Skip to main content
Erschienen in: Journal of Materials Science 20/2016

08.07.2016 | Original Paper

Photosynthesis of poly(glycidyl methacrylate) microspheres: a component for making covalently cross-linked colloidosomes and organic/inorganic nanocomposites

verfasst von: Jianbo Tan, Lili Fu, Xuechao Zhang, Yuhao Bai, Li Zhang

Erschienen in: Journal of Materials Science | Ausgabe 20/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Herein, we report a photoinitiated RAFT dispersion polymerization for the preparation of highly monodisperse poly(glycidyl methacrylate) (PGMA) microspheres at room temperature. Fast polymerization rates were achieved, with near quantitative yields within 2 h of UV irradiation. The effect of reaction conditions (e.g., stabilizer concentration, monomer concentration and solvent composition) on particle morphologies was studied in detail. Amine-functionalized PGMA microspheres were prepared by treating PGMA microspheres with ethylene diamine (EDA) at 70 °C, and the obtained product was characterized by FT-IR and XPS. Such amine-functionalized PGMA microspheres were able to stabilize oil-in-water Pickering emulsions. Covalently cross-linked colloidosomes were formed by cross-linking primary amino groups on the particle surface using (tolylene 2,4-diisocyanate-terminated poly(propylene glycol) (PPG-TDI) as a cross-linker. Amine-functionalized PGMA microspheres were also employed as templates for the synthesis of PGMA/gold (Au) hybrid microspheres and large gold nanoplates.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
2.
Zurück zum Zitat Deng Z, Zhu H, Peng B et al (2012) Synthesis of PS/Ag nanocomposite spheres with catalytic and antibacterial activities. ACS Appl Mater Interfaces 4:5625–5632. doi:10.1021/am3015313 CrossRef Deng Z, Zhu H, Peng B et al (2012) Synthesis of PS/Ag nanocomposite spheres with catalytic and antibacterial activities. ACS Appl Mater Interfaces 4:5625–5632. doi:10.​1021/​am3015313 CrossRef
3.
Zurück zum Zitat Abdelrahman AI, Dai S, Thickett SC et al (2009) Lanthanide-containing polymer microspheres by multiple-stage dispersion polymerization for highly multiplexed bioassays. J Am Chem Soc 131:15276–15283. doi:10.1021/ja9052009 CrossRef Abdelrahman AI, Dai S, Thickett SC et al (2009) Lanthanide-containing polymer microspheres by multiple-stage dispersion polymerization for highly multiplexed bioassays. J Am Chem Soc 131:15276–15283. doi:10.​1021/​ja9052009 CrossRef
5.
Zurück zum Zitat Přikryl P, Horák D, Tichá M, Kučerová Z (2006) Magnetic IDA-modified hydrophilic methacrylate-based polymer microspheres for IMAC protein separation. J Sep Sci 29:2541–2549. doi:10.1002/jssc.200600248 CrossRef Přikryl P, Horák D, Tichá M, Kučerová Z (2006) Magnetic IDA-modified hydrophilic methacrylate-based polymer microspheres for IMAC protein separation. J Sep Sci 29:2541–2549. doi:10.​1002/​jssc.​200600248 CrossRef
6.
Zurück zum Zitat Zhang Y, Li D, Yu M et al (2014) Fe3O4/PVIM-Ni2+ magnetic composite microspheres for highly specific separation of histidine-rich proteins. ACS Appl Mater Interfaces 6:8836–8844. doi:10.1021/am501626t CrossRef Zhang Y, Li D, Yu M et al (2014) Fe3O4/PVIM-Ni2+ magnetic composite microspheres for highly specific separation of histidine-rich proteins. ACS Appl Mater Interfaces 6:8836–8844. doi:10.​1021/​am501626t CrossRef
8.
Zurück zum Zitat Ugelstad J, Kaggerud KH, Hansen FK, Berge A (1979) Absorption of low molecular weight compounds in aqueous dispersions of polymer-oligomer particles, 2. A two step swelling process of polymer particles giving an enormous increase in absorption capacity. Makromol Chem 180:737–744. doi:10.1002/macp.1979.021800317 CrossRef Ugelstad J, Kaggerud KH, Hansen FK, Berge A (1979) Absorption of low molecular weight compounds in aqueous dispersions of polymer-oligomer particles, 2. A two step swelling process of polymer particles giving an enormous increase in absorption capacity. Makromol Chem 180:737–744. doi:10.​1002/​macp.​1979.​021800317 CrossRef
9.
