Skip to main content
Erschienen in: Journal of Materials Science 2/2016

18.09.2015 | Original Paper

Microstructure–property relationships in a high-strength 51Ni–29Ti–20Hf shape memory alloy

verfasst von: D. R. Coughlin, L. Casalena, F. Yang, R. D. Noebe, M. J. Mills

Erschienen in: Journal of Materials Science | Ausgabe 2/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

NiTiHf alloys exhibit remarkable shape memory and pseudoelastic properties that are of fundamental interest to a growing number of industries. In this study, differential scanning calorimetry and isothermal compression tests have revealed that the 51Ni–29Ti–20Hf alloy has useful shape memory properties that include a wide range of transformation temperatures as well as highly stable pseudoelastic behavior. These properties are governed by short-term aging conditions, which may be tailored to control transformation temperatures while giving rise to exceptionally high austenite yield strengths which aid transformation stability. The yield strength of the austenite phase can reach 2.1 GPa by aging for 3 h at 500 °C, while aging for 3 h at 700 °C produced an alloy with an austenite finish temperature (A f ) of 146 °C. High-resolution scanning transmission electron microscopy has revealed a new precipitate phase, H′-phase, under the homogenized and extruded conditions and under the 500 °C-3-h-aged condition, but only the previously identified H-phase precipitate was observed after aging at temperatures of 600 and 700 °C for 3 h. Finally, dislocation analysis indicated that plastic deformation of the austenite phase occurred by 〈100〉 type slip, similar to that observed in binary NiTi.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Otsuka K, Ren X (2005) Physical metallurgy of TiNi-based shape memory alloys. Prog Mater Sci 50:511–678CrossRef Otsuka K, Ren X (2005) Physical metallurgy of TiNi-based shape memory alloys. Prog Mater Sci 50:511–678CrossRef
2.
Zurück zum Zitat Van Humbeeck J (1999) High temperature shape memory alloys. J Eng Mater 121:5–8 Van Humbeeck J (1999) High temperature shape memory alloys. J Eng Mater 121:5–8
3.
Zurück zum Zitat Firstov GS, Van Humbeeck J, Koval YN (2006) High temperature shape memory alloys problems and prospects. J Int Mater Syst 17:1041–1047CrossRef Firstov GS, Van Humbeeck J, Koval YN (2006) High temperature shape memory alloys problems and prospects. J Int Mater Syst 17:1041–1047CrossRef
4.
Zurück zum Zitat Noebe R, Biles T, Padula S (2007) NiTi-based high-temperature shape-memory alloys. In: Soboyejo W, Srivastan T (eds) Advanced structural materials: properties, design optimization, and applications. CRC Press, London, pp 145–186 Noebe R, Biles T, Padula S (2007) NiTi-based high-temperature shape-memory alloys. In: Soboyejo W, Srivastan T (eds) Advanced structural materials: properties, design optimization, and applications. CRC Press, London, pp 145–186
5.
Zurück zum Zitat Ma J, Karaman I, Noebe RD (2010) High temperature shape memory alloys. Int Mater Rev 55:257–315CrossRef Ma J, Karaman I, Noebe RD (2010) High temperature shape memory alloys. Int Mater Rev 55:257–315CrossRef
6.
Zurück zum Zitat AbuJudom II DN, Thoma PE, Kao M, Angst DR (1992) High transformation temperature shape memory alloy. USA Patent AbuJudom II DN, Thoma PE, Kao M, Angst DR (1992) High transformation temperature shape memory alloy. USA Patent
7.
Zurück zum Zitat Karaca HE, Acar E, Tobe H, Saghaian SM (2014) NiTiHf-based shape memory alloys. Mater Sci Technol 30(13a):1530–1544CrossRef Karaca HE, Acar E, Tobe H, Saghaian SM (2014) NiTiHf-based shape memory alloys. Mater Sci Technol 30(13a):1530–1544CrossRef
8.
