Skip to main content
Erschienen in: Journal of Materials Science 3/2016

06.10.2015 | Original Paper

A microstructural and neutron-diffraction study on the interactions between microwave-irradiated multiwalled carbon nanotubes and hydrogen

verfasst von: Y. T. Lee, P. J. Tsai, V. K. Peterson, B. Yang, K. S. Lin, M. Zhu, K. L. Lim, Y. S. Tseng, S. L. I. Chan

Erschienen in: Journal of Materials Science | Ausgabe 3/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Microwave irradiation is a simple yet effective way of altering the properties of multiwalled carbon nanotubes (MWNTs). This work studies the interactions between microwave-irradiated MWNTs and hydrogen. Effects of MWNT diameter and irradiation duration on the hydrogen-storage capacity have been investigated. We find that microwave irradiation induces damage to the MWNTs that can enhance hydrogen-storage capacity, with excessive damage being detrimental. Smaller-diameter tubes suffer less damage than larger tubes do. MWNTs with a diameter of 20–40 nm irradiated for 10 min had the highest hydrogen uptake of the samples measured, of 0.87 wt% at room temperature and under a hydrogen pressure of 3 MPa. Neutron powder-diffraction data revealed structural changes that were consistent with the insertion of hydrogen in the interstitial cavities of the microwave-irradiated MWNTs, as well as an expansion between the graphene layers of samples that were microwave irradiated. Hence, this simple treatment could be a promising solution to improve the hydrogen-storage capacities of MWNTs.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Ajayan PM, Ebbesen TW (1997) Nanometre-size tubes of carbon. Rep Prog Phys 60:1025–1062CrossRef Ajayan PM, Ebbesen TW (1997) Nanometre-size tubes of carbon. Rep Prog Phys 60:1025–1062CrossRef
2.
Zurück zum Zitat Baughman RH, Zakhidov AA, Wad Heer (2002) Carbon nanotubes: the route toward applications. Science 297:787–792CrossRef Baughman RH, Zakhidov AA, Wad Heer (2002) Carbon nanotubes: the route toward applications. Science 297:787–792CrossRef
3.
Zurück zum Zitat Terrones M (2003) Science and technology of the twenty-first century: synthesis, properties and applications of carbon nanotubes. Annu Rev Mater Res 33:419–501CrossRef Terrones M (2003) Science and technology of the twenty-first century: synthesis, properties and applications of carbon nanotubes. Annu Rev Mater Res 33:419–501CrossRef
4.
Zurück zum Zitat Hwa K-Y, Subramani B (2014) Synthesis of zinc oxide nanoparticles on graphene-carbon nanotube hybrid for glucose biosensor applications. Biosens Bioelectr. 62:127–133CrossRef Hwa K-Y, Subramani B (2014) Synthesis of zinc oxide nanoparticles on graphene-carbon nanotube hybrid for glucose biosensor applications. Biosens Bioelectr. 62:127–133CrossRef
5.
Zurück zum Zitat Socas-Rodriguez B, Herrera-Herrera AV, Asensio-Ramos M, Hernandez-Borges J (2014) Recent applications of carbon nanotube sorbents in analytical chemistry. J Chromatogr A 1357:110–146CrossRef Socas-Rodriguez B, Herrera-Herrera AV, Asensio-Ramos M, Hernandez-Borges J (2014) Recent applications of carbon nanotube sorbents in analytical chemistry. J Chromatogr A 1357:110–146CrossRef
6.
Zurück zum Zitat Barghi SH, Tsotsis TT, Sahimi M (2014) Chemisorption, physisorption and hysteresis during hydrogen storage in carbon nanotubes. Int J Hydrogen Energy 39:1390–1397CrossRef Barghi SH, Tsotsis TT, Sahimi M (2014) Chemisorption, physisorption and hysteresis during hydrogen storage in carbon nanotubes. Int J Hydrogen Energy 39:1390–1397CrossRef
7.
Zurück zum Zitat Liu C, Chen Y, Wu C-Z, Xu S-T, Cheng H-M (2010) Hydrogen storage in carbon nanotubes revisited. Carbon 48:452–455CrossRef Liu C, Chen Y, Wu C-Z, Xu S-T, Cheng H-M (2010) Hydrogen storage in carbon nanotubes revisited. Carbon 48:452–455CrossRef
8.