Zurück zum Zitat Kawaguchi S, Ito K (2005) Dispersion polymerization. In: Okubo M (ed) Polym Part. Springer, Berlin, pp 299–328 Kawaguchi S, Ito K (2005) Dispersion polymerization. In: Okubo M (ed) Polym Part. Springer, Berlin, pp 299–328
10.
13.
Zurück zum Zitat Discekici EH, Pester CW, Treat NJ et al (2016) simple benchtop approach to polymer brush nanostructures using visible-light-mediated metal-free atom transfer radical polymerization. ACS Macro Lett 5:258–262. doi:10.1021/acsmacrolett.6b00004 CrossRef Discekici EH, Pester CW, Treat NJ et al (2016) simple benchtop approach to polymer brush nanostructures using visible-light-mediated metal-free atom transfer radical polymerization. ACS Macro Lett 5:258–262. doi:10.​1021/​acsmacrolett.​6b00004 CrossRef
14.
Zurück zum Zitat Shanmugam S, Boyer C (2015) Stereo-, temporal and chemical control through photoactivation of living radical polymerization: synthesis of block and gradient copolymers. J Am Chem Soc 137:9988–9999. doi:10.1021/jacs.5b05903 CrossRef Shanmugam S, Boyer C (2015) Stereo-, temporal and chemical control through photoactivation of living radical polymerization: synthesis of block and gradient copolymers. J Am Chem Soc 137:9988–9999. doi:10.​1021/​jacs.​5b05903 CrossRef
15.
Zurück zum Zitat Poelma JE, Fors BP, Meyers GF et al (2013) Fabrication of complex three-dimensional polymer brush nanostructures through light-mediated living radical polymerization. Angew Chem Int Ed 52:6844–6848. doi:10.1002/anie.201301845 CrossRef Poelma JE, Fors BP, Meyers GF et al (2013) Fabrication of complex three-dimensional polymer brush nanostructures through light-mediated living radical polymerization. Angew Chem Int Ed 52:6844–6848. doi:10.​1002/​anie.​201301845 CrossRef
16.
Zurück zum Zitat Xu J, Jung K, Corrigan NA, Boyer C (2014) Aqueous photoinduced living/controlled polymerization: tailoring for bioconjugation. Chem Sci 5:3568–3575. doi:10.1039/C4SC01309C CrossRef Xu J, Jung K, Corrigan NA, Boyer C (2014) Aqueous photoinduced living/controlled polymerization: tailoring for bioconjugation. Chem Sci 5:3568–3575. doi:10.​1039/​C4SC01309C CrossRef
18.
Zurück zum Zitat Tan J, Bai Y, Zhang X, Zhang L (2016) Room temperature synthesis of poly(poly(ethylene glycol) methyl ether methacrylate)-based diblock copolymer nano-objects via photoinitiated polymerization-induced self-assembly (Photo-PISA). Polym Chem 7:2372–2380. doi:10.1039/C6PY00022C CrossRef Tan J, Bai Y, Zhang X, Zhang L (2016) Room temperature synthesis of poly(poly(ethylene glycol) methyl ether methacrylate)-based diblock copolymer nano-objects via photoinitiated polymerization-induced self-assembly (Photo-PISA). Polym Chem 7:2372–2380. doi:10.​1039/​C6PY00022C CrossRef
19.
Zurück zum Zitat Jiang Y, Xu N, Han J et al (2015) The direct synthesis of interface-decorated reactive block copolymer nanoparticles via polymerisation-induced self-assembly. Polym Chem 6:4955–4965. doi:10.1039/C5PY00656B CrossRef Jiang Y, Xu N, Han J et al (2015) The direct synthesis of interface-decorated reactive block copolymer nanoparticles via polymerisation-induced self-assembly. Polym Chem 6:4955–4965. doi:10.​1039/​C5PY00656B CrossRef
20.
22.
