Skip to main content
Erschienen in: Journal of Materials Science 14/2016

25.04.2016 | Original Paper

Continuous carbon fiber polymer–matrix composites in unprecedented antiferroelectric coupling providing exceptionally high through-thickness electric permittivity

verfasst von: Yoshihiro Takizawa, D. D. L. Chung

Erschienen in: Journal of Materials Science | Ausgabe 14/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Continuous carbon fiber polymer–matrix composites in unprecedented antiferroelectric coupling, as enabled by stacking composites with positive value (up to 400) and negative value (down to −600) of the electric permittivity, provide exceptionally high through-thickness permittivity up to 78,000 (≤2.0 MHz), corresponding to a capacitance of 370 μF/m2. The high capacitance is consistent with the equation for negative and positive capacitors in series. The permittivity tailoring of the composites involves dielectric cellulosic tissue paper interlaminar interlayers. Negative permittivity (not previously reported for carbon fiber composites) requires the paper to be wet with tap water (resistivity 1.5 kΩ cm) during incorporation in the composite, though the water evaporates and leaves ions at very low concentrations during composite fabrication, and also requires optimum through-thickness resistivity (e.g., 1 kΩ cm, as given by paper thickness 35 μm); it is probably due to interactions between the functional groups on the carbon fiber surface and the residual ions (mainly chloride) left after tap water evaporation.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Zhu J, Luo Z, Wu S, Haldolaarachchige N, Young DP, Wei S, Guo Z (2012) Magnetic graphene nanocomposites: electron conduction, giant magnetoresistance and tunable negative permittivity. J Mater Chem 22(3):835–844CrossRef Zhu J, Luo Z, Wu S, Haldolaarachchige N, Young DP, Wei S, Guo Z (2012) Magnetic graphene nanocomposites: electron conduction, giant magnetoresistance and tunable negative permittivity. J Mater Chem 22(3):835–844CrossRef
2.
Zurück zum Zitat Gu H, Guo J, He Q, Jiang Y, Huang Y, Haldolaarachige N, Luo Z, Young DP, Wei S, Guo Z (2014) Magnetoresistive polyaniline/multi-walled carbon nanotube nanocomposites with negative permittivity. Nanoscale 6(1):181–189CrossRef Gu H, Guo J, He Q, Jiang Y, Huang Y, Haldolaarachige N, Luo Z, Young DP, Wei S, Guo Z (2014) Magnetoresistive polyaniline/multi-walled carbon nanotube nanocomposites with negative permittivity. Nanoscale 6(1):181–189CrossRef
3.
Zurück zum Zitat Kavas H, Guenay M, Baykal A, Toprak MS, Sozeri H, Aktas B (2013) Negative permittivity of polyaniline-Fe3O4 nanocomposite. J Inorg Organomet Polymers Mater 23(2):306–314CrossRef Kavas H, Guenay M, Baykal A, Toprak MS, Sozeri H, Aktas B (2013) Negative permittivity of polyaniline-Fe3O4 nanocomposite. J Inorg Organomet Polymers Mater 23(2):306–314CrossRef
4.
Zurück zum Zitat Shi Z, Chen S, Sun K, Wang X, Fan R, Wang X (2014) Tunable radio-frequency negative permittivity in nickel-alumina “natural” meta-composites. Appl Phys Lett 104(25):252908/1–252908/5CrossRef Shi Z, Chen S, Sun K, Wang X, Fan R, Wang X (2014) Tunable radio-frequency negative permittivity in nickel-alumina “natural” meta-composites. Appl Phys Lett 104(25):252908/1–252908/5CrossRef
5.
Zurück zum Zitat Yan K, Fan R, Shi Z, Chen M, Qian L, Wei Y, Sun K, Li J (2014) Negative permittivity behavior and magnetic performance of perovskite La1-xSrxMnO3 at high-frequency. J Mater Chem C 2:1028–1033CrossRef Yan K, Fan R, Shi Z, Chen M, Qian L, Wei Y, Sun K, Li J (2014) Negative permittivity behavior and magnetic performance of perovskite La1-xSrxMnO3 at high-frequency. J Mater Chem C 2:1028–1033CrossRef
6.
