Skip to main content
Erschienen in: Journal of Materials Science 22/2017

24.07.2017 | Chemical routes to materials

A bifunctional electrocatalyst of PtNi nanoparticles immobilized on three-dimensional carbon nanofiber mats for efficient and stable water splitting in both acid and basic media

verfasst von: Jiawei Chen, Juan Wang, Jiadong Chen, Lina Wang

Erschienen in: Journal of Materials Science | Ausgabe 22/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Inspired by the excellent activity of platinum in hydrogen evolution reaction (HER) and the good performance of Ni-based compounds in oxygen evolution reaction (OER), a bifunctional electrocatalyst PtNi carbon nanofiber (CNF) is designed and fabricated using electrospinning followed by carbonization. Ultra-small PtNi nanoparticles of several nanometers in size are densely dispersed on every CNF, along with a few larger nanoparticles with sizes of several decades of nanometers. The as-prepared catalysts can be directly used as an electrode and act as high-efficiency materials for water splitting, including HER and OER. For HER activity, the PtNi/CNFs reach 10 mA cm−2 current density at low overpotentials of 34 mV and exhibit a small Tafel slope of 31 mV dec−1 in acidic electrolytes of 0.5 M H2SO4, which is close to that of commercial Pt/C (20 wt%) electrocatalytic catalysts. In 1 M KOH solution, the PtNi/CNFs also exhibit excellent HER activity with a low overpotential of 82 mV to achieve a current density of 10 mA cm−2 and a small Tafel slope of 34 mV dec−1. Moreover, the PtNi/CNFs also show good activity for OER in alkaline electrolyte of 1 M KOH with a Tafel slope of 159 mV dec−1 and a small overpotential of 151 mV to reach a current density of 10 mA cm−2. In addition, the OER performance of the PtNi/CNFs in acid media is also favorable, with a 198 mV dec−1 Tafel slope. The decent activity of the PtNi/CNFs for water splitting originates from the synergistic effects of using Pt and Ni, large amounts of ultra-small nanoparticles densely dispersed on the CNFs, high conductivity of the support materials and interconnected three-dimensional structures of the carbon nanofiber mats.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Cobo S, Heidkamp J, Jacques P et al (2012) A Janus cobalt-based catalytic material for electro-splitting of water. Nat Mater 11:802–807CrossRef Cobo S, Heidkamp J, Jacques P et al (2012) A Janus cobalt-based catalytic material for electro-splitting of water. Nat Mater 11:802–807CrossRef
2.
Zurück zum Zitat Yamaguchi A, Inuzuka R, Takashima T et al (2011) Regulating proton-coupled electron transfer for efficient water splitting by manganese oxides at neutral pH. Nat Commun 5:4256 Yamaguchi A, Inuzuka R, Takashima T et al (2011) Regulating proton-coupled electron transfer for efficient water splitting by manganese oxides at neutral pH. Nat Commun 5:4256
3.
Zurück zum Zitat Chen S, Qiao SZ (2013) Hierarchically porous nitrogen-doped graphene-NiCo2O4 hybrid paper as an advanced electrocatalytic water-splitting material. ACS Nano 7:10190–10196CrossRef Chen S, Qiao SZ (2013) Hierarchically porous nitrogen-doped graphene-NiCo2O4 hybrid paper as an advanced electrocatalytic water-splitting material. ACS Nano 7:10190–10196CrossRef
4.
Zurück zum Zitat Song F, Hu X (2014) Ultrathin cobalt–manganese layered double hydroxide is an efficient oxygen evolution catalyst. J Am Chem Soc 136:16481–16484CrossRef Song F, Hu X (2014) Ultrathin cobalt–manganese layered double hydroxide is an efficient oxygen evolution catalyst. J Am Chem Soc 136:16481–16484CrossRef
5.
Zurück zum Zitat Jiao F, Frei H (2009) Nanostructured cobalt oxide clusters in mesoporous silica as efficient oxygen-evolving catalysts. Angew Chem 48:1841–1844CrossRef Jiao F, Frei H (2009) Nanostructured cobalt oxide clusters in mesoporous silica as efficient oxygen-evolving catalysts. Angew Chem 48:1841–1844CrossRef
6.