Zurück zum Zitat Chen J, Zeng Z, Yang J, Chen Y (2008) Photoinitiated dispersion polymerization of methyl methacrylate: a quick approach to prepare polymer microspheres with narrow size distribution. J Polym Sci Part Polym Chem 46:1329–1338. doi:10.1002/pola.22473 CrossRef Chen J, Zeng Z, Yang J, Chen Y (2008) Photoinitiated dispersion polymerization of methyl methacrylate: a quick approach to prepare polymer microspheres with narrow size distribution. J Polym Sci Part Polym Chem 46:1329–1338. doi:10.​1002/​pola.​22473 CrossRef
23.
Zurück zum Zitat Tan J, Rao X, Wu X et al (2012) Photoinitiated RAFT dispersion polymerization: a straightforward approach toward highly monodisperse functional microspheres. Macromolecules 45:8790–8795. doi:10.1021/ma301799r CrossRef Tan J, Rao X, Wu X et al (2012) Photoinitiated RAFT dispersion polymerization: a straightforward approach toward highly monodisperse functional microspheres. Macromolecules 45:8790–8795. doi:10.​1021/​ma301799r CrossRef
26.
Zurück zum Zitat McLeod DC, Tsarevsky NV (2016) Well-defined epoxide-containing styrenic polymers and their functionalization with alcohols. J Polym Sci Part Polym Chem 54:1132–1144. doi:10.1002/pola.27952 CrossRef McLeod DC, Tsarevsky NV (2016) Well-defined epoxide-containing styrenic polymers and their functionalization with alcohols. J Polym Sci Part Polym Chem 54:1132–1144. doi:10.​1002/​pola.​27952 CrossRef
27.
Zurück zum Zitat Abdelrahman AI, Thickett SC, Liang Y et al (2011) Surface functionalization methods to enhance bioconjugation in metal-labeled polystyrene particles. Macromolecules 44:4801–4813. doi:10.1021/ma200582q CrossRef Abdelrahman AI, Thickett SC, Liang Y et al (2011) Surface functionalization methods to enhance bioconjugation in metal-labeled polystyrene particles. Macromolecules 44:4801–4813. doi:10.​1021/​ma200582q CrossRef
28.
Zurück zum Zitat Brändle A, Khan A (2012) Thiol–epoxy “click” polymerization: efficient construction of reactive and functional polymers. Polym Chem 3:3224–3227. doi:10.1039/C2PY20591B CrossRef Brändle A, Khan A (2012) Thiol–epoxy “click” polymerization: efficient construction of reactive and functional polymers. Polym Chem 3:3224–3227. doi:10.​1039/​C2PY20591B CrossRef
29.
Zurück zum Zitat Oh JS, Dang LN, Yoon SW et al (2013) Amine-functionalized polyglycidyl methacrylate microsphere as a unified template for the synthesis of gold nanoparticles and single-crystal gold plates. Macromol Rapid Commun 34:504–510. doi:10.1002/marc.201200713 CrossRef Oh JS, Dang LN, Yoon SW et al (2013) Amine-functionalized polyglycidyl methacrylate microsphere as a unified template for the synthesis of gold nanoparticles and single-crystal gold plates. Macromol Rapid Commun 34:504–510. doi:10.​1002/​marc.​201200713 CrossRef
30.
Zurück zum Zitat Horák D, Španová A, Tvrdíková J, Rittich B (2011) Streptavidin-modified magnetic poly(2-hydroxyethyl methacrylate-co-glycidyl methacrylate) microspheres for selective isolation of bacterial DNA. Eur Polym J 47:1090–1096. doi:10.1016/j.eurpolymj.2011.02.007 CrossRef Horák D, Španová A, Tvrdíková J, Rittich B (2011) Streptavidin-modified magnetic poly(2-hydroxyethyl methacrylate-co-glycidyl methacrylate) microspheres for selective isolation of bacterial DNA. Eur Polym J 47:1090–1096. doi:10.​1016/​j.​eurpolymj.​2011.​02.​007 CrossRef
31.