Zurück zum Zitat Lin K-S, Mai Y-J, Li S-R, Shu C-W, Wang C-H (2012) Characterization and hydrogen storage of surface-modified multiwalled carbon nanotubes for fuel cell application. J Nanomater 2012:1–12 Lin K-S, Mai Y-J, Li S-R, Shu C-W, Wang C-H (2012) Characterization and hydrogen storage of surface-modified multiwalled carbon nanotubes for fuel cell application. J Nanomater 2012:1–12
9.
Zurück zum Zitat Awasthi K, Kamalakaran R, Singh AK, Srivastava ON (2002) Ball-milled carbon and hydrogen storage. Int J Hydrogen Energy 27:425–432CrossRef Awasthi K, Kamalakaran R, Singh AK, Srivastava ON (2002) Ball-milled carbon and hydrogen storage. Int J Hydrogen Energy 27:425–432CrossRef
10.
Zurück zum Zitat Rather S, Nahm KS (2014) Hydrogen uptake of high-energy ball milled nickel-multiwalled carbon nanotube composites. Mater Res Bull 49:525–530CrossRef Rather S, Nahm KS (2014) Hydrogen uptake of high-energy ball milled nickel-multiwalled carbon nanotube composites. Mater Res Bull 49:525–530CrossRef
11.
Zurück zum Zitat Chen C-H, Huang C-C (2007) Hydrogen storage by KOH-modified multi-walled carbon nanotubes. Int J Hydrogen Energy 32:237–246CrossRef Chen C-H, Huang C-C (2007) Hydrogen storage by KOH-modified multi-walled carbon nanotubes. Int J Hydrogen Energy 32:237–246CrossRef
12.
Zurück zum Zitat Ma RZ, Wei BQ, Xu CL, Liang J, Wu DH (2000) The morphology changes of carbon nanotubes under laser irradiation. Carbon 38:636–638CrossRef Ma RZ, Wei BQ, Xu CL, Liang J, Wu DH (2000) The morphology changes of carbon nanotubes under laser irradiation. Carbon 38:636–638CrossRef
13.
Zurück zum Zitat Vladimir AB, Kensei K, Takeo K, Yoichi N, Elena VB, José-Manuel S-B (2002) Irradiation of single-walled carbon nanotubes with high-energy protons. Nano Lett 2:789–791CrossRef Vladimir AB, Kensei K, Takeo K, Yoichi N, Elena VB, José-Manuel S-B (2002) Irradiation of single-walled carbon nanotubes with high-energy protons. Nano Lett 2:789–791CrossRef
14.
Zurück zum Zitat Uvarova IY, Basnukaeva RM, Dolbin AV, Danilchenko BA (2013) Hydrogen storage capacity of carbon nanotubes γ-irradiated in hydrogen and deuterium media. In: 36th International spring seminar on electronic technology, pp 309–313 Uvarova IY, Basnukaeva RM, Dolbin AV, Danilchenko BA (2013) Hydrogen storage capacity of carbon nanotubes γ-irradiated in hydrogen and deuterium media. In: 36th International spring seminar on electronic technology, pp 309–313
15.
Zurück zum Zitat Takagi H, Hatori H, Yamada Y (2005) Reversible adsorption/desorption property of hydrogen on carbon surface. Carbon 43:3037–3039CrossRef Takagi H, Hatori H, Yamada Y (2005) Reversible adsorption/desorption property of hydrogen on carbon surface. Carbon 43:3037–3039CrossRef
16.
Zurück zum Zitat Zacharia R, Kim KY, Fazle Kibria AKM, Nahm KS (2005) Enhancement of hydrogen storage capacity of carbon nanotubes via spill-over from vanadium and palladium nanoparticles. Chem Phys Lett 412:369–375CrossRef Zacharia R, Kim KY, Fazle Kibria AKM, Nahm KS (2005) Enhancement of hydrogen storage capacity of carbon nanotubes via spill-over from vanadium and palladium nanoparticles. Chem Phys Lett 412:369–375CrossRef
17.
