Skip to main content
Erschienen in: Journal of Materials Science 10/2017

23.01.2017 | Original Paper

Effect of graphene dispersion on the equilibrium structure and deformation of graphene/eicosane composites as surrogates for graphene/polyethylene composites: a molecular dynamics simulation

verfasst von: Shenghui Chen, Qiang Lv, Zhikun Wang, Chunling Li, Charles U. Pittman Jr., Steven R. Gwaltney, Shuangqing Sun, Songqing Hu

Erschienen in: Journal of Materials Science | Ausgabe 10/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Molecular dynamics simulations are used to investigate the effect of graphene dispersion on the equilibrium structure and deformation of graphene/eicosane composites. Two graphene sheets with four different interlayer distances are incorporated, respectively, into a eicosane matrix to form graphene/eicosane composites representing different graphene dispersions. With greater graphene dispersion, the “adsorption solidification” of the eicosane increases, where eicosane molecular lamination, orientation, and extension become more uniform and stronger. In addition, eicosane molecular motion is inhibited more in the direction perpendicular to graphene surfaces. When these graphene/eicosane composites are deformed, the free volume initially increases slowly due to small, scattered voids. After reaching the yield strains, the free volume rises sharply as the structures of composites are damaged, and small voids merge into large voids. The damage always occurs in the region of the composite with the weakest “adsorption solidification.” Since this effect is stronger when the graphene sheets are more dispersed, more complete dispersion results in higher composite yield stresses. Lessons from these simulations may provide some insights into graphene/polyethylene composites, where suitable models would require very long equilibration times.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
Accelrys, Inc. http://​accelrys.​com/​products/​materials-studio/​ (date accessed: January 12, 2011).
 
Literatur
1.
Zurück zum Zitat Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306:666–669CrossRef Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306:666–669CrossRef
2.
Zurück zum Zitat Lee C, Wei X, Kysar JW, Hone J (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321:385–388CrossRef Lee C, Wei X, Kysar JW, Hone J (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321:385–388CrossRef
3.
Zurück zum Zitat Du X, Skachko I, Barker A, Andrei EY (2008) Approaching ballistic transport in suspended graphene. Nat Nanotechnol 3:491–495CrossRef Du X, Skachko I, Barker A, Andrei EY (2008) Approaching ballistic transport in suspended graphene. Nat Nanotechnol 3:491–495CrossRef
4.
Zurück zum Zitat Georgakilas V, Otyepka M, Bourlinos AB, Chandra V, Kim N, Kemp KC, Hobza P, Zboril R, Kim KS (2012) Functionalization of graphene: covalent and non-covalent approaches, derivatives and applications. Chem Rev 112:6156–6214CrossRef Georgakilas V, Otyepka M, Bourlinos AB, Chandra V, Kim N, Kemp KC, Hobza P, Zboril R, Kim KS (2012) Functionalization of graphene: covalent and non-covalent approaches, derivatives and applications. Chem Rev 112:6156–6214CrossRef
5.
Zurück zum Zitat Mittal G, Dhand V, Rhee KY, Park S-J, Lee WR (2015) A review on carbon nanotubes and graphene as fillers in reinforced polymer nanocomposites. J Ind Eng Chem 21:11–25CrossRef Mittal G, Dhand V, Rhee KY, Park S-J, Lee WR (2015) A review on carbon nanotubes and graphene as fillers in reinforced polymer nanocomposites. J Ind Eng Chem 21:11–25CrossRef
6.
Zurück zum Zitat Huang X, Qi X, Boey F, Zhang H (2012) Graphene-based composites. Nature 41:666–686 Huang X, Qi X, Boey F, Zhang H (2012) Graphene-based composites. Nature 41:666–686
7.
Zurück zum Zitat Kuilla T, Bhadra S, Yao DH, Kim NH, Bose S, Lee JH (2010) Recent advances in graphene based polymer composites. Prog Polym Sci 35:1350–1375CrossRef Kuilla T, Bhadra S, Yao DH, Kim NH, Bose S, Lee JH (2010) Recent advances in graphene based polymer composites. Prog Polym Sci 35:1350–1375CrossRef
8.
Zurück zum Zitat Singh V, Joung D, Zhai L, Das S, Khondaker SI, Seal S (2011) Graphene based materials: past, present and future. Prog Mater Sci 56:1178–1271CrossRef Singh V, Joung D, Zhai L, Das S, Khondaker SI, Seal S (2011) Graphene based materials: past, present and future. Prog Mater Sci 56:1178–1271CrossRef
9.