Zurück zum Zitat Zhang W, Sun Y, Zhang L (2015) In situ synthesis of monodisperse silver nanoparticles on sulfhydryl-functionalized poly(glycidyl methacrylate) microspheres for catalytic reduction of 4-nitrophenol. Ind Eng Chem Res 54:6480–6488. doi:10.1021/acs.iecr.5b01010 CrossRef Zhang W, Sun Y, Zhang L (2015) In situ synthesis of monodisperse silver nanoparticles on sulfhydryl-functionalized poly(glycidyl methacrylate) microspheres for catalytic reduction of 4-nitrophenol. Ind Eng Chem Res 54:6480–6488. doi:10.​1021/​acs.​iecr.​5b01010 CrossRef
32.
Zurück zum Zitat Du Y-Z, Kodaka M (2005) Preparation and characterization of biotinylated and enzyme-immobilized heterobifunctional latex particles as nanobio devices. J Polym Sci Part Polym Chem 43:562–574. doi:10.1002/pola.20556 CrossRef Du Y-Z, Kodaka M (2005) Preparation and characterization of biotinylated and enzyme-immobilized heterobifunctional latex particles as nanobio devices. J Polym Sci Part Polym Chem 43:562–574. doi:10.​1002/​pola.​20556 CrossRef
33.
Zurück zum Zitat Lai JT, Filla D, Shea R (2002) Functional polymers from novel carboxyl-terminated trithiocarbonates as highly efficient raft agents. Macromolecules 35:6754–6756. doi:10.1021/ma020362m CrossRef Lai JT, Filla D, Shea R (2002) Functional polymers from novel carboxyl-terminated trithiocarbonates as highly efficient raft agents. Macromolecules 35:6754–6756. doi:10.​1021/​ma020362m CrossRef
34.
Zurück zum Zitat Song J-S, Tronc F, Winnik MA (2004) Two-stage dispersion polymerization toward monodisperse, controlled micrometer-sized copolymer particles. J Am Chem Soc 126:6562–6563. doi:10.1021/ja048862d CrossRef Song J-S, Tronc F, Winnik MA (2004) Two-stage dispersion polymerization toward monodisperse, controlled micrometer-sized copolymer particles. J Am Chem Soc 126:6562–6563. doi:10.​1021/​ja048862d CrossRef
35.
Zurück zum Zitat Song J-S, Winnik MA (2005) Cross-linked, monodisperse, micron-sized polystyrene particles by two-stage dispersion polymerization. Macromolecules 38:8300–8307. doi:10.1021/ma050992z CrossRef Song J-S, Winnik MA (2005) Cross-linked, monodisperse, micron-sized polystyrene particles by two-stage dispersion polymerization. Macromolecules 38:8300–8307. doi:10.​1021/​ma050992z CrossRef
36.
Zurück zum Zitat Tan J, Rao X, Yang J, Zeng Z (2015) Monodisperse highly cross-linked “living” microspheres prepared via photoinitiated RAFT dispersion polymerization. RSC Adv 5:18922–18931. doi:10.1039/C4RA15224G CrossRef Tan J, Rao X, Yang J, Zeng Z (2015) Monodisperse highly cross-linked “living” microspheres prepared via photoinitiated RAFT dispersion polymerization. RSC Adv 5:18922–18931. doi:10.​1039/​C4RA15224G CrossRef
37.
Zurück zum Zitat Liu G, Qiu Q, Shen W, An Z (2011) Aqueous dispersion polymerization of 2-methoxyethyl acrylate for the synthesis of biocompatible nanoparticles using a hydrophilic raft polymer and a redox initiator. Macromolecules 44:5237–5245. doi:10.1021/ma200984h CrossRef Liu G, Qiu Q, Shen W, An Z (2011) Aqueous dispersion polymerization of 2-methoxyethyl acrylate for the synthesis of biocompatible nanoparticles using a hydrophilic raft polymer and a redox initiator. Macromolecules 44:5237–5245. doi:10.​1021/​ma200984h CrossRef
38.
Zurück zum Zitat Zhou W, Qu Q, Yu W, An Z (2014) Single monomer for multiple tasks: polymerization induced self-assembly, functionalization and cross-linking, and nanoparticle loading. ACS Macro Lett 3:1220–1224. doi:10.1021/mz500650c CrossRef Zhou W, Qu Q, Yu W, An Z (2014) Single monomer for multiple tasks: polymerization induced self-assembly, functionalization and cross-linking, and nanoparticle loading. ACS Macro Lett 3:1220–1224. doi:10.​1021/​mz500650c CrossRef
39.