Zurück zum Zitat Wang T, Guo Y, Zhou Z et al (1936) Ni-Mo nanocatalysts on N-doped graphite nanotubes for highly efficient electrochemical hydrogen evolution in acid. ACS Nano 10:10397–10403CrossRef Wang T, Guo Y, Zhou Z et al (1936) Ni-Mo nanocatalysts on N-doped graphite nanotubes for highly efficient electrochemical hydrogen evolution in acid. ACS Nano 10:10397–10403CrossRef
7.
Zurück zum Zitat Yin J, Fan Q, Li Y et al (2016) Ni–C–N Nanosheets as catalyst for hydrogen evolution reaction. J Am Chem Soc 138:14546–14549CrossRef Yin J, Fan Q, Li Y et al (2016) Ni–C–N Nanosheets as catalyst for hydrogen evolution reaction. J Am Chem Soc 138:14546–14549CrossRef
8.
Zurück zum Zitat Cheng Y, Jiang SP (2013) Highly effective and CO-tolerant PtRu electrocatalysts supported on poly(ethyleneimine) functionalized carbon nanotubes for direct methanol fuel cells. Electrochim Acta 99:124–132CrossRef Cheng Y, Jiang SP (2013) Highly effective and CO-tolerant PtRu electrocatalysts supported on poly(ethyleneimine) functionalized carbon nanotubes for direct methanol fuel cells. Electrochim Acta 99:124–132CrossRef
9.
Zurück zum Zitat Mohtadi-Bonab MA, Szpunar JA, Razavi-Tousi SS (2013) Hydrogen induced cracking susceptibility in different layers of a hot rolled X70 pipeline steel. Int J Hydrogen Energy 38:13831–13841CrossRef Mohtadi-Bonab MA, Szpunar JA, Razavi-Tousi SS (2013) Hydrogen induced cracking susceptibility in different layers of a hot rolled X70 pipeline steel. Int J Hydrogen Energy 38:13831–13841CrossRef
10.
Zurück zum Zitat Suh WK, Ganesan P, Son B et al (2016) Graphene supported Pt–Ni nanoparticles for oxygen reduction reaction in acidic electrolyte. Int J Hydrogen Energy 41:12983–12994CrossRef Suh WK, Ganesan P, Son B et al (2016) Graphene supported Pt–Ni nanoparticles for oxygen reduction reaction in acidic electrolyte. Int J Hydrogen Energy 41:12983–12994CrossRef
11.
Zurück zum Zitat Rosado G, Verde Y, Valenzuela-Muñiz AM et al (2016) Catalytic activity of Pt-Ni nanoparticles supported on multi-walled carbon nanotubes for the oxygen reduction reaction. Int J Hydrogen Energy 41:12983–12994CrossRef Rosado G, Verde Y, Valenzuela-Muñiz AM et al (2016) Catalytic activity of Pt-Ni nanoparticles supported on multi-walled carbon nanotubes for the oxygen reduction reaction. Int J Hydrogen Energy 41:12983–12994CrossRef
12.
Zurück zum Zitat Binghong Han E, Carlton C, Kongkanand Anusorn et al (2015) Record activity and stability of dealloyed bimetallic catalysts for proton exchange membrane fuel cells. Environ Eng Sci 8:258–266 Binghong Han E, Carlton C, Kongkanand Anusorn et al (2015) Record activity and stability of dealloyed bimetallic catalysts for proton exchange membrane fuel cells. Environ Eng Sci 8:258–266
13.
Zurück zum Zitat Trogadas P, Fuller TF, Strasser P (2014) Carbon as catalyst and support for electrochemical energy conversion. Carbon 75:5–42CrossRef Trogadas P, Fuller TF, Strasser P (2014) Carbon as catalyst and support for electrochemical energy conversion. Carbon 75:5–42CrossRef
14.
Zurück zum Zitat Ren J, Antonietti M, Fellinger TP (2014) Efficient water splitting using a simple Ni/N/C paper electrocatalyst. Adv Energy Mater 5:1614–6840 Ren J, Antonietti M, Fellinger TP (2014) Efficient water splitting using a simple Ni/N/C paper electrocatalyst. Adv Energy Mater 5:1614–6840
15.
Zurück zum Zitat David S, Isabel S, Elena P et al (2013) The effect of carbon nanofiber properties as support for PtRu nanoparticles on the electrooxidation of alcohols. Appl Catal B-Environ 132:13–21 David S, Isabel S, Elena P et al (2013) The effect of carbon nanofiber properties as support for PtRu nanoparticles on the electrooxidation of alcohols. Appl Catal B-Environ 132:13–21
16.