Zurück zum Zitat Han XD, Zou W, Jin S, Zhang Z, Yang D (1995) The studies of martensitic transformations in a TiNiHf15 alloy. Scr Mater 32:1441–1446CrossRef Han XD, Zou W, Jin S, Zhang Z, Yang D (1995) The studies of martensitic transformations in a TiNiHf15 alloy. Scr Mater 32:1441–1446CrossRef
9.
Zurück zum Zitat Wang YQ, Zheng YF, Cai W, Zhao LC (1999) The tensile behavior of Ti36Ni49Hf15 high temperature shape memory alloy. Scr Mater 40:1327–1331CrossRef Wang YQ, Zheng YF, Cai W, Zhao LC (1999) The tensile behavior of Ti36Ni49Hf15 high temperature shape memory alloy. Scr Mater 40:1327–1331CrossRef
10.
Zurück zum Zitat Meng XL, Cai W, Zheng YF, Tong YX, Zhao LC, Zhou LM (2002) Stress-induced martensitic transformation behavior of a Ti–Ni–Hf high temperature shape memory alloy. Mater Lett 55:111–115CrossRef Meng XL, Cai W, Zheng YF, Tong YX, Zhao LC, Zhou LM (2002) Stress-induced martensitic transformation behavior of a Ti–Ni–Hf high temperature shape memory alloy. Mater Lett 55:111–115CrossRef
11.
Zurück zum Zitat Otsuka K, Oda K, Piao M (1993) The shape memory effect in a Ti50Pd50 alloy. Scr Metall 29:1355–1358CrossRef Otsuka K, Oda K, Piao M (1993) The shape memory effect in a Ti50Pd50 alloy. Scr Metall 29:1355–1358CrossRef
12.
Zurück zum Zitat Golberg D, Xu Y, Murakami Y, Morito S, Otsuka K, Ueki T, Horikawa H (1994) Characteristics of Ti50Pd30Ni20 high-temperature shape memory alloy. Scr Metall 30:1349–1354CrossRef Golberg D, Xu Y, Murakami Y, Morito S, Otsuka K, Ueki T, Horikawa H (1994) Characteristics of Ti50Pd30Ni20 high-temperature shape memory alloy. Scr Metall 30:1349–1354CrossRef
13.
Zurück zum Zitat Shimizu S, Xu Y, Okunishi E, Tanaka S, Otsuka K, Mitose K (1998) Improvement of shape memory characteristics by precipitation-hardening of TiPdNi alloys. Mater Lett 34:23–29CrossRef Shimizu S, Xu Y, Okunishi E, Tanaka S, Otsuka K, Mitose K (1998) Improvement of shape memory characteristics by precipitation-hardening of TiPdNi alloys. Mater Lett 34:23–29CrossRef
14.
Zurück zum Zitat Angst D, Thoma P, Kao M (1995) The effect of hafnium content on the transformation temperatures of Ni49Ti51-xHfx shape memory alloys. J Phys IV 5:C8–747 Angst D, Thoma P, Kao M (1995) The effect of hafnium content on the transformation temperatures of Ni49Ti51-xHfx shape memory alloys. J Phys IV 5:C8–747
15.
Zurück zum Zitat Olier P, Alliages À (1996) Ti-Ni shape memory alloys: effects of the fabrication route, the oxygen content and the zirconium or hafnium additions on the metallurgical characteristics and the thermomechanical properties. PhD Dissertation Olier P, Alliages À (1996) Ti-Ni shape memory alloys: effects of the fabrication route, the oxygen content and the zirconium or hafnium additions on the metallurgical characteristics and the thermomechanical properties. PhD Dissertation
16.
Zurück zum Zitat Han XD, Wang R, Zhang Z, Yang DZ (1998) A new precipitate phase in a TiNiHf high temperature shape memory alloy. Acta Mater 46:273–281CrossRef Han XD, Wang R, Zhang Z, Yang DZ (1998) A new precipitate phase in a TiNiHf high temperature shape memory alloy. Acta Mater 46:273–281CrossRef
17.