Zurück zum Zitat Warren NJ, Armes SP (2014) Polymerization-induced self-assembly of block copolymer nano-objects via raft aqueous dispersion polymerization. J Am Chem Soc 136:10174–10185. doi:10.1021/ja502843f CrossRef Warren NJ, Armes SP (2014) Polymerization-induced self-assembly of block copolymer nano-objects via raft aqueous dispersion polymerization. J Am Chem Soc 136:10174–10185. doi:10.​1021/​ja502843f CrossRef
40.
Zurück zum Zitat Blanazs A, Madsen J, Battaglia G et al (2011) Mechanistic insights for block copolymer morphologies: how do worms form vesicles? J Am Chem Soc 133:16581–16587. doi:10.1021/ja206301a CrossRef Blanazs A, Madsen J, Battaglia G et al (2011) Mechanistic insights for block copolymer morphologies: how do worms form vesicles? J Am Chem Soc 133:16581–16587. doi:10.​1021/​ja206301a CrossRef
41.
Zurück zum Zitat He W-D, Sun X-L, Wan W-M, Pan C-Y (2011) Multiple morphologies of PAA-b-PSt assemblies throughout raft dispersion polymerization of styrene with PAA Macro-CTA. Macromolecules 44:3358–3365. doi:10.1021/ma2000674 CrossRef He W-D, Sun X-L, Wan W-M, Pan C-Y (2011) Multiple morphologies of PAA-b-PSt assemblies throughout raft dispersion polymerization of styrene with PAA Macro-CTA. Macromolecules 44:3358–3365. doi:10.​1021/​ma2000674 CrossRef
43.
Zurück zum Zitat Sun J-T, Hong C-Y, Pan C-Y (2013) Recent advances in RAFT dispersion polymerization for preparation of block copolymer aggregates. Polym Chem 4:873–881. doi:10.1039/C2PY20612A CrossRef Sun J-T, Hong C-Y, Pan C-Y (2013) Recent advances in RAFT dispersion polymerization for preparation of block copolymer aggregates. Polym Chem 4:873–881. doi:10.​1039/​C2PY20612A CrossRef
44.
Zurück zum Zitat Huo F, Li S, Li Q et al (2014) In-situ synthesis of multicompartment nanoparticles of linear BAC triblock terpolymer by seeded raft polymerization. Macromolecules 47:2340–2349. doi:10.1021/ma5002386 CrossRef Huo F, Li S, Li Q et al (2014) In-situ synthesis of multicompartment nanoparticles of linear BAC triblock terpolymer by seeded raft polymerization. Macromolecules 47:2340–2349. doi:10.​1021/​ma5002386 CrossRef
45.
Zurück zum Zitat Huo F, Gao C, Dan M et al (2014) Seeded dispersion RAFT polymerization and synthesis of well-defined ABA triblock copolymer flower-like nanoparticles. Polym Chem 5:2736–2746. doi:10.1039/C3PY01569F CrossRef Huo F, Gao C, Dan M et al (2014) Seeded dispersion RAFT polymerization and synthesis of well-defined ABA triblock copolymer flower-like nanoparticles. Polym Chem 5:2736–2746. doi:10.​1039/​C3PY01569F CrossRef
46.
Zurück zum Zitat Pei Y, Thurairajah L, Sugita OR, Lowe AB (2015) RAFT dispersion polymerization in nonpolar media: polymerization of 3-phenylpropyl methacrylate in n-Tetradecane with poly(stearyl methacrylate) homopolymers as macro chain transfer agents. Macromolecules 48:236–244. doi:10.1021/ma502230h CrossRef Pei Y, Thurairajah L, Sugita OR, Lowe AB (2015) RAFT dispersion polymerization in nonpolar media: polymerization of 3-phenylpropyl methacrylate in n-Tetradecane with poly(stearyl methacrylate) homopolymers as macro chain transfer agents. Macromolecules 48:236–244. doi:10.​1021/​ma502230h CrossRef
47.