Zurück zum Zitat Yu LH, Kuo CH, Chuin TY et al (2007) Poly(vinylpyrrolidone)-modified graphite carbon nanofibers as promising supports for PtRu catalysts in direct methanol fuel cells. J Am Chem Soc 129:9999–10010CrossRef Yu LH, Kuo CH, Chuin TY et al (2007) Poly(vinylpyrrolidone)-modified graphite carbon nanofibers as promising supports for PtRu catalysts in direct methanol fuel cells. J Am Chem Soc 129:9999–10010CrossRef
17.
Zurück zum Zitat Hernándezpagán EA, Vargasbarbosa NM, Wang TH et al (2012) Resistance and polarization losses in aqueous buffer–membrane electrolytes for water-splitting photoelectrochemical cells. Environ Eng Sci 5:7582–7589 Hernándezpagán EA, Vargasbarbosa NM, Wang TH et al (2012) Resistance and polarization losses in aqueous buffer–membrane electrolytes for water-splitting photoelectrochemical cells. Environ Eng Sci 5:7582–7589
18.
Zurück zum Zitat Huang X, Zhao Z, Cao L et al (2015) High-performance transition metal-doped Pt3Ni octahedra for oxygen reduction reaction. Science 348:1230–1234CrossRef Huang X, Zhao Z, Cao L et al (2015) High-performance transition metal-doped Pt3Ni octahedra for oxygen reduction reaction. Science 348:1230–1234CrossRef
19.
Zurück zum Zitat Chen C, Kang Y, Huo Z et al (2014) Highly crystalline multimetallic nanoframes with three-dimensional electrocatalytic surfaces. Science 343:1339–1343CrossRef Chen C, Kang Y, Huo Z et al (2014) Highly crystalline multimetallic nanoframes with three-dimensional electrocatalytic surfaces. Science 343:1339–1343CrossRef
20.
Zurück zum Zitat Li M, Zhao Z, Cheng T et al (2016) Ultrafine jagged platinum nanowires enable ultrahigh mass activity for the oxygen reduction reaction. Science 354:1414–1419CrossRef Li M, Zhao Z, Cheng T et al (2016) Ultrafine jagged platinum nanowires enable ultrahigh mass activity for the oxygen reduction reaction. Science 354:1414–1419CrossRef
21.
Zurück zum Zitat Oh A, Sa YJ, Hwang H et al (2016) Rational design of Pt–Ni–Co ternary alloy nanoframe crystals as highly efficient catalysts toward the alkaline hydrogen evolution reaction. Nanoscale 8:16379–16386CrossRef Oh A, Sa YJ, Hwang H et al (2016) Rational design of Pt–Ni–Co ternary alloy nanoframe crystals as highly efficient catalysts toward the alkaline hydrogen evolution reaction. Nanoscale 8:16379–16386CrossRef
22.
Zurück zum Zitat Wang Q, Yanzhang R, Wu Y et al (2016) Silk-derived graphene-like carbon with high electrocatalytic activity for oxygen reduction reaction. Rsc Adv 6:34219–34224CrossRef Wang Q, Yanzhang R, Wu Y et al (2016) Silk-derived graphene-like carbon with high electrocatalytic activity for oxygen reduction reaction. Rsc Adv 6:34219–34224CrossRef
23.
Zurück zum Zitat Wang J, Zhu H, Chen JD et al (2016) Small and well-dispersed Cu nanoparticles on carbon nanofibers: self-supported electrode materials for efficient hydrogen evolution reaction. Int J Hydrogen Energy 41:18044–18049CrossRef Wang J, Zhu H, Chen JD et al (2016) Small and well-dispersed Cu nanoparticles on carbon nanofibers: self-supported electrode materials for efficient hydrogen evolution reaction. Int J Hydrogen Energy 41:18044–18049CrossRef
24.
Zurück zum Zitat Strasser P (2016) Free electrons to molecular bonds and back: closing the energetic oxygen reduction (ORR)-oxygen evolution (OER) cycle using core-shell nanoelectrocatalysts. Acc Chem Res 49:2658–2668CrossRef Strasser P (2016) Free electrons to molecular bonds and back: closing the energetic oxygen reduction (ORR)-oxygen evolution (OER) cycle using core-shell nanoelectrocatalysts. Acc Chem Res 49:2658–2668CrossRef
25.