Zurück zum Zitat Meng XL, Cai W, Chen F, Zhao LC (2006) Effect of aging on martensitic transformation and microstructure in Ni-rich TiNiHf shape memory alloy. Scr Mater 54:1599–1604CrossRef Meng XL, Cai W, Chen F, Zhao LC (2006) Effect of aging on martensitic transformation and microstructure in Ni-rich TiNiHf shape memory alloy. Scr Mater 54:1599–1604CrossRef
18.
Zurück zum Zitat Meng XL, Cai W, Zheng YF, Zhao LC (2006) Phase transformation and precipitation in aged Ti–Ni–Hf high-temperature shape memory alloys. Mater Sci Eng A 666:438–440 Meng XL, Cai W, Zheng YF, Zhao LC (2006) Phase transformation and precipitation in aged Ti–Ni–Hf high-temperature shape memory alloys. Mater Sci Eng A 666:438–440
19.
Zurück zum Zitat Bigelow GS, Garg A, Padula SA II, Gaydosh DJ, Noebe RD (2011) Load-biased shape-memory and superelastic properties of a precipitation strengthened high-temperature Ni50.3Ti29.7Hf20 alloy. Scr Mater 64:725–728CrossRef Bigelow GS, Garg A, Padula SA II, Gaydosh DJ, Noebe RD (2011) Load-biased shape-memory and superelastic properties of a precipitation strengthened high-temperature Ni50.3Ti29.7Hf20 alloy. Scr Mater 64:725–728CrossRef
20.
Zurück zum Zitat Yang F, Coughlin DR, Phillips PJ, Yang L, Devaraj A, Kovarik L, Noebe RD, Mills MJ (2013) Structure analysis of a precipitate phase in a Ni rich high temperature NiTiHf shape memory alloy. Acta Mater 61:3335–3346CrossRef Yang F, Coughlin DR, Phillips PJ, Yang L, Devaraj A, Kovarik L, Noebe RD, Mills MJ (2013) Structure analysis of a precipitate phase in a Ni rich high temperature NiTiHf shape memory alloy. Acta Mater 61:3335–3346CrossRef
21.
Zurück zum Zitat Santamarta R, Arroyave R, Pons J, Evirgen A, Karaman I, Karaca HE, Noebe RD (2013) TEM study of structural and microstructural characteristics of a precipitate phase in Ni-rich Ni-Ti-Hf and Ni-Ti-Zr shape memory alloys. Acta Mater 61:6191–6206CrossRef Santamarta R, Arroyave R, Pons J, Evirgen A, Karaman I, Karaca HE, Noebe RD (2013) TEM study of structural and microstructural characteristics of a precipitate phase in Ni-rich Ni-Ti-Hf and Ni-Ti-Zr shape memory alloys. Acta Mater 61:6191–6206CrossRef
22.
Zurück zum Zitat Coughlin DR, Phillips PJ, Bigelow GS, Garg A, Noebe RD, Mills MJ (2012) Characterization of the microstructure and mechanical properties of a 50.3Ni–29.7Ti–20Hf shape memory alloy. Scr Mater 67:112–115CrossRef Coughlin DR, Phillips PJ, Bigelow GS, Garg A, Noebe RD, Mills MJ (2012) Characterization of the microstructure and mechanical properties of a 50.3Ni–29.7Ti–20Hf shape memory alloy. Scr Mater 67:112–115CrossRef
23.
Zurück zum Zitat Meng X, Cai W, Fu Y, Li Q, Zhang J, Zhao L (2008) Shape-memory behaviors in an aged Ni-rich TiNiHf high temperature shape-memory alloy. Intermetallics 16:698–705CrossRef Meng X, Cai W, Fu Y, Li Q, Zhang J, Zhao L (2008) Shape-memory behaviors in an aged Ni-rich TiNiHf high temperature shape-memory alloy. Intermetallics 16:698–705CrossRef
24.