Zurück zum Zitat Tsutaoka T, Fukuyama K, Kinoshita H, Kasagi T, Yamamoto S, Hatakeyama K (2013) Negative permittivity and permeability spectra of Cu/yttrium iron garnet hybrid granular composite materials in the microwave frequency range. Appl Phys Lett 103(26):261906/1–261906/5CrossRef Tsutaoka T, Fukuyama K, Kinoshita H, Kasagi T, Yamamoto S, Hatakeyama K (2013) Negative permittivity and permeability spectra of Cu/yttrium iron garnet hybrid granular composite materials in the microwave frequency range. Appl Phys Lett 103(26):261906/1–261906/5CrossRef
7.
Zurück zum Zitat Wang D, Chung DDL (2013) Through-thickness piezoresistivity in a carbon fiber polymer-matrix structural composite for electrical-resistance-based through-thickness strain sensing. Carbon 60(1):129–138CrossRef Wang D, Chung DDL (2013) Through-thickness piezoresistivity in a carbon fiber polymer-matrix structural composite for electrical-resistance-based through-thickness strain sensing. Carbon 60(1):129–138CrossRef
8.
Zurück zum Zitat Chung DDL (2007) Damage detection using self-sensing concepts. J Aerospace Eng (Proceedings of the Institution of Mechanical Engineers, Part G) 221(G4):509–520CrossRef Chung DDL (2007) Damage detection using self-sensing concepts. J Aerospace Eng (Proceedings of the Institution of Mechanical Engineers, Part G) 221(G4):509–520CrossRef
9.
Zurück zum Zitat Han S, Chung DDL (2013) Through-thickness thermoelectric power of a carbon fiber/epoxy composite and decoupled contributions from a lamina and an interlaminar interface. Carbon 52:30–39CrossRef Han S, Chung DDL (2013) Through-thickness thermoelectric power of a carbon fiber/epoxy composite and decoupled contributions from a lamina and an interlaminar interface. Carbon 52:30–39CrossRef
10.
Zurück zum Zitat Han S, Chung DDL (2013) Carbon fiber polymer-matrix structural composites exhibiting greatly enhanced through-thickness thermoelectric figure of merit. Compos A 48:162–170CrossRef Han S, Chung DDL (2013) Carbon fiber polymer-matrix structural composites exhibiting greatly enhanced through-thickness thermoelectric figure of merit. Compos A 48:162–170CrossRef
11.
Zurück zum Zitat Luo X, Chung DDL (2001) Carbon fiber polymer-matrix composites as capacitors. Compos Sci Tech 61:885–888CrossRef Luo X, Chung DDL (2001) Carbon fiber polymer-matrix composites as capacitors. Compos Sci Tech 61:885–888CrossRef
12.
Zurück zum Zitat Tony T, Asp LE (2013) Structural carbon fibre composite/PET capacitors—effects of dielectric separator thickness. Compos B 49:16–21CrossRef Tony T, Asp LE (2013) Structural carbon fibre composite/PET capacitors—effects of dielectric separator thickness. Compos B 49:16–21CrossRef
13.
Zurück zum Zitat Carlson T, Ordeus D, Wysocki M, Asp LE (2010) Structural capacitor materials made from carbon fibre epoxy composites. Compos Sci Technol 70(7):1135–1140CrossRef Carlson T, Ordeus D, Wysocki M, Asp LE (2010) Structural capacitor materials made from carbon fibre epoxy composites. Compos Sci Technol 70(7):1135–1140CrossRef
14.
Zurück zum Zitat Jiang Q, Yang R, Fu GG, Xie DY, Huang B, He ZW, Zhao Y (2011) Preparation of the carbon nanotube/carbon fiber composite and application as the electrode material of the electrochemical super capacitor. Mater Sci Forum 687:158–162CrossRef Jiang Q, Yang R, Fu GG, Xie DY, Huang B, He ZW, Zhao Y (2011) Preparation of the carbon nanotube/carbon fiber composite and application as the electrode material of the electrochemical super capacitor. Mater Sci Forum 687:158–162CrossRef
15.
