S (1944) Wettability of porous surfaces. Trans Faraday Soc 40:546–551CrossRef Cassie ABD, Baxter S (1944) Wettability of porous surfaces. Trans Faraday Soc 40:546–551CrossRef
38.
39.
Zurück zum Zitat Wier KA, MaCarthy TJ (2006) Condensation on ultrahydrophobic surfaces and its effect on droplet mobility: ultrahydrophobic surfaces are not always water repellant. Langmuir 55:2433–2436CrossRef Wier KA, MaCarthy TJ (2006) Condensation on ultrahydrophobic surfaces and its effect on droplet mobility: ultrahydrophobic surfaces are not always water repellant. Langmuir 55:2433–2436CrossRef
40.
Zurück zum Zitat Miljkovic N, Enright R, Wang EN (2012) Effect of droplet morphology on growth dynamics and heat transfer during condensation on superhydrophobic nanostructured surfaces. ACS Nano 6:1776–1785CrossRef Miljkovic N, Enright R, Wang EN (2012) Effect of droplet morphology on growth dynamics and heat transfer during condensation on superhydrophobic nanostructured surfaces. ACS Nano 6:1776–1785CrossRef
41.
Zurück zum Zitat Nakajima A, Nakagawa Y, Furuta T, Sakai M, Isobe T, Matsushita S (2013) Sliding of water droplets on smooth hydrophobic silane coatings with regular triangle hydrophilic regions. Langmuir 29:9269–9275CrossRef Nakajima A, Nakagawa Y, Furuta T, Sakai M, Isobe T, Matsushita S (2013) Sliding of water droplets on smooth hydrophobic silane coatings with regular triangle hydrophilic regions. Langmuir 29:9269–9275CrossRef
42.
Zurück zum Zitat Sakai M, Nishimura M, Morii Y, Furuta T, Isobe T, Fujishima A, Nakajima A (2012) Reduction of fluid friction on the surface coated with TiO2 photocatalyst under UV illumination. J Mater Sci 47:8167–8173. doi:10.1007/s10853-012-6712-8 CrossRef Sakai M, Nishimura M, Morii Y, Furuta T, Isobe T, Fujishima A, Nakajima A (2012) Reduction of fluid friction on the surface coated with TiO2 photocatalyst under UV illumination. J Mater Sci 47:8167–8173. doi:10.​1007/​s10853-012-6712-8 CrossRef
Metadaten
Titel
Preparation and hydrophobicity of solid–liquid bulk composite using porous glass and fluorinated oil
verfasst von
Yasuhiro Takada
Munetoshi Sakai
Toshihiro Isobe
Sachiko Matsushita
Akira Nakajima
Publikationsdatum
01.12.2015
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 23/2015
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-015-9346-9

Weitere Artikel der Ausgabe 23/2015

Journal of Materials Science 23/2015 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.