Zurück zum Zitat Karaca HE, Saghaian SM, Ded G, Tobe H, Basaran B, Maier HJ, Noebe RD, Chumlyakov YI (2013) Effects of nanoprecipitation on the shape memory and material properties of an Ni-rich NiTiHf high temperature shape memory alloy. Acta Mater 61:7422–7431CrossRef Karaca HE, Saghaian SM, Ded G, Tobe H, Basaran B, Maier HJ, Noebe RD, Chumlyakov YI (2013) Effects of nanoprecipitation on the shape memory and material properties of an Ni-rich NiTiHf high temperature shape memory alloy. Acta Mater 61:7422–7431CrossRef
25.
Zurück zum Zitat Stebner AP, Glen S, Bigelow GS, Yang J, Shukla DP, Saghaian SM, Rogers R, Garg A, Karaca HE, Chumlyakov Y, Bhattacharya K, Noebe RD (2014) Transformation strains and temperatures of a nickel–titanium–hafnium high temperature shape memory alloy. Acta Mater 76:40–53CrossRef Stebner AP, Glen S, Bigelow GS, Yang J, Shukla DP, Saghaian SM, Rogers R, Garg A, Karaca HE, Chumlyakov Y, Bhattacharya K, Noebe RD (2014) Transformation strains and temperatures of a nickel–titanium–hafnium high temperature shape memory alloy. Acta Mater 76:40–53CrossRef
26.
Zurück zum Zitat Evirgen A, Karaman I, Santamarta R, Pons J, Noebe RD (2015) Microstructural characterization and shape memory characteristics of the Ni50.3Ti34.7Hf15 shape memory alloy. Acta Mater 83:48–60CrossRef Evirgen A, Karaman I, Santamarta R, Pons J, Noebe RD (2015) Microstructural characterization and shape memory characteristics of the Ni50.3Ti34.7Hf15 shape memory alloy. Acta Mater 83:48–60CrossRef
27.
Zurück zum Zitat Benafan O, Garg A, Noebe RD, Bigelow GS, Padula SA, Gaydosh DJ, Schell N, Mabe JH, Vaidyanathan R (2014) Mechanical and functional behavior of a Ni-rich Ni50.3Ti29.7Hf20 high temperature shape memory alloy. Intermetallics 50:94–107CrossRef Benafan O, Garg A, Noebe RD, Bigelow GS, Padula SA, Gaydosh DJ, Schell N, Mabe JH, Vaidyanathan R (2014) Mechanical and functional behavior of a Ni-rich Ni50.3Ti29.7Hf20 high temperature shape memory alloy. Intermetallics 50:94–107CrossRef
28.
Zurück zum Zitat Benafan O, Noebe RD, Padula SA, Vaidyanathan R (2012) Microstructural response during isothermal and isobaric loading of a precipitation strengthened Ni-29.7Ti-20Hf high-temperature shape memory alloy. Metall Mater Trans 43A:4539–45552CrossRef Benafan O, Noebe RD, Padula SA, Vaidyanathan R (2012) Microstructural response during isothermal and isobaric loading of a precipitation strengthened Ni-29.7Ti-20Hf high-temperature shape memory alloy. Metall Mater Trans 43A:4539–45552CrossRef
29.
Zurück zum Zitat Fosdick R, Ketema Y, Jang-Horng Y (1998) Vibration damping through the use of materials with memory. Int J Solids Struct 35:403CrossRef Fosdick R, Ketema Y, Jang-Horng Y (1998) Vibration damping through the use of materials with memory. Int J Solids Struct 35:403CrossRef
30.
Zurück zum Zitat DellaCorte C, Noebe RD, Stanford MK, Padula SA (2011) Resilient and corrosion proof rolling element bearings made from superealstic Ni-Ti alloys for aerospace mechanism applications, NASA/TM-2011-217105 DellaCorte C, Noebe RD, Stanford MK, Padula SA (2011) Resilient and corrosion proof rolling element bearings made from superealstic Ni-Ti alloys for aerospace mechanism applications, NASA/TM-2011-217105
31.
Zurück zum Zitat Tang W (1997) Thermodynamic study of the low-temperature phase B19′ and the martensitic transformation in near-equiatomic Ti-Ni shape memory alloys. Metall Mater Trans A 28:537–544CrossRef Tang W (1997) Thermodynamic study of the low-temperature phase B19′ and the martensitic transformation in near-equiatomic Ti-Ni shape memory alloys. Metall Mater Trans A 28:537–544CrossRef
32.