Zurück zum Zitat Salinas-Torres D, Sieben JM, Lozano-Castello D, Cazorla-Amoros D, Morallon E (2013) Asymmetric hybrid capacitors based on activated carbon and activated carbon fibre-PANI electrodes. Electrochim Acta 89:326–333CrossRef Salinas-Torres D, Sieben JM, Lozano-Castello D, Cazorla-Amoros D, Morallon E (2013) Asymmetric hybrid capacitors based on activated carbon and activated carbon fibre-PANI electrodes. Electrochim Acta 89:326–333CrossRef
16.
Zurück zum Zitat Jin Z, Tian Y, Su LJ, Qin CL, Zhao DY, Li RQ, Zhao J (2013) Hybrid supercapacitors based on polyaniline/activated carbon fiber composite electrode materials. In: Advanced Materials Research (Durnten-Zurich, Switzerland) vol. 800, pp. 505–508 Jin Z, Tian Y, Su LJ, Qin CL, Zhao DY, Li RQ, Zhao J (2013) Hybrid supercapacitors based on polyaniline/activated carbon fiber composite electrode materials. In: Advanced Materials Research (Durnten-Zurich, Switzerland) vol. 800, pp. 505–508
17.
Zurück zum Zitat Asp LE (2013) Multifunctional composite materials for energy storage in structural load paths. Plast, Rubber Compos 42:144–149 Asp LE (2013) Multifunctional composite materials for energy storage in structural load paths. Plast, Rubber Compos 42:144–149
18.
Zurück zum Zitat Leijonmarck S, Carlson T, Lindbergh G, Asp LE, Maples H, Bismarck A (2013) Solid polymer electrolyte-coated carbon fibres for structural and novel micro batteries. Compos Sci Technol 89:149–157CrossRef Leijonmarck S, Carlson T, Lindbergh G, Asp LE, Maples H, Bismarck A (2013) Solid polymer electrolyte-coated carbon fibres for structural and novel micro batteries. Compos Sci Technol 89:149–157CrossRef
19.
Zurück zum Zitat Jacques E, Kjell MH, Zenkert D, Lindbergh G, Behm M, Willgert M (2012) Impact of electrochemical cycling on the tensile properties of carbon fibres for structural lithium-ion composite batteries. Compos Sci Technol 72:792–798CrossRef Jacques E, Kjell MH, Zenkert D, Lindbergh G, Behm M, Willgert M (2012) Impact of electrochemical cycling on the tensile properties of carbon fibres for structural lithium-ion composite batteries. Compos Sci Technol 72:792–798CrossRef
20.
Zurück zum Zitat Pereira T, Guo Z, Nieh S, Arias J, Hahn HT (2009) Energy storage structural composites: a review. J Compos Mater 43:549–560CrossRef Pereira T, Guo Z, Nieh S, Arias J, Hahn HT (2009) Energy storage structural composites: a review. J Compos Mater 43:549–560CrossRef
21.
Zurück zum Zitat Han S, Chung DDL (2011) Increasing the through-thickness thermal conductivity of carbon fiber polymer-matrix composite by curing pressure increase and filler incorporation. Compos Sci Technol 71:1944–1952CrossRef Han S, Chung DDL (2011) Increasing the through-thickness thermal conductivity of carbon fiber polymer-matrix composite by curing pressure increase and filler incorporation. Compos Sci Technol 71:1944–1952CrossRef
22.
Zurück zum Zitat Chung DDL (2004) Self-heating structural materials. Smart Mater Struct 13(3):562–565CrossRef Chung DDL (2004) Self-heating structural materials. Smart Mater Struct 13(3):562–565CrossRef
23.
24.
Zurück zum Zitat Luo X, Chung DDL (1999) Electromagnetic interference shielding using continuous carbon fiber carbon-matrix and polymer-matrix composites. Compos B 30:227–231CrossRef Luo X, Chung DDL (1999) Electromagnetic interference shielding using continuous carbon fiber carbon-matrix and polymer-matrix composites. Compos B 30:227–231CrossRef
25.