Zurück zum Zitat Yoo E, Gao L, Komatsu T, Yagai N, Arai K, Yamazaki T et al (2004) Atomic hydrogen storage in carbon nanotubes promoted by metal catalysts. J Phys Chem B 108:18903–18907CrossRef Yoo E, Gao L, Komatsu T, Yagai N, Arai K, Yamazaki T et al (2004) Atomic hydrogen storage in carbon nanotubes promoted by metal catalysts. J Phys Chem B 108:18903–18907CrossRef
18.
Zurück zum Zitat Chen J, Wang XG, Zhang HY (2013) Hydrogen storage in carbon nanotubes prepared by using copper nanoparticles as catalyst. New trends in mechanical engineering and materials. Appl Mech Mater 251:342–345CrossRef Chen J, Wang XG, Zhang HY (2013) Hydrogen storage in carbon nanotubes prepared by using copper nanoparticles as catalyst. New trends in mechanical engineering and materials. Appl Mech Mater 251:342–345CrossRef
19.
Zurück zum Zitat Imholt TJ, Dyke CA, Hasslacher B, Perez JM, Price DW, Roberts JA et al (2003) Nanotubes in microwave fields; light emission, intense heat, outgassing, and reconstruction. Chem Mat 15:3969–3970CrossRef Imholt TJ, Dyke CA, Hasslacher B, Perez JM, Price DW, Roberts JA et al (2003) Nanotubes in microwave fields; light emission, intense heat, outgassing, and reconstruction. Chem Mat 15:3969–3970CrossRef
20.
Zurück zum Zitat Tour JM, Dyke CA, Stephenson JJ, Yakobson BI (2011) Interaction of microwaves with carbon nanotubes to facilitate modification. US 8080199 B2 Tour JM, Dyke CA, Stephenson JJ, Yakobson BI (2011) Interaction of microwaves with carbon nanotubes to facilitate modification. US 8080199 B2
21.
Zurück zum Zitat Raghuveer MS, Agrawal S, Bishop N, Ramanath G (2006) Microwave-assisted single-step functionalization and in situ derivatization of carbon nanotubes with gold nanoparticles. Chem Mater 18:1390–1393CrossRef Raghuveer MS, Agrawal S, Bishop N, Ramanath G (2006) Microwave-assisted single-step functionalization and in situ derivatization of carbon nanotubes with gold nanoparticles. Chem Mater 18:1390–1393CrossRef
22.
Zurück zum Zitat Song JW, Seo HW, Park JK, Kim JE, Choi DG, Han CS (2008) Selective removal of metallic SWNTs using microwave radiation. Curr Appl Phys 8:725–728CrossRef Song JW, Seo HW, Park JK, Kim JE, Choi DG, Han CS (2008) Selective removal of metallic SWNTs using microwave radiation. Curr Appl Phys 8:725–728CrossRef
23.
Zurück zum Zitat Yuca N, Karatepe N (2011) Hydrogen storage in single-walled carbon nanotubes purified by microwaves digestion method. Int Sch Sci Res Innov 5:478–483 Yuca N, Karatepe N (2011) Hydrogen storage in single-walled carbon nanotubes purified by microwaves digestion method. Int Sch Sci Res Innov 5:478–483
24.
Zurück zum Zitat Mu S-C, Tang H-I, Qian S-H, Pan M, Yuan R-Z (2006) Hydrogen storage in carbon nanotubes modified by microwave plasma etching and Pd decoration. Carbon 44:762–767CrossRef Mu S-C, Tang H-I, Qian S-H, Pan M, Yuan R-Z (2006) Hydrogen storage in carbon nanotubes modified by microwave plasma etching and Pd decoration. Carbon 44:762–767CrossRef
25.
Zurück zum Zitat Geng H-Z, Kim TH, Lim SC, Jeong H-K, Jin MH, Jo YW et al (2010) Hydrogen storage in microwave-treated multi-walled carbon nanotubes. Int J Hydrogen Energy 35:2073–2082CrossRef Geng H-Z, Kim TH, Lim SC, Jeong H-K, Jin MH, Jo YW et al (2010) Hydrogen storage in microwave-treated multi-walled carbon nanotubes. Int J Hydrogen Energy 35:2073–2082CrossRef
26.