Zurück zum Zitat Hu K, Kulkarni DD, Choi I, Tsukruk VV (2014) Graphene-polymer nanocomposites for structural and functional applications. Prog Polym Sci 39:1934–1972CrossRef Hu K, Kulkarni DD, Choi I, Tsukruk VV (2014) Graphene-polymer nanocomposites for structural and functional applications. Prog Polym Sci 39:1934–1972CrossRef
10.
Zurück zum Zitat Zhao X, Zhang Q, Chen D, Lu P (2010) Enhanced mechanical properties of graphene-based poly(vinyl alcohol) composites. Macromolecules 43:2357–2363CrossRef Zhao X, Zhang Q, Chen D, Lu P (2010) Enhanced mechanical properties of graphene-based poly(vinyl alcohol) composites. Macromolecules 43:2357–2363CrossRef
11.
Zurück zum Zitat Liang JJ, Wang Y, Huang Y, Ma YF, Liu ZF, Cai JM, Zhang CD, Gao HJ, Chen YS (2009) Electromagnetic interference shielding of graphene/epoxy composites. Carbon 47:922–925CrossRef Liang JJ, Wang Y, Huang Y, Ma YF, Liu ZF, Cai JM, Zhang CD, Gao HJ, Chen YS (2009) Electromagnetic interference shielding of graphene/epoxy composites. Carbon 47:922–925CrossRef
12.
Zurück zum Zitat Pang HA, Chen C, Zhang YC, Ren PG, Yan DX, Li ZM (2011) The effect of electric field, annealing temperature and filler loading on the percolation threshold of polystyrene containing carbon nanotubes and graphene nanosheets. Carbon 49:1980–1988CrossRef Pang HA, Chen C, Zhang YC, Ren PG, Yan DX, Li ZM (2011) The effect of electric field, annealing temperature and filler loading on the percolation threshold of polystyrene containing carbon nanotubes and graphene nanosheets. Carbon 49:1980–1988CrossRef
13.
Zurück zum Zitat Song PG, Gao ZH, Cai YZ, Zhao LP, Fang ZP, Fu SY (2011) Fabrication of exfoliated graphene-based polypropylene nanocomposites with enhanced mechanical and thermal properties. Polymer 52:4001–4010CrossRef Song PG, Gao ZH, Cai YZ, Zhao LP, Fang ZP, Fu SY (2011) Fabrication of exfoliated graphene-based polypropylene nanocomposites with enhanced mechanical and thermal properties. Polymer 52:4001–4010CrossRef
14.
Zurück zum Zitat Rafiee MA, Rafiee J, Srivastava I, Wang Z, Song H, Yu Z-Z, Koratkar N (2010) Fracture and fatigue in graphene nanocomposites. Small 6:179–183CrossRef Rafiee MA, Rafiee J, Srivastava I, Wang Z, Song H, Yu Z-Z, Koratkar N (2010) Fracture and fatigue in graphene nanocomposites. Small 6:179–183CrossRef
15.
Zurück zum Zitat Ramanathan T, Abdala AA, Stankovich S, Dikin DA, Herrera-Alonso M, Piner RD et al (2008) Functionalized graphene sheets for polymer nanocomposites. Nat Nanotechnol 3:327–331CrossRef Ramanathan T, Abdala AA, Stankovich S, Dikin DA, Herrera-Alonso M, Piner RD et al (2008) Functionalized graphene sheets for polymer nanocomposites. Nat Nanotechnol 3:327–331CrossRef
16.
Zurück zum Zitat Si Y, Samulski ET (2008) Synthesis of water soluble graphene. Nano Lett 8:1679–1682CrossRef Si Y, Samulski ET (2008) Synthesis of water soluble graphene. Nano Lett 8:1679–1682CrossRef
17.
Zurück zum Zitat Si Y, Samulski ET (2008) Exfoliated graphene separated by platinum nanoparticles. Chem Mater 20:6792–6797CrossRef Si Y, Samulski ET (2008) Exfoliated graphene separated by platinum nanoparticles. Chem Mater 20:6792–6797CrossRef
18.
Zurück zum Zitat Zacharia R, Ulbricht H, Hertel T (2004) Interlayer cohesive energy of graphite from thermal desorption of polyaromatic hydrocarbons. Phys Rev B 69:155406CrossRef Zacharia R, Ulbricht H, Hertel T (2004) Interlayer cohesive energy of graphite from thermal desorption of polyaromatic hydrocarbons. Phys Rev B 69:155406CrossRef
19.