Zurück zum Zitat Chung DDL (2001) Electromagnetic interference shielding effectiveness of carbon materials. Carbon 39:279–285CrossRef Chung DDL (2001) Electromagnetic interference shielding effectiveness of carbon materials. Carbon 39:279–285CrossRef
26.
Zurück zum Zitat Wu J, Chung DDL (2002) Increasing the electromagnetic interference shielding effectiveness of carbon fiber polymer-matrix composite by using activated carbon fibers. Carbon 40(ER3):445–447CrossRef Wu J, Chung DDL (2002) Increasing the electromagnetic interference shielding effectiveness of carbon fiber polymer-matrix composite by using activated carbon fibers. Carbon 40(ER3):445–447CrossRef
27.
Zurück zum Zitat Chung DDL (2012) Carbon materials for structural self-sensing, electromagnetic shielding and thermal interfacing. Carbon 50:3342–3353CrossRef Chung DDL (2012) Carbon materials for structural self-sensing, electromagnetic shielding and thermal interfacing. Carbon 50:3342–3353CrossRef
28.
Zurück zum Zitat Wang R, Yang H, Wang J, Ma Z, Li F (2014) Preparation and characterization of conductive filler used for electromagnetic shielding materials. Appl Mech Mater 492:268–272CrossRef Wang R, Yang H, Wang J, Ma Z, Li F (2014) Preparation and characterization of conductive filler used for electromagnetic shielding materials. Appl Mech Mater 492:268–272CrossRef
29.
Zurück zum Zitat Liu L, He P, Zhou K, Chen T (2014) Microwave absorption properties of carbon fibers with carbon coils of different morphologies (double microcoils and single nanocoils) grown on them. J Mater Sci 49(12):4379–4386. doi:10.1007/s10853-014-8137-z CrossRef Liu L, He P, Zhou K, Chen T (2014) Microwave absorption properties of carbon fibers with carbon coils of different morphologies (double microcoils and single nanocoils) grown on them. J Mater Sci 49(12):4379–4386. doi:10.​1007/​s10853-014-8137-z CrossRef
30.
Zurück zum Zitat Yuan Q, Su C, Huang J, Gan W, Huang Y (2013) Process and analysis of electromagnetic shielding in composite fiberboard laminated with electroless nickel-plated carbon fiber. BioResources 8:4633–4646 Yuan Q, Su C, Huang J, Gan W, Huang Y (2013) Process and analysis of electromagnetic shielding in composite fiberboard laminated with electroless nickel-plated carbon fiber. BioResources 8:4633–4646
31.
Zurück zum Zitat Singh BP, Choudhary Saini VP, Mathur RB (2012) Designing of epoxy composites reinforced with carbon nanotubes grown carbon fiber fabric for improved electromagnetic interference shielding. AIP Adv 2:022151CrossRef Singh BP, Choudhary Saini VP, Mathur RB (2012) Designing of epoxy composites reinforced with carbon nanotubes grown carbon fiber fabric for improved electromagnetic interference shielding. AIP Adv 2:022151CrossRef
32.
Zurück zum Zitat Singh AP, Garg P, Alam F, Singh K, Mathur RB, Tandon RP, Chandra A, Dhawan SK (2012) Phenolic resin-based composite sheets filled with mixtures of reduced graphene oxide, γ-Fe2O3 and carbon fibers for excellent electromagnetic interference shielding in the X-band. Carbon 50:3868–3875CrossRef Singh AP, Garg P, Alam F, Singh K, Mathur RB, Tandon RP, Chandra A, Dhawan SK (2012) Phenolic resin-based composite sheets filled with mixtures of reduced graphene oxide, γ-Fe2O3 and carbon fibers for excellent electromagnetic interference shielding in the X-band. Carbon 50:3868–3875CrossRef
33.
Zurück zum Zitat Wang R, He F, Wan Y, Qi Y (2012) Preparation and characterization of a kind of magnetic carbon fibers used as electromagnetic shielding materials. J Alloys Compd 514:35–39CrossRef Wang R, He F, Wan Y, Qi Y (2012) Preparation and characterization of a kind of magnetic carbon fibers used as electromagnetic shielding materials. J Alloys Compd 514:35–39CrossRef
34.