Zurück zum Zitat Niu Z, Becknell N, Yu Y et al (2016) Anisotropic phase segregation and migration of Pt in nanocrystals en route to nanoframe catalysts. Nat Mater 15:1188–1194CrossRef Niu Z, Becknell N, Yu Y et al (2016) Anisotropic phase segregation and migration of Pt in nanocrystals en route to nanoframe catalysts. Nat Mater 15:1188–1194CrossRef
26.
Zurück zum Zitat Chen WF, Wang CH, Sasaki K et al (2013) Highly active and durable nanostructured molybdenum carbide electrocatalysts for hydrogen production. Environ Eng Sci 6:943–951 Chen WF, Wang CH, Sasaki K et al (2013) Highly active and durable nanostructured molybdenum carbide electrocatalysts for hydrogen production. Environ Eng Sci 6:943–951
27.
Zurück zum Zitat Zeng K, Zhang D (2010) Recent progress in alkaline water electrolysis for hydrogen production and applications. Prog Energy Combust 36:307–326CrossRef Zeng K, Zhang D (2010) Recent progress in alkaline water electrolysis for hydrogen production and applications. Prog Energy Combust 36:307–326CrossRef
28.
Zurück zum Zitat Sheng W, Zhuang Z, Gao M et al (2015) Correlating hydrogen oxidation and evolution activity on platinum at different pH with measured hydrogen binding energy. Nat Commun 6:5848CrossRef Sheng W, Zhuang Z, Gao M et al (2015) Correlating hydrogen oxidation and evolution activity on platinum at different pH with measured hydrogen binding energy. Nat Commun 6:5848CrossRef
29.
Zurück zum Zitat Mckone JR, Sadtler BF, Werlang CA et al (2013) Ni–Mo nanopowders for efficient electrochemical hydrogen evolution. Acs Catal 3:166–169CrossRef Mckone JR, Sadtler BF, Werlang CA et al (2013) Ni–Mo nanopowders for efficient electrochemical hydrogen evolution. Acs Catal 3:166–169CrossRef
30.
Zurück zum Zitat Zhu H, Gu L, Yu D et al (2017) The marriage and integration of nanostructures with different dimensions for synergistic electrocatalysis. Energy Environ Sci 10:321–330CrossRef Zhu H, Gu L, Yu D et al (2017) The marriage and integration of nanostructures with different dimensions for synergistic electrocatalysis. Energy Environ Sci 10:321–330CrossRef
31.
Zurück zum Zitat Deng D, Novoselov KS, Qiang F et al (2016) Catalysis with two-dimensional materials and their heterostructures. Nat Nanotechnol 11:218–230CrossRef Deng D, Novoselov KS, Qiang F et al (2016) Catalysis with two-dimensional materials and their heterostructures. Nat Nanotechnol 11:218–230CrossRef
32.
Zurück zum Zitat Deng J, Ren P, Deng D et al (2015) Enhanced electron penetration through an ultrathin graphene layer for highly efficient catalysis of the hydrogen evolution reaction. Angew Chem 54:2100–2104CrossRef Deng J, Ren P, Deng D et al (2015) Enhanced electron penetration through an ultrathin graphene layer for highly efficient catalysis of the hydrogen evolution reaction. Angew Chem 54:2100–2104CrossRef
33.
Zurück zum Zitat Liang H, Gandi AN, Anjum DH et al (2016) Plasma-assisted synthesis of NiCoP for efficient water splitting. Nano Lett 16:7718–7725CrossRef Liang H, Gandi AN, Anjum DH et al (2016) Plasma-assisted synthesis of NiCoP for efficient water splitting. Nano Lett 16:7718–7725CrossRef
34.
Zurück zum Zitat Lin G, Heggen M, O’Malley R et al (2013) Understanding and controlling nanoporosity formation for improving the stability of bimetallic fuel cell catalysts. Nano Lett 13:1131–1138CrossRef Lin G, Heggen M, O’Malley R et al (2013) Understanding and controlling nanoporosity formation for improving the stability of bimetallic fuel cell catalysts. Nano Lett 13:1131–1138CrossRef
Metadaten
Titel
A bifunctional electrocatalyst of PtNi nanoparticles immobilized on three-dimensional carbon nanofiber mats for efficient and stable water splitting in both acid and basic media
verfasst von
Jiawei Chen
Juan Wang
Jiadong Chen
Lina Wang
Publikationsdatum
24.07.2017
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 22/2017
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-017-1410-1

Weitere Artikel der Ausgabe 22/2017

Journal of Materials Science 22/2017 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.