Zurück zum Zitat Studer AJ, Hagen ME, Noakes TJ (2006) Wombat: the high-intensity powder diffractometer at the OPAL reactor. Physica B 385–386:1013–1015CrossRef Studer AJ, Hagen ME, Noakes TJ (2006) Wombat: the high-intensity powder diffractometer at the OPAL reactor. Physica B 385–386:1013–1015CrossRef
27.
Zurück zum Zitat Li X, Zhu H, Xu C, Mao Z, Wu D (2003) Measuring hydrogen storage capacity of carbon nanotubes by tangent-mass method. Int J Hydrogen Energy 28:1251–1253CrossRef Li X, Zhu H, Xu C, Mao Z, Wu D (2003) Measuring hydrogen storage capacity of carbon nanotubes by tangent-mass method. Int J Hydrogen Energy 28:1251–1253CrossRef
28.
Zurück zum Zitat Pan W, Zhang X, Li S, Wu D, Mao Z (2005) Measuring hydrogen storage capacity of carbon nanotubes by high-pressure microbalance. Int J Hydrogen Energy 30:719–722CrossRef Pan W, Zhang X, Li S, Wu D, Mao Z (2005) Measuring hydrogen storage capacity of carbon nanotubes by high-pressure microbalance. Int J Hydrogen Energy 30:719–722CrossRef
29.
Zurück zum Zitat Kokai F, Koshio A, Shiraishi M, Matsuta T, Shimoda S, Ishihara M et al (2005) Modification of carbon nanotubes by laser ablation. Diam Relat Mater 14:724–728CrossRef Kokai F, Koshio A, Shiraishi M, Matsuta T, Shimoda S, Ishihara M et al (2005) Modification of carbon nanotubes by laser ablation. Diam Relat Mater 14:724–728CrossRef
30.
Zurück zum Zitat Hou P-X, Xu S-T, Ying Z, Yang Q-H, Liu C, Cheng H-M (2003) Hydrogen adsorption/desorption behavior of multi-walled carbon nanotubes with different diameters. Carbon 41:2471–2476CrossRef Hou P-X, Xu S-T, Ying Z, Yang Q-H, Liu C, Cheng H-M (2003) Hydrogen adsorption/desorption behavior of multi-walled carbon nanotubes with different diameters. Carbon 41:2471–2476CrossRef
31.
Zurück zum Zitat Reznik D, Olk CH, Neumann DA, Copley JRD (1995) X-ray powder diffraction from carbon nanotubes and nanoparticles. Phys Rev B 52:116–124CrossRef Reznik D, Olk CH, Neumann DA, Copley JRD (1995) X-ray powder diffraction from carbon nanotubes and nanoparticles. Phys Rev B 52:116–124CrossRef
32.
Zurück zum Zitat Schimmel HG, Nijkamp G, Kearley GJ, Riveraa A, de Jong KP, Mulder FM (2004) Hydrogen adsorption in carbon nanostructures compared. Mat Sci Eng B 108:124–129CrossRef Schimmel HG, Nijkamp G, Kearley GJ, Riveraa A, de Jong KP, Mulder FM (2004) Hydrogen adsorption in carbon nanostructures compared. Mat Sci Eng B 108:124–129CrossRef
33.
Zurück zum Zitat Duclaux L, Los S, Azais P, Pellenq R, Breton Y, Isnard O (2006) Deuterium adsorption in carbon single walled carbon nanotubes doped by lithium and potassium: adsorption isotherms and in situ neutron diffraction. J Phys Chem Solids 67:1122–1126CrossRef Duclaux L, Los S, Azais P, Pellenq R, Breton Y, Isnard O (2006) Deuterium adsorption in carbon single walled carbon nanotubes doped by lithium and potassium: adsorption isotherms and in situ neutron diffraction. J Phys Chem Solids 67:1122–1126CrossRef
Metadaten
Titel
A microstructural and neutron-diffraction study on the interactions between microwave-irradiated multiwalled carbon nanotubes and hydrogen
verfasst von
Y. T. Lee
P. J. Tsai
V. K. Peterson
B. Yang
K. S. Lin
M. Zhu
K. L. Lim
Y. S. Tseng
S. L. I. Chan
Publikationsdatum
06.10.2015
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 3/2016
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-015-9448-4

Weitere Artikel der Ausgabe 3/2016

Journal of Materials Science 3/2016 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.