Zurück zum Zitat Mall S, Rodriguez J, Alexander MD (2011) Electromagnetic interference and electrical conductivity behavior of carbon/polycyanate composite with nickel nanostrands™ under fatigue. Polym Compos 32:483–490CrossRef Mall S, Rodriguez J, Alexander MD (2011) Electromagnetic interference and electrical conductivity behavior of carbon/polycyanate composite with nickel nanostrands™ under fatigue. Polym Compos 32:483–490CrossRef
35.
Zurück zum Zitat Hua Y, Yamanaka A, Ni Q (2010) Electromagnetic shielding properties of super fiber-reinforced composites. Adv Mater Res (Zurich, Switzerland) 123–125:65–68CrossRef Hua Y, Yamanaka A, Ni Q (2010) Electromagnetic shielding properties of super fiber-reinforced composites. Adv Mater Res (Zurich, Switzerland) 123–125:65–68CrossRef
36.
Zurück zum Zitat Micheli D, Laurenzi S, Mariani PV, Moglie F, Gradoni G, Marchetti M (2012) Electromagnetic Shielding of Oriented Carbon Fiber Composite Materials. European Space Agency [Special Publication] SP-702:a3/1 Micheli D, Laurenzi S, Mariani PV, Moglie F, Gradoni G, Marchetti M (2012) Electromagnetic Shielding of Oriented Carbon Fiber Composite Materials. European Space Agency [Special Publication] SP-702:a3/1
37.
Zurück zum Zitat Belov DA, Shlyakhtina AV, Stefanovich SY, Shchegolikhin AN, Knotko AV, Karyagina OK, Shcherbakova LG (2011) Antiferroelectric phase transition in pyrochlore-like (Dy1-xCax)2Ti2O7-δ (x = 0, 0.1) high temperature conductors. Solid State Ionics 192(1):188–194CrossRef Belov DA, Shlyakhtina AV, Stefanovich SY, Shchegolikhin AN, Knotko AV, Karyagina OK, Shcherbakova LG (2011) Antiferroelectric phase transition in pyrochlore-like (Dy1-xCax)2Ti2O7-δ (x = 0, 0.1) high temperature conductors. Solid State Ionics 192(1):188–194CrossRef
38.
Zurück zum Zitat Korotkov L, Likhovaya D, Levitskii R, Sorokov S, Vdovych A (2013) Dielectric, elastic and electromechanical properties of K1-x(NH4)xH2PO4 solid solutions in paraelectric phase. Ferroelectrics 444(1):76–83CrossRef Korotkov L, Likhovaya D, Levitskii R, Sorokov S, Vdovych A (2013) Dielectric, elastic and electromechanical properties of K1-x(NH4)xH2PO4 solid solutions in paraelectric phase. Ferroelectrics 444(1):76–83CrossRef
39.
Zurück zum Zitat Yasuda N, Kawai J (1990) Dielectric dispersion associated with the d.c.-electric-field-enforced ferroelectric phase transition in the pressure-induced antiferroelectric cesium dihydrogen phosphate. Phys Rev B: Condens Matter 42(7-B):4893–4896CrossRef Yasuda N, Kawai J (1990) Dielectric dispersion associated with the d.c.-electric-field-enforced ferroelectric phase transition in the pressure-induced antiferroelectric cesium dihydrogen phosphate. Phys Rev B: Condens Matter 42(7-B):4893–4896CrossRef
40.
Zurück zum Zitat Tang H, Feng YJ, Xu Z, Zhang CH, Gao JQ (2009) Effect of Nb doping on microstructure and electric properties of lead zirconate stannum titanate antiferroelectric ceramics. J Mater Res 24(5):1642–1645CrossRef Tang H, Feng YJ, Xu Z, Zhang CH, Gao JQ (2009) Effect of Nb doping on microstructure and electric properties of lead zirconate stannum titanate antiferroelectric ceramics. J Mater Res 24(5):1642–1645CrossRef
41.