Zurück zum Zitat Tang LC, Wan YJ, Yan D, Pei YB, Zhao L, Li YB, Wu LB, Jiang JX, Lai GQ (2013) The effect of graphene/epoxy composites on the mechanical properties of graphene/epoxy composites. Carbon 60:16–27CrossRef Tang LC, Wan YJ, Yan D, Pei YB, Zhao L, Li YB, Wu LB, Jiang JX, Lai GQ (2013) The effect of graphene/epoxy composites on the mechanical properties of graphene/epoxy composites. Carbon 60:16–27CrossRef
20.
Zurück zum Zitat Kim H, Miura Y, Macosko CW (2010) Graphene/polyurethane nanocomposites for improved gas barrier and electrical conductivity. Chem Mater 22:3441–3450CrossRef Kim H, Miura Y, Macosko CW (2010) Graphene/polyurethane nanocomposites for improved gas barrier and electrical conductivity. Chem Mater 22:3441–3450CrossRef
21.
Zurück zum Zitat Yang SY, Lin WN, Huang YL, Tien HW, Wang JY, Ma CCM, Li SML, Wang YS (2011) Synergetic effects of graphene platelets and carbon nanotubes on the mechanical and thermal properties of epoxy composites. Carbon 49:793–803CrossRef Yang SY, Lin WN, Huang YL, Tien HW, Wang JY, Ma CCM, Li SML, Wang YS (2011) Synergetic effects of graphene platelets and carbon nanotubes on the mechanical and thermal properties of epoxy composites. Carbon 49:793–803CrossRef
22.
Zurück zum Zitat Montazeria A, Rafii-Tabar H (2011) Multiscale modeling of graphene- and nanotube-based reinforced polymer nanocomposites. Phys Lett A 375:4034–4040CrossRef Montazeria A, Rafii-Tabar H (2011) Multiscale modeling of graphene- and nanotube-based reinforced polymer nanocomposites. Phys Lett A 375:4034–4040CrossRef
23.
Zurück zum Zitat Ebrahimi S, Ghafoori-Tabrizi K, Rafii-Tabar H (2012) Multi-scale computational modelling of the mechanical behaviour of the chitosan biological polymer embedded with graphene and carbon nanotube. Comput Mater Sci 53:347–353CrossRef Ebrahimi S, Ghafoori-Tabrizi K, Rafii-Tabar H (2012) Multi-scale computational modelling of the mechanical behaviour of the chitosan biological polymer embedded with graphene and carbon nanotube. Comput Mater Sci 53:347–353CrossRef
24.
Zurück zum Zitat Zhang T, Xue Q, Zhang S, Dong M (2012) Theoretical approaches to graphene and graphene-based materials. Nano Today 7:180–200CrossRef Zhang T, Xue Q, Zhang S, Dong M (2012) Theoretical approaches to graphene and graphene-based materials. Nano Today 7:180–200CrossRef
25.
Zurück zum Zitat Shiu SC, Tsai JL (2014) Characterizing thermal and mechanical properties of graphene/epoxy nanocomposites. Compos B 56:691–697CrossRef Shiu SC, Tsai JL (2014) Characterizing thermal and mechanical properties of graphene/epoxy nanocomposites. Compos B 56:691–697CrossRef
26.
Zurück zum Zitat Rahman R, Haque A (2013) Molecular modeling of cross-linked graphene–epoxy nanocomposites for characterization of elastic constants and interfacial properties. Compos B 54:353–364CrossRef Rahman R, Haque A (2013) Molecular modeling of cross-linked graphene–epoxy nanocomposites for characterization of elastic constants and interfacial properties. Compos B 54:353–364CrossRef
27.
Zurück zum Zitat Rahman R, Foster JT (2014) Defromation mechanism of graphene in amporphous polyethylene: a molecular dynamics based study. Comput Mater Sci 87:232–240CrossRef Rahman R, Foster JT (2014) Defromation mechanism of graphene in amporphous polyethylene: a molecular dynamics based study. Comput Mater Sci 87:232–240CrossRef
28.
Zurück zum Zitat Hadden CM, Klimek-McDonald DR, Pineda EJ, King JA, Reichanadter AM, Miskioglu I, Gowtham S, Odegard GM (2015) Mechanical properties of graphene nanoplatelet/carbon fiber/epoxy hybrid composites: multiscale modeling and experiments. Carbon 95:100–112CrossRef Hadden CM, Klimek-McDonald DR, Pineda EJ, King JA, Reichanadter AM, Miskioglu I, Gowtham S, Odegard GM (2015) Mechanical properties of graphene nanoplatelet/carbon fiber/epoxy hybrid composites: multiscale modeling and experiments. Carbon 95:100–112CrossRef
29.