Zurück zum Zitat Sandu AM, Tsuchiya K, Tabuchi M, Yamamoto S, Todaka Y, Umemoto M (2007) Microstructural evolution during isothermal aging in Ni-Rich Ti-Zr-Ni shape memory alloys. Mater Trans 48:432–438CrossRef Sandu AM, Tsuchiya K, Tabuchi M, Yamamoto S, Todaka Y, Umemoto M (2007) Microstructural evolution during isothermal aging in Ni-Rich Ti-Zr-Ni shape memory alloys. Mater Trans 48:432–438CrossRef
33.
Zurück zum Zitat Sandu AM, Tabuchi M, Yamamoto S, Todaka Y, Umemoto M (2008) Precipitation in Ni-rich Ti-Zr-Ni shape memory alloys by isothermal aging. In: Berg B, Mitchell MR, Proft J (eds) Proceedings of the international conference on shape memory and superelastic technologies. ASM International, Ohio, pp 101–108 Sandu AM, Tabuchi M, Yamamoto S, Todaka Y, Umemoto M (2008) Precipitation in Ni-rich Ti-Zr-Ni shape memory alloys by isothermal aging. In: Berg B, Mitchell MR, Proft J (eds) Proceedings of the international conference on shape memory and superelastic technologies. ASM International, Ohio, pp 101–108
34.
Zurück zum Zitat Evirgen A, Karaman I, Noebe RD, Santamarta R, Pons J (2013) Effect of precipitation on the microstructure and shape memory response of the Ni50.3Ti29.7Zr20 high temperature shape memory alloy. Scr Mater 69:354–357CrossRef Evirgen A, Karaman I, Noebe RD, Santamarta R, Pons J (2013) Effect of precipitation on the microstructure and shape memory response of the Ni50.3Ti29.7Zr20 high temperature shape memory alloy. Scr Mater 69:354–357CrossRef
35.
Zurück zum Zitat Kirkland EJ, Loane RF, Silcox J (1987) Simulation of annular dark field STEM images using a modified multislice method. Ultramicroscopy 23:77–96CrossRef Kirkland EJ, Loane RF, Silcox J (1987) Simulation of annular dark field STEM images using a modified multislice method. Ultramicroscopy 23:77–96CrossRef
36.
Zurück zum Zitat Loane RF, Xu P, Silcox J (1992) Incoherent imaging of zone axis crystals with ADF STEM. Ultramicroscopy 40:121–138CrossRef Loane RF, Xu P, Silcox J (1992) Incoherent imaging of zone axis crystals with ADF STEM. Ultramicroscopy 40:121–138CrossRef
37.
Zurück zum Zitat Kovarik L, Yang F, Garg A, Diercks D, Kaufman M, Noebe RD, Mills MJ (2010) Structural analysis of a new precipitate phase in high-temperature TiNiPt shape memory alloys. Acta Mater 58:4660–4673CrossRef Kovarik L, Yang F, Garg A, Diercks D, Kaufman M, Noebe RD, Mills MJ (2010) Structural analysis of a new precipitate phase in high-temperature TiNiPt shape memory alloys. Acta Mater 58:4660–4673CrossRef
38.
Zurück zum Zitat Karaca HE, Acar E, Ded GS, Basaran B, Tobe H, Noebe RD, Bigelow G, Chumlyakov YI (2013) Shape memory behavior of high strength NiTiHfPd polycrystalline alloys. Acta Mater 61:5036–5049CrossRef Karaca HE, Acar E, Ded GS, Basaran B, Tobe H, Noebe RD, Bigelow G, Chumlyakov YI (2013) Shape memory behavior of high strength NiTiHfPd polycrystalline alloys. Acta Mater 61:5036–5049CrossRef
39.