Zurück zum Zitat Zhang Q, Chen S, Fan M, Jiang S, Yang T, Wang J, Li G, Yao X (2012) High pyroelectric response of lead zirconate stannate titanate based antiferroelectric ceramics with low Curie temperature. Mater Res Bull 47(12):4503–4509CrossRef Zhang Q, Chen S, Fan M, Jiang S, Yang T, Wang J, Li G, Yao X (2012) High pyroelectric response of lead zirconate stannate titanate based antiferroelectric ceramics with low Curie temperature. Mater Res Bull 47(12):4503–4509CrossRef
42.
Zurück zum Zitat Zhuo F, Li Q, Li Y, Gao J, Yan Q, Zhang Y, Chu X, Cao W (2014) Effect of A-site La3+ modified on dielectric and energy storage properties in lead zirconate stannate titanate ceramics. Mater Res Express 1(4):045501/045501–045501/045511CrossRef Zhuo F, Li Q, Li Y, Gao J, Yan Q, Zhang Y, Chu X, Cao W (2014) Effect of A-site La3+ modified on dielectric and energy storage properties in lead zirconate stannate titanate ceramics. Mater Res Express 1(4):045501/045501–045501/045511CrossRef
43.
Zurück zum Zitat Grimberg R (2013) Electromagnetic metamaterials. Mater Sci Eng B 178(19):1285–1295CrossRef Grimberg R (2013) Electromagnetic metamaterials. Mater Sci Eng B 178(19):1285–1295CrossRef
44.
Zurück zum Zitat Chawla KK (2005) Fibrous materials. Cambridge University Press, Cambridge, p 55 Chawla KK (2005) Fibrous materials. Cambridge University Press, Cambridge, p 55
45.
Zurück zum Zitat Wang A, Chung DDL (2014) Dielectric and electrical conduction behavior of carbon paste electrochemical electrodes, with decoupling of carbon, electrolyte and interface contributions. Carbon 72:135–151CrossRef Wang A, Chung DDL (2014) Dielectric and electrical conduction behavior of carbon paste electrochemical electrodes, with decoupling of carbon, electrolyte and interface contributions. Carbon 72:135–151CrossRef
46.
Zurück zum Zitat Hong X, Chung DDL (2015) Exfoliated graphite with relative dielectric constant reaching 360, obtained by exfoliation of acid-intercalated graphite flakes without subsequent removal of the residual acidity. Carbon 91:1–10CrossRef Hong X, Chung DDL (2015) Exfoliated graphite with relative dielectric constant reaching 360, obtained by exfoliation of acid-intercalated graphite flakes without subsequent removal of the residual acidity. Carbon 91:1–10CrossRef
47.
Zurück zum Zitat Moalleminejad M, Chung DDL (2015) Dielectric constant and electrical conductivity of carbon black as an electrically conductive additive in a manganese-dioxide electrochemical electrode, and their dependence on electrolyte permeation. Carbon 91:76–87CrossRef Moalleminejad M, Chung DDL (2015) Dielectric constant and electrical conductivity of carbon black as an electrically conductive additive in a manganese-dioxide electrochemical electrode, and their dependence on electrolyte permeation. Carbon 91:76–87CrossRef
48.
Zurück zum Zitat Dhakate SR, Bahl OP (2003) Effect of carbon fiber surface functional groups on the mechanical properties of carbon–carbon composites with HTT. Carbon 41:1193–1203CrossRef Dhakate SR, Bahl OP (2003) Effect of carbon fiber surface functional groups on the mechanical properties of carbon–carbon composites with HTT. Carbon 41:1193–1203CrossRef
49.
Zurück zum Zitat Fukai K, Hidaka K, Aoki M, Abe K (1990) Preparation and properties of uniform fine perovskite powders by hydrothermal synthesis. Ceram Int 16:285–290CrossRef Fukai K, Hidaka K, Aoki M, Abe K (1990) Preparation and properties of uniform fine perovskite powders by hydrothermal synthesis. Ceram Int 16:285–290CrossRef
51.