Zurück zum Zitat Lv C, Xue Q, Xia D, Ma M, Xie J, Chen H (2010) Effect of chemisorption on the interfacial bonding characteristics of graphene–polymer composites. J Phys Chem C 114:6588–6594CrossRef Lv C, Xue Q, Xia D, Ma M, Xie J, Chen H (2010) Effect of chemisorption on the interfacial bonding characteristics of graphene–polymer composites. J Phys Chem C 114:6588–6594CrossRef
30.
Zurück zum Zitat Lv C, Xue Q, Xia D, Ma M (2012) Effect of chemisorption structure on the interfacial bonding characteristics of graphene–polymer composites. Appl Surf Sci 258:2077–2082CrossRef Lv C, Xue Q, Xia D, Ma M (2012) Effect of chemisorption structure on the interfacial bonding characteristics of graphene–polymer composites. Appl Surf Sci 258:2077–2082CrossRef
31.
Zurück zum Zitat Xiong QL, Tian XG (2015) Atomistic modeling of mechanical characteristics of CNT-polyethylene with interfacial covalent interaction. Journal of Nanomaterials 1-9 Xiong QL, Tian XG (2015) Atomistic modeling of mechanical characteristics of CNT-polyethylene with interfacial covalent interaction. Journal of Nanomaterials 1-9
32.
Zurück zum Zitat Liu F, Hu N, Ning H, Liu Y, Li Y, Wu L (2015) Molecular dynamics simulation on interfacial mechanical properties of polymer nanocomposites with wrinkled graphene. Comput Mater Sci 108:160–167CrossRef Liu F, Hu N, Ning H, Liu Y, Li Y, Wu L (2015) Molecular dynamics simulation on interfacial mechanical properties of polymer nanocomposites with wrinkled graphene. Comput Mater Sci 108:160–167CrossRef
33.
Zurück zum Zitat Rissanou AN, Power AJ, Harmandaris V (2015) Structural and dynamical properties of polyethylene/graphene nanocomposites through molecular dynamics simulations. Polymer 7:390–417CrossRef Rissanou AN, Power AJ, Harmandaris V (2015) Structural and dynamical properties of polyethylene/graphene nanocomposites through molecular dynamics simulations. Polymer 7:390–417CrossRef
34.
Zurück zum Zitat Rissanou AN, Harmandaries V (2014) Dynamics of various polymer–graphene interfacial systems through atomistic molecular dynamics simulations. Soft Matter 10:2876–2888CrossRef Rissanou AN, Harmandaries V (2014) Dynamics of various polymer–graphene interfacial systems through atomistic molecular dynamics simulations. Soft Matter 10:2876–2888CrossRef
35.
Zurück zum Zitat Plimpton S (1995) Fast parallel algorithms for short-range molecular dynamics. J Comput Phys 117:1–19CrossRef Plimpton S (1995) Fast parallel algorithms for short-range molecular dynamics. J Comput Phys 117:1–19CrossRef
36.
Zurück zum Zitat Sun H (1994) Force field for computation of conformational energies, structures, and vibrational frequencies of aromatic polyesters. J Comput Chem 15:752–768CrossRef Sun H (1994) Force field for computation of conformational energies, structures, and vibrational frequencies of aromatic polyesters. J Comput Chem 15:752–768CrossRef
37.
Zurück zum Zitat Yang S, Yu S, Cho M (2013) Influence of Thrower–Stone–Wales defects on the interfacial properties of carbon nanotube/polypropylene composites by a molecular dynamics approach. Carbon 55:133–143CrossRef Yang S, Yu S, Cho M (2013) Influence of Thrower–Stone–Wales defects on the interfacial properties of carbon nanotube/polypropylene composites by a molecular dynamics approach. Carbon 55:133–143CrossRef
38.
Zurück zum Zitat Fan HB, Yuen MMF (2007) Material properties of cross-linked epoxy resin compound predicted by molecular dynamics simulation. Polymer 48:2174–2178CrossRef Fan HB, Yuen MMF (2007) Material properties of cross-linked epoxy resin compound predicted by molecular dynamics simulation. Polymer 48:2174–2178CrossRef
39.