Zurück zum Zitat Phillips PJ, Brandes MC, Mills MJ, De Graef M (2011) Diffraction contrast STEM of dislocations: imaging and simulations. Ultramicroscopy 111:1483–1487CrossRef Phillips PJ, Brandes MC, Mills MJ, De Graef M (2011) Diffraction contrast STEM of dislocations: imaging and simulations. Ultramicroscopy 111:1483–1487CrossRef
40.
Zurück zum Zitat Noebe RD, Bowman RR, Nathal MV (1993) Physical and mechanical properties of the B2 compound NiAI. Int Mater Rev 38:193–232CrossRef Noebe RD, Bowman RR, Nathal MV (1993) Physical and mechanical properties of the B2 compound NiAI. Int Mater Rev 38:193–232CrossRef
41.
Zurück zum Zitat Benafan O, Noebe RD, Padula SA, Garg A, Clausen B, Vogel S, Vaidyanathan R (2013) Temperature dependent deformation of the B2 austenite phase of a NiTi shape memory alloy. Int J Plast 51:103–121CrossRef Benafan O, Noebe RD, Padula SA, Garg A, Clausen B, Vogel S, Vaidyanathan R (2013) Temperature dependent deformation of the B2 austenite phase of a NiTi shape memory alloy. Int J Plast 51:103–121CrossRef
42.
Zurück zum Zitat Hull D, Bacon DJ (2001) 10: strength of crystalline solids. In: Hull D, Bacon DJ (eds) Introduction to dislocations, 4th edn. Butterworth-Heinemann, Oxford, pp 193–236CrossRef Hull D, Bacon DJ (2001) 10: strength of crystalline solids. In: Hull D, Bacon DJ (eds) Introduction to dislocations, 4th edn. Butterworth-Heinemann, Oxford, pp 193–236CrossRef
43.
Zurück zum Zitat Hornbuckle BC, Sasaki TT, Bigelow GS, Noebe RD, Weaver ML, Thompson GB (2015) Structure-property relationships with H-phase precipitation in a Ni-29.7Ti-20Hf (at.%) shape memory alloy. Mater Sci Eng A 637:63–69CrossRef Hornbuckle BC, Sasaki TT, Bigelow GS, Noebe RD, Weaver ML, Thompson GB (2015) Structure-property relationships with H-phase precipitation in a Ni-29.7Ti-20Hf (at.%) shape memory alloy. Mater Sci Eng A 637:63–69CrossRef
44.
Zurück zum Zitat Cooper MJ (1963) An investigation of the ordering of the phases CoAl and NiAl. Philos Mag 8(89):805–810CrossRef Cooper MJ (1963) An investigation of the ordering of the phases CoAl and NiAl. Philos Mag 8(89):805–810CrossRef
45.
Zurück zum Zitat Wasilewski RJ (1968) Structure defects in CsCl intermetallic compounds-I. Thoery. J Phys Chem Solids 29:39–49CrossRef Wasilewski RJ (1968) Structure defects in CsCl intermetallic compounds-I. Thoery. J Phys Chem Solids 29:39–49CrossRef
46.
Zurück zum Zitat Taylor A, Doyle NJ (1972) Further studies on the nickel-aluminum system. I. The β-NiAI and δ-Ni2Al3 phase fields. J Appl Cryst 5:201–209CrossRef Taylor A, Doyle NJ (1972) Further studies on the nickel-aluminum system. I. The β-NiAI and δ-Ni2Al3 phase fields. J Appl Cryst 5:201–209CrossRef
47.
Zurück zum Zitat Bradley AJ, Taylor A (1937) An X-ray analysis of the nickel-aluminium system. Proc R Soc A159:56–72CrossRef Bradley AJ, Taylor A (1937) An X-ray analysis of the nickel-aluminium system. Proc R Soc A159:56–72CrossRef
Metadaten
Titel
Microstructure–property relationships in a high-strength 51Ni–29Ti–20Hf shape memory alloy
verfasst von
D. R. Coughlin
L. Casalena
F. Yang
R. D. Noebe
M. J. Mills
Publikationsdatum
18.09.2015
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 2/2016
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-015-9400-7

Weitere Artikel der Ausgabe 2/2016

Journal of Materials Science 2/2016 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.