Zurück zum Zitat Wang S, Kowalik DP, Chung DDL (2004) Self-sensing attained in carbon fiber polymer-matrix structural composites by using the interlaminar interface as a sensor. Smart Mater Struct 13:570–592CrossRef Wang S, Kowalik DP, Chung DDL (2004) Self-sensing attained in carbon fiber polymer-matrix structural composites by using the interlaminar interface as a sensor. Smart Mater Struct 13:570–592CrossRef
52.
Zurück zum Zitat Leong C, Aoyagi Y, Chung DDL (2005) Carbon-black thixotropic thermal pastes for improving thermal contacts. J Electron Mater 34(10):1336–1341CrossRef Leong C, Aoyagi Y, Chung DDL (2005) Carbon-black thixotropic thermal pastes for improving thermal contacts. J Electron Mater 34(10):1336–1341CrossRef
53.
Zurück zum Zitat Lee SY, Yoo D, Lee J, Jo W, Hong Y, Kim Y, Yoo S (2012) Fabrication and characterization of colossal dielectric response of polycrystalline Ca1-x Sr x Cu3Ti4O12 (0 ≤ x ≤ 1) ceramics. MRS Online Proceedings Library, Vol. 1454, Nanocomposites, Nanostructures and Heterostructures of Correlated Oxide Systems Lee SY, Yoo D, Lee J, Jo W, Hong Y, Kim Y, Yoo S (2012) Fabrication and characterization of colossal dielectric response of polycrystalline Ca1-x Sr x Cu3Ti4O12 (0 ≤ x ≤ 1) ceramics. MRS Online Proceedings Library, Vol. 1454, Nanocomposites, Nanostructures and Heterostructures of Correlated Oxide Systems
54.
Zurück zum Zitat Puli VS, Pradhan DK, Chrisey DB, Tomozawa M, Sharma GL, Scott JF, Katiyar RS (2013) Structure, dielectric, ferroelectric, and energy density properties of (1 − x)BZT–xBCT ceramic capacitors for energy storage applications. J Mater Sci 48:2151–2157. doi:10.1007/s10853-012-6990-1 CrossRef Puli VS, Pradhan DK, Chrisey DB, Tomozawa M, Sharma GL, Scott JF, Katiyar RS (2013) Structure, dielectric, ferroelectric, and energy density properties of (1 − x)BZT–xBCT ceramic capacitors for energy storage applications. J Mater Sci 48:2151–2157. doi:10.​1007/​s10853-012-6990-1 CrossRef
55.
Zurück zum Zitat Dang Z, Zhang Y, Tjong S (2004) Dependence of dielectric behavior on the physical property of fillers in the polymer-matrix composites. Synth Met 146(1):79–84CrossRef Dang Z, Zhang Y, Tjong S (2004) Dependence of dielectric behavior on the physical property of fillers in the polymer-matrix composites. Synth Met 146(1):79–84CrossRef
56.
Zurück zum Zitat Khan AI, Chatterjee K, Wang B, Drapcho S, You L, Serrao C, Bakaul SR, Ramesh R, Salahuddin S (2015) Negative capacitance in a ferroelectric capacitor. Nat Mater 14:182–186CrossRef Khan AI, Chatterjee K, Wang B, Drapcho S, You L, Serrao C, Bakaul SR, Ramesh R, Salahuddin S (2015) Negative capacitance in a ferroelectric capacitor. Nat Mater 14:182–186CrossRef
57.
Zurück zum Zitat Catalan G, Jimenez D, Gruverman A (2015) Ferroelectrics negative capacitance detected. Nat Mater 14(2):137–139CrossRef Catalan G, Jimenez D, Gruverman A (2015) Ferroelectrics negative capacitance detected. Nat Mater 14(2):137–139CrossRef
Metadaten
Titel
Continuous carbon fiber polymer–matrix composites in unprecedented antiferroelectric coupling providing exceptionally high through-thickness electric permittivity
verfasst von
Yoshihiro Takizawa
D. D. L. Chung
Publikationsdatum
25.04.2016
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 14/2016
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-016-9979-3

Weitere Artikel der Ausgabe 14/2016

Journal of Materials Science 14/2016 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.