Zurück zum Zitat Yang L, Srolovitz DJ, Yee AF (1997) Extended ensemble molecular dynamics method for constant strain rate uniaxial deformation of polymer systems. J Chem Phys 107:4396–4407CrossRef Yang L, Srolovitz DJ, Yee AF (1997) Extended ensemble molecular dynamics method for constant strain rate uniaxial deformation of polymer systems. J Chem Phys 107:4396–4407CrossRef
40.
Zurück zum Zitat Hossain D, Tschopp MA, Ward DK, Bouvard JL, Wang P, Horstemeyer MF (2010) Molecular dynamics simulations of deformation mechanisms of amorphous polyethylene. Polymer 51:6071–6083CrossRef Hossain D, Tschopp MA, Ward DK, Bouvard JL, Wang P, Horstemeyer MF (2010) Molecular dynamics simulations of deformation mechanisms of amorphous polyethylene. Polymer 51:6071–6083CrossRef
41.
Zurück zum Zitat Jiang Q, Tallury SS, Qiu YP, Pasquinelli MA (2014) Molecular dynamics simulations of the effect of the volume fraction on unidirectional polyimide–carbon nanotube nanocomposites. Carbon 67:440–448CrossRef Jiang Q, Tallury SS, Qiu YP, Pasquinelli MA (2014) Molecular dynamics simulations of the effect of the volume fraction on unidirectional polyimide–carbon nanotube nanocomposites. Carbon 67:440–448CrossRef
42.
Zurück zum Zitat Edelsbrummer H, Mücke EP (1994) Three-dimensional alpha shapes. ACM Trans Graph 13:63–100 Edelsbrummer H, Mücke EP (1994) Three-dimensional alpha shapes. ACM Trans Graph 13:63–100
43.
Zurück zum Zitat Stukowski A (2014) Computational analysis methods in atomistic modeling of crystals. JOM 66:399–407CrossRef Stukowski A (2014) Computational analysis methods in atomistic modeling of crystals. JOM 66:399–407CrossRef
44.
Zurück zum Zitat Stukowski A (2010) Visualization and analysis of atomistic simulation data with OVITO—the Open Visualization Tool. Model Simul Mater Sci Eng 18:015012CrossRef Stukowski A (2010) Visualization and analysis of atomistic simulation data with OVITO—the Open Visualization Tool. Model Simul Mater Sci Eng 18:015012CrossRef
45.
Zurück zum Zitat Chen SH, Sun SQ, Gwaltney SR, Li CL, Wang XM, Hu SQ (2015) Molecular dynamics simulations of the interaction between carbon nanofiber and epoxy resin monomers. Acta Polym Sin 10:1158–1164 Chen SH, Sun SQ, Gwaltney SR, Li CL, Wang XM, Hu SQ (2015) Molecular dynamics simulations of the interaction between carbon nanofiber and epoxy resin monomers. Acta Polym Sin 10:1158–1164
46.
Zurück zum Zitat Nouranian S, Jang C, Lacy TE, Gwaltney SR, Toghiani H, Pittman CU Jr (2011) Molecular dynamics simulations of vinyl ester resin monomer interactions with a pristine vapor–grown carbon nanofiber and their implications for composite interphase formation. Carbon 49:3219–3232CrossRef Nouranian S, Jang C, Lacy TE, Gwaltney SR, Toghiani H, Pittman CU Jr (2011) Molecular dynamics simulations of vinyl ester resin monomer interactions with a pristine vapor–grown carbon nanofiber and their implications for composite interphase formation. Carbon 49:3219–3232CrossRef
47.
Zurück zum Zitat Jang C, Nouranian S, Lacy TE, Gwaltney SR, Toghiani H, Pittman CU Jr (2012) Molecular dynamics simulations of oxidized vapor–grown carbon nanofiber surface interactions with vinyl ester resin monomers. Carbon 50:748–760CrossRef Jang C, Nouranian S, Lacy TE, Gwaltney SR, Toghiani H, Pittman CU Jr (2012) Molecular dynamics simulations of oxidized vapor–grown carbon nanofiber surface interactions with vinyl ester resin monomers. Carbon 50:748–760CrossRef
Metadaten
Titel
Effect of graphene dispersion on the equilibrium structure and deformation of graphene/eicosane composites as surrogates for graphene/polyethylene composites: a molecular dynamics simulation
verfasst von
Shenghui Chen
Qiang Lv
Zhikun Wang
Chunling Li
Charles U. Pittman Jr.
Steven R. Gwaltney
Shuangqing Sun
Songqing Hu
Publikationsdatum
23.01.2017
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 10/2017
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-017-0802-6

Weitere Artikel der Ausgabe 10/2017

Journal of Materials Science 10/2017 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.