Skip to main content
Erschienen in: Journal of Materials Science 24/2017

18.08.2017 | Composites

Analyzing the frequency and temperature dependences of the ac conductivity and dielectric analysis of reduced graphene oxide/epoxy polymer nanocomposites

verfasst von: Y. Nioua, S. El Bouazzaoui, B. M. G. Melo, P. R. S. Prezas, M. P. F. Graça, M. E. Achour, L. C. Costa, C. Brosseau

Erschienen in: Journal of Materials Science | Ausgabe 24/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A series of composite materials was fabricated by mixing reduced graphene oxide (rGO) powder particles in an epoxy resin. In this paper, we analyze impedance measurements on these materials over broad frequency and temperature ranges. The real and imaginary parts of the effective complex impedance are well fitted to the Cole–Cole equation. The frequency dependence of the ac conductivity follows Jonscher’s law with relaxation processes characterized by a broad distribution of relaxation times. The imaginary part of the effective electric impedance collapses onto a single master curve using a single characteristic frequency as a scaling parameter. We find that the electrical properties of the samples are strongly influenced by graphene oxide content. Below percolation threshold, the ac transport can be interpreted as due to electron hopping. Further, we find that the frequency-dependent effective impedance measurements overlap on a single master curve in the range of temperatures explored, showing that a single electrical conduction mechanism is operative. Close and above percolation threshold, the ac conduction originates from both electron tunneling and capacitive paths among the rGO nanoparticles in the polymer bulk.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Adohi BJ-P, Byvhanok D, Haidar B, Brosseau C (2013) Microwave and mechanical properties of quartz/graphene-based polymer nanocomposites. Appl Phys Lett 102:072903(1)–072903(5)CrossRef Adohi BJ-P, Byvhanok D, Haidar B, Brosseau C (2013) Microwave and mechanical properties of quartz/graphene-based polymer nanocomposites. Appl Phys Lett 102:072903(1)–072903(5)CrossRef
2.
Zurück zum Zitat Adohi BJ-P, Laur V, Haidar B, Brosseau C (2014) Measurement of the microwave effective permittivity in tensile-strained polyvinylidene difluoride trifluoroethylene filled with graphene. Appl Phys Lett 104:082902(1)–082902(5)CrossRef Adohi BJ-P, Laur V, Haidar B, Brosseau C (2014) Measurement of the microwave effective permittivity in tensile-strained polyvinylidene difluoride trifluoroethylene filled with graphene. Appl Phys Lett 104:082902(1)–082902(5)CrossRef
3.
Zurück zum Zitat Adohi BJ-P, Haidar B, Costa LC, Laur V, Brosseau C (2015) Assessing the role of graphene content in the electromagnetic response of graphene polymer nanocomposites. Eur Phys J B 88:280(1)–280(8)CrossRef Adohi BJ-P, Haidar B, Costa LC, Laur V, Brosseau C (2015) Assessing the role of graphene content in the electromagnetic response of graphene polymer nanocomposites. Eur Phys J B 88:280(1)–280(8)CrossRef
4.
Zurück zum Zitat Adohi BJ-P, Brosseau C, Laur V, Haidar B (2017) Graphene controlled butterfly shape in permittivity-field loops of ferroelectric polymer nanocomposites. Appl Phys Lett 110:022902(1)–022902(5)CrossRef Adohi BJ-P, Brosseau C, Laur V, Haidar B (2017) Graphene controlled butterfly shape in permittivity-field loops of ferroelectric polymer nanocomposites. Appl Phys Lett 110:022902(1)–022902(5)CrossRef
5.
Zurück zum Zitat Eletskii AV, Knizhnik AA, Potapkin BV, Kenny JM (2015) Electrical characteristics of carbon nanotube-doped composites. Phys Usp 58:209–251CrossRef Eletskii AV, Knizhnik AA, Potapkin BV, Kenny JM (2015) Electrical characteristics of carbon nanotube-doped composites. Phys Usp 58:209–251CrossRef
6.
Zurück zum Zitat Bychanok D, Kuzhir P, Maksimenko S, Bellucci S, Brosseau C (2013) Characterizing epoxy composites filled with carbonaceous nanoparticles from dc to microwave. J Appl Phys 113:124103(1)–124103(6)CrossRef Bychanok D, Kuzhir P, Maksimenko S, Bellucci S, Brosseau C (2013) Characterizing epoxy composites filled with carbonaceous nanoparticles from dc to microwave. J Appl Phys 113:124103(1)–124103(6)CrossRef
7.
Zurück zum Zitat De Vivo B, Lamberti P, Tucci V, Guadagno L, Vertuccio L, Vittoria V, Sorrentino A (2012) Comparison of the physical properties of epoxy-based composites filled with different types of carbon nanotubes for aeronautic applications. Adv Polym Technol 31:205–218CrossRef De Vivo B, Lamberti P, Tucci V, Guadagno L, Vertuccio L, Vittoria V, Sorrentino A (2012) Comparison of the physical properties of epoxy-based composites filled with different types of carbon nanotubes for aeronautic applications. Adv Polym Technol 31:205–218CrossRef
8.
Zurück zum Zