Skip to main content
Erschienen in: Journal of Materials Science 12/2017

16.03.2017 | Original Paper

Needleless electrospinning using sprocket wheel disk spinneret

verfasst von: Usman Ali, Haitao Niu, Sarmad Aslam, Abdul Jabbar, Abdul Waqar Rajput, Tong Lin

Erschienen in: Journal of Materials Science | Ausgabe 12/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Needleless electrospinning is expected to produce nanofibers with a large productivity. In this study, a sprocket wheel disk was used as spinneret to electrospin nanofibers. The sprocket disk shows reliable electrospinning process. In comparison with the conventional disk spinneret, which has no sprocket on the edge, the sprocket wheel produced more uniform nanofibers with smaller fiber diameter. The electric field analysis results indicated that the sprocket wheel generates higher intensity of electric field.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Sahay R, Parveen H, Baji A, Ganesh VA, Ranganath AS (2017) Fabrication of PVDF hierarchical fibrillar structures using electrospinning for dry-adhesive applications. J Mater Sci 52:2435–2441. doi:10.1007/s10853-016-0537-9 CrossRef Sahay R, Parveen H, Baji A, Ganesh VA, Ranganath AS (2017) Fabrication of PVDF hierarchical fibrillar structures using electrospinning for dry-adhesive applications. J Mater Sci 52:2435–2441. doi:10.​1007/​s10853-016-0537-9 CrossRef
2.
Zurück zum Zitat Cai Y, Gevelber M (2017) Analysis of bending region physics in determining electrospun fiber diameter: effect of relative humidity on evaporation and force balance. J Mater Sci 52:2605–2627. doi:10.1007/s10853-016-0553-9 CrossRef Cai Y, Gevelber M (2017) Analysis of bending region physics in determining electrospun fiber diameter: effect of relative humidity on evaporation and force balance. J Mater Sci 52:2605–2627. doi:10.​1007/​s10853-016-0553-9 CrossRef
3.
Zurück zum Zitat Sanfelice RC, Mercante LA, Pavinatto A, Tomazio NB, Mendonça CR, Ribeiro SJL et al (2017) Hybrid composite material based on polythiophene derivative nanofibers modified with gold nanoparticles for optoelectronics applications. J Mater Sci 52:1919–1929. doi:10.1007/s10853-016-0481-8 CrossRef Sanfelice RC, Mercante LA, Pavinatto A, Tomazio NB, Mendonça CR, Ribeiro SJL et al (2017) Hybrid composite material based on polythiophene derivative nanofibers modified with gold nanoparticles for optoelectronics applications. J Mater Sci 52:1919–1929. doi:10.​1007/​s10853-016-0481-8 CrossRef
4.
Zurück zum Zitat Panthi G, Park S-J, Kim T-W, Chung H-J, Hong S-T, Park M et al (2015) Electrospun composite nanofibers of polyacrylonitrile and Ag2CO3 nanoparticles for visible light photocatalysis and antibacterial applications. J Mater Sci 50:4477–4485. doi:10.1007/s10853-015-8995-z CrossRef Panthi G, Park S-J, Kim T-W, Chung H-J, Hong S-T, Park M et al (2015) Electrospun composite nanofibers of polyacrylonitrile and Ag2CO3 nanoparticles for visible light photocatalysis and antibacterial applications. J Mater Sci 50:4477–4485. doi:10.​1007/​s10853-015-8995-z CrossRef
8.
Zurück zum Zitat Jing X, Jin E, Mi H-Y, Li W-J, Peng X-F, Turng L-S (2015) Hierarchically decorated electrospun poly(ε-caprolactone)/nanohydroxyapatite composite nanofibers for bone tissue engineering. J Mater Sci 50:4174–4186. doi:10.1007/s10853-015-8933-0 CrossRef Jing X, Jin E, Mi H-Y, Li W-J, Peng X-F, Turng L-S (2015) Hierarchically decorated electrospun poly(ε-caprolactone)/nanohydroxyapatite composite nanofibers for bone tissue engineering. J Mater Sci 50:4174–4186. doi:10.​1007/​s10853-015-8933-0 CrossRef
9.
Zurück zum Zitat Zahedi P, Rezaeian I, Jafari SH (2013) In vitro and in vivo evaluations of phenytoin sodium-loaded electrospun PVA, PCL, and their hybrid nanofibrous mats for use as active wound dressings. J Mater Sci 48:3147–3159. doi:10.1007/s10853-012-7092-9 CrossRef Zahedi P, Rezaeian I, Jafari SH (2013) In vitro and in vivo evaluations of phenytoin sodium-loaded electrospun PVA, PCL, and their hybrid nanofibrous mats for use as active wound dressings. J Mater Sci 48:3147–3159. doi:10.​1007/​s10853-012-7092-9 CrossRef
10.
Zurück zum Zitat Ramakrishna S, Jose R, Archana PS, Nair AS, Balamurugan R, Venugopal J et al (2010) Science and engineering of electrospun nanofibers for advances in clean energy, water filtration, and regenerative medicine. J Mater Sci 45:6283–6312. doi:10.1007/s10853-010-4509-1 CrossRef Ramakrishna S, Jose R, Archana PS, Nair AS, Balamurugan R, Venugopal J et al (2010) Science and engineering of electrospun nanofibers for advances in clean energy, water filtration, and regenerative medicine. J Mater Sci 45:6283–6312. doi:10.​1007/​s10853-010-4509-1 CrossRef
12.
Zurück zum Zitat Fang J, Niu H, Wang H, Wang X, Lin T (2013) Enhanced mechanical energy harvesting using needleless electrospun poly(vinylidene fluoride) nanofibre webs. Energy Environ Sci 6:2196–2202CrossRef Fang J, Niu H, Wang H, Wang X, Lin T (2013) Enhanced mechanical energy harvesting using needleless electrospun poly(vinylidene fluoride) nanofibre webs. Energy Environ Sci 6:2196–2202CrossRef
13.
Zurück zum Zitat Peng S, Li L, Lee JKY, Tian L, Srinivasan M, Adams S et al (2016) Electrospun carbon nanofibers and their hybrid composites as advanced materials for energy conversion and storage. Nano Energy 22:361–395CrossRef Peng S, Li L, Lee JKY, Tian L, Srinivasan M, Adams S et al (2016) Electrospun carbon nanofibers and their hybrid composites as advanced materials for energy conversion and storage. Nano Energy 22:361–395CrossRef
14.
Zurück zum Zitat Zhang B, Kang F, Tarascon J-M, Kim J-K (2016) Recent advances in electrospun carbon nanofibers and their application in electrochemical energy storage. Progress Mater Sci 76:319–380CrossRef Zhang B, Kang F, Tarascon J-M, Kim J-K (2016) Recent advances in electrospun carbon nanofibers and their application in electrochemical energy storage. Progress Mater Sci 76:319–380CrossRef
15.
Zurück zum Zitat Wang J, Yang G, Wang L, Yan W (2016) Fabrication of one-dimensional CdFe2O4 yolk/shell flat nanotubes as a high-performance anode for lithium-ion batteries. J Mater Sci, pp 1–13, doi: 10.1007/s10853-016-0672-3 Wang J, Yang G, Wang L, Yan W (2016) Fabrication of one-dimensional CdFe2O4 yolk/shell flat nanotubes as a high-performance anode for lithium-ion batteries. J Mater Sci, pp 1–13, doi: 10.​1007/​s10853-016-0672-3
16.
Zurück zum Zitat Qin X, Subianto S (2017) 17 - Electrospun nanofibers for filtration applications A2 - Afshari, Mehdi. In: Electrospun nanofibers, ed, Woodhead Publishing, p 449–466 Qin X, Subianto S (2017) 17 - Electrospun nanofibers for filtration applications A2 - Afshari, Mehdi. In: Electrospun nanofibers, ed, Woodhead Publishing, p 449–466
17.
Zurück zum Zitat Ortenzi MA, Basilissi L, Farina H, Di Silvestro G, Piergiovanni L, Mascheroni E (2015) Evaluation of crystallinity and gas barrier properties of films obtained from PLA nanocomposites synthesized via “in situ” polymerization of l-lactide with silane-modified nanosilica and montmorillonite. Eur Polym J 66:478–491CrossRef Ortenzi MA, Basilissi L, Farina H, Di Silvestro G, Piergiovanni L, Mascheroni E (2015) Evaluation of crystallinity and gas barrier properties of films obtained from PLA nanocomposites synthesized via “in situ” polymerization of l-lactide with silane-modified nanosilica and montmorillonite. Eur Polym J 66:478–491CrossRef
18.
Zurück zum Zitat Neppalli R, Causin V, Benetti EM, Ray SS, Esposito A, Wanjale S et al (2014) Polystyrene/TiO2 composite electrospun fibers as fillers for poly(butylene succinate-co-adipate): structure, morphology and properties. Eur Polym J 50:78–86CrossRef Neppalli R, Causin V, Benetti EM, Ray SS, Esposito A, Wanjale S et al (2014) Polystyrene/TiO2 composite electrospun fibers as fillers for poly(butylene succinate-co-adipate): structure, morphology and properties. Eur Polym J 50:78–86CrossRef
19.
Zurück zum Zitat Wang L, Ryan AJ (2011) Introduction to electrospinning. In: Bosworth LA, Downes S (eds) Electrospinning for tissue regeneration. Woodhead Publishing, Oxford, pp 3–33CrossRef Wang L, Ryan AJ (2011) Introduction to electrospinning. In: Bosworth LA, Downes S (eds) Electrospinning for tissue regeneration. Woodhead Publishing, Oxford, pp 3–33CrossRef
20.
Zurück zum Zitat Wang S, Yang Y, Zhang Y, Fei X, Zhou C, Zhang Y et al (2014) Fabrication of large-scale superhydrophobic composite films with enhanced tensile properties by multi-nozzle conveyor belt electrospinning. J Appl Polym Sci 131:39735. doi:10.1002/app.39735 Wang S, Yang Y, Zhang Y, Fei X, Zhou C, Zhang Y et al (2014) Fabrication of large-scale superhydrophobic composite films with enhanced tensile properties by multi-nozzle conveyor belt electrospinning. J Appl Polym Sci 131:39735. doi:10.​1002/​app.​39735
21.
Zurück zum Zitat Angammana CJ, Jayaram SH (2011) The effects of electric field on the multijet electrospinning process and fiber morphology. Ind Appl IEEE Trans 47:1028–1035CrossRef Angammana CJ, Jayaram SH (2011) The effects of electric field on the multijet electrospinning process and fiber morphology. Ind Appl IEEE Trans 47:1028–1035CrossRef
22.
Zurück zum Zitat Kumar A, Wei M, Barry C, Chen J, Mead J (2010) Controlling fiber repulsion in multijet electrospinning for higher throughput. Macromol Mater Eng 295:701–708CrossRef Kumar A, Wei M, Barry C, Chen J, Mead J (2010) Controlling fiber repulsion in multijet electrospinning for higher throughput. Macromol Mater Eng 295:701–708CrossRef
23.
Zurück zum Zitat Liu Y, He JH (2007) Bubble electrospinning for mass production of nanofibers. In: International journal of nonlinear sciences and numerical simulation 8, ed, p 393 Liu Y, He JH (2007) Bubble electrospinning for mass production of nanofibers. In: International journal of nonlinear sciences and numerical simulation 8, ed, p 393
24.
Zurück zum Zitat Niu H, Lin T (2012) Fiber generators in needleless electrospinning. J Nanomater 2012:1–13 Niu H, Lin T (2012) Fiber generators in needleless electrospinning. J Nanomater 2012:1–13
25.
26.
Zurück zum Zitat Yalcinkaya B, Callioglu FC, Yener F (2014) Measurement and analysis of jet current and jet life in roller electrospinning of polyurethane. Text Res J 84:1720–1728CrossRef Yalcinkaya B, Callioglu FC, Yener F (2014) Measurement and analysis of jet current and jet life in roller electrospinning of polyurethane. Text Res J 84:1720–1728CrossRef
27.
Zurück zum Zitat Wei L, Yu H, Jia L, X (2016) Qin High-throughput nanofiber produced by needleless electrospinning using a metal dish as the spinneret. Text Res J. doi:10.1177/0040517516677232 Wei L, Yu H, Jia L, X (2016) Qin High-throughput nanofiber produced by needleless electrospinning using a metal dish as the spinneret. Text Res J. doi:10.​1177/​0040517516677232​
28.
Zurück zum Zitat Lu B, Wang Y, Liu Y, Duan H, Zhou J, Zhang Z et al (2010) Superhigh-throughput needleless electrospinning using a rotary cone as spinneret. Small 6:1612–1616CrossRef Lu B, Wang Y, Liu Y, Duan H, Zhou J, Zhang Z et al (2010) Superhigh-throughput needleless electrospinning using a rotary cone as spinneret. Small 6:1612–1616CrossRef
29.
Zurück zum Zitat Bhattacharyya I, Molaro MC, Braatz RD, Rutledge GC (2016) Free surface electrospinning of aqueous polymer solutions from a wire electrode. Chem Eng J 289:203–211CrossRef Bhattacharyya I, Molaro MC, Braatz RD, Rutledge GC (2016) Free surface electrospinning of aqueous polymer solutions from a wire electrode. Chem Eng J 289:203–211CrossRef
30.
Zurück zum Zitat Niu H, Lin T, Wang X (2009) Needleless electrospinning. I. A comparison of cylinder and disk nozzles. J Appl Polym Sci 114:3524–3530CrossRef Niu H, Lin T, Wang X (2009) Needleless electrospinning. I. A comparison of cylinder and disk nozzles. J Appl Polym Sci 114:3524–3530CrossRef
31.
Zurück zum Zitat Jiang G, Zhang S, Qin X (2014) Effect of processing parameters on free surface electrospinning from a stepped pyramid stage. J Ind Text 45(4):483–494CrossRef Jiang G, Zhang S, Qin X (2014) Effect of processing parameters on free surface electrospinning from a stepped pyramid stage. J Ind Text 45(4):483–494CrossRef
32.
Zurück zum Zitat Jiang G, Qin X (2014) An improved free surface electrospinning for high throughput manufacturing of core–shell nanofibers. Mater Lett 128:259–262CrossRef Jiang G, Qin X (2014) An improved free surface electrospinning for high throughput manufacturing of core–shell nanofibers. Mater Lett 128:259–262CrossRef
33.
Zurück zum Zitat Wang X, Niu H, Wang X, Lin T (2012) Needleless electrospinning of uniform nanofibers using spiral coil spinnerets. J Nanomater 2012:1–9 Wang X, Niu H, Wang X, Lin T (2012) Needleless electrospinning of uniform nanofibers using spiral coil spinnerets. J Nanomater 2012:1–9
34.
Zurück zum Zitat Wang X, Wang X, Lin T (2012) Electric field analysis of spinneret design for needleless electrospinning of nanofibers. J Mater Res 27:3013–3019CrossRef Wang X, Wang X, Lin T (2012) Electric field analysis of spinneret design for needleless electrospinning of nanofibers. J Mater Res 27:3013–3019CrossRef
35.
Zurück zum Zitat Thoppey NM, Bochinski JR, Clarke LI, Gorga RE (2010) Unconfined fluid electrospun into high quality nanofibers from a plate edge. Polymer 51:4928–4936CrossRef Thoppey NM, Bochinski JR, Clarke LI, Gorga RE (2010) Unconfined fluid electrospun into high quality nanofibers from a plate edge. Polymer 51:4928–4936CrossRef
36.
Zurück zum Zitat Lu W, Ma M, Xu H, Zhang B, Cao X, Guo Y (2015) Gelatin nanofibers prepared by spiral-electrospinning and cross-linked by vapor and liquid-phase glutaraldehyde. Mater Lett 140:1–4CrossRef Lu W, Ma M, Xu H, Zhang B, Cao X, Guo Y (2015) Gelatin nanofibers prepared by spiral-electrospinning and cross-linked by vapor and liquid-phase glutaraldehyde. Mater Lett 140:1–4CrossRef
37.
Zurück zum Zitat Liu Z, Chen R, He J (2016) Active generation of multiple jets for producing nanofibres with high quality and high throughput. Mater Des 94:496–501 Liu Z, Chen R, He J (2016) Active generation of multiple jets for producing nanofibres with high quality and high throughput. Mater Des 94:496–501
38.
Zurück zum Zitat Jani H, Toni P, Eero S, Mikko R (2015) Needleless electrospinning with twisted wire spinneret. Nanotechnology 26:025301CrossRef Jani H, Toni P, Eero S, Mikko R (2015) Needleless electrospinning with twisted wire spinneret. Nanotechnology 26:025301CrossRef
Metadaten
Titel
Needleless electrospinning using sprocket wheel disk spinneret
verfasst von
Usman Ali
Haitao Niu
Sarmad Aslam
Abdul Jabbar
Abdul Waqar Rajput
Tong Lin
Publikationsdatum
16.03.2017
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 12/2017
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-017-0989-6

Weitere Artikel der Ausgabe 12/2017

Journal of Materials Science 12/2017 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.