Zurück zum Zitat Song J-S, Winnik MA (2006) Monodisperse, micron-sized reactive low molar mass polymer microspheres by two-stage living radical dispersion polymerization of styrene. Macromolecules 39:8318–8325. doi:10.1021/ma061321j CrossRef Song J-S, Winnik MA (2006) Monodisperse, micron-sized reactive low molar mass polymer microspheres by two-stage living radical dispersion polymerization of styrene. Macromolecules 39:8318–8325. doi:10.​1021/​ma061321j CrossRef
48.
Zurück zum Zitat Saikia PJ, Lee JM, Lee K, Choe S (2008) Reaction parameters in the RAFT mediated dispersion polymerization of styrene. J Polym Sci Part Polym Chem 46:872–885. doi:10.1002/pola.22431 CrossRef Saikia PJ, Lee JM, Lee K, Choe S (2008) Reaction parameters in the RAFT mediated dispersion polymerization of styrene. J Polym Sci Part Polym Chem 46:872–885. doi:10.​1002/​pola.​22431 CrossRef
49.
Zurück zum Zitat Tan J, Rao X, Yang J, Zeng Z (2013) Synthesis of highly monodisperse surface-functional microspheres by photoinitiated raft dispersion polymerization using macro-raft agents. Macromolecules 46:8441–8448. doi:10.1021/ma401909a CrossRef Tan J, Rao X, Yang J, Zeng Z (2013) Synthesis of highly monodisperse surface-functional microspheres by photoinitiated raft dispersion polymerization using macro-raft agents. Macromolecules 46:8441–8448. doi:10.​1021/​ma401909a CrossRef
50.
Zurück zum Zitat Tan J, Zhao G, Lu Y et al (2014) Synthesis of PMMA microparticles with a narrow size distribution by photoinitiated raft dispersion polymerization with a macromonomer as the stabilizer. Macromolecules 47:6856–6866. doi:10.1021/ma501432s CrossRef Tan J, Zhao G, Lu Y et al (2014) Synthesis of PMMA microparticles with a narrow size distribution by photoinitiated raft dispersion polymerization with a macromonomer as the stabilizer. Macromolecules 47:6856–6866. doi:10.​1021/​ma501432s CrossRef
51.
Zurück zum Zitat Medina-Castillo AL, Fernandez-Sanchez JF, Segura-Carretero A, Fernandez-Gutierrez A (2010) Micrometer and submicrometer particles prepared by precipitation polymerization: thermodynamic model and experimental evidence of the relation between flory’s parameter and particle size. Macromolecules 43:5804–5813. doi:10.1021/ma100841c CrossRef Medina-Castillo AL, Fernandez-Sanchez JF, Segura-Carretero A, Fernandez-Gutierrez A (2010) Micrometer and submicrometer particles prepared by precipitation polymerization: thermodynamic model and experimental evidence of the relation between flory’s parameter and particle size. Macromolecules 43:5804–5813. doi:10.​1021/​ma100841c CrossRef
52.
Zurück zum Zitat Paine AJ (1990) Dispersion polymerization of styrene in polar solvents. 7. A simple mechanistic model to predict particle size. Macromolecules 23:3109–3117. doi:10.1021/ma00214a013 CrossRef Paine AJ (1990) Dispersion polymerization of styrene in polar solvents. 7. A simple mechanistic model to predict particle size. Macromolecules 23:3109–3117. doi:10.​1021/​ma00214a013 CrossRef
53.
Zurück zum Zitat McKee JR, Ladmiral V, Niskanen J et al (2011) Synthesis of sterically-stabilized polystyrene latexes using well-defined thermoresponsive poly(N-isopropylacrylamide) macromonomers. Macromolecules 44:7692–7703. doi:10.1021/ma2016584 CrossRef McKee JR, Ladmiral V, Niskanen J et al (2011) Synthesis of sterically-stabilized polystyrene latexes using well-defined thermoresponsive poly(N-isopropylacrylamide) macromonomers. Macromolecules 44:7692–7703. doi:10.​1021/​ma2016584 CrossRef
55.
Zurück zum Zitat Ali AMI, Pareek P, Sewell L et al (2007) Synthesis of poly(2-hydroxypropyl methacrylate) latex particles via aqueous dispersion polymerization. Soft Matter 3:1003–1013. doi:10.1039/B704425A CrossRef Ali AMI, Pareek P, Sewell L et al (2007) Synthesis of poly(2-hydroxypropyl methacrylate) latex particles via aqueous dispersion polymerization. Soft Matter 3:1003–1013. doi:10.​1039/​B704425A CrossRef
58.
Zurück zum Zitat Chen Y, Wang C, Chen J et al (2009) Growth of lightly crosslinked PHEMA brushes and capsule formation using pickering emulsion interface-initiated ATRP. J Polym Sci Part Polym Chem 47:1354–1367. doi:10.1002/pola.23244 CrossRef Chen Y, Wang C, Chen J et al (2009) Growth of lightly crosslinked PHEMA brushes and capsule formation using pickering emulsion interface-initiated ATRP. J Polym Sci Part Polym Chem 47:1354–1367. doi:10.​1002/​pola.​23244 CrossRef
59.
Zurück zum Zitat Cayre OJ, Biggs S (2009) Hollow microspheres with binary porous membranes from solid-stabilised emulsion templates. J Mater Chem 19:2724–2728. doi:10.1039/B820842E CrossRef Cayre OJ, Biggs S (2009) Hollow microspheres with binary porous membranes from solid-stabilised emulsion templates. J Mater Chem 19:2724–2728. doi:10.​1039/​B820842E CrossRef
60.
61.
Zurück zum Zitat Tan J, Peng Y, Liu D et al (2016) Facile preparation of monodisperse poly(2-hydroxyethyl acrylate)-grafted poly(methyl methacrylate) microspheres via photoinitiated RAFT dispersion polymerization. Macromol Chem Phys. doi:10.1002/macp.201600176 Tan J, Peng Y, Liu D et al (2016) Facile preparation of monodisperse poly(2-hydroxyethyl acrylate)-grafted poly(methyl methacrylate) microspheres via photoinitiated RAFT dispersion polymerization. Macromol Chem Phys. doi:10.​1002/​macp.​201600176
62.
Zurück zum Zitat Fielding LA, Tonnar J, Armes SP (2011) All-acrylic film-forming colloidal polymer/silica nanocomposite particles prepared by aqueous emulsion polymerization. Langmuir 27:11129–11144. doi:10.1021/la202066n CrossRef Fielding LA, Tonnar J, Armes SP (2011) All-acrylic film-forming colloidal polymer/silica nanocomposite particles prepared by aqueous emulsion polymerization. Langmuir 27:11129–11144. doi:10.​1021/​la202066n CrossRef
63.
Zurück zum Zitat Gao R, Zhou S, Chen M, Wu L (2011) Facile synthesis of monodisperse meso-microporous Ta3N5 hollow spheres and their visible light-driven photocatalytic activity. J Mater Chem 21:17087–17090. doi:10.1039/C1JM13756E CrossRef Gao R, Zhou S, Chen M, Wu L (2011) Facile synthesis of monodisperse meso-microporous Ta3N5 hollow spheres and their visible light-driven photocatalytic activity. J Mater Chem 21:17087–17090. doi:10.​1039/​C1JM13756E CrossRef
64.
Zurück zum Zitat Tan J, Yu M, Rao X et al (2015) Fast and facile one-step synthesis of monodisperse thermo-responsive core–shell microspheres and applications. Polym Chem 6:6698–6708. doi:10.1039/C5PY00889A CrossRef Tan J, Yu M, Rao X et al (2015) Fast and facile one-step synthesis of monodisperse thermo-responsive core–shell microspheres and applications. Polym Chem 6:6698–6708. doi:10.​1039/​C5PY00889A CrossRef
Metadaten
Titel
Photosynthesis of poly(glycidyl methacrylate) microspheres: a component for making covalently cross-linked colloidosomes and organic/inorganic nanocomposites
verfasst von
Jianbo Tan
Lili Fu
Xuechao Zhang
Yuhao Bai
Li Zhang
Publikationsdatum
08.07.2016
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 20/2016
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-016-0190-3

Weitere Artikel der Ausgabe 20/2016

Journal of Materials Science 20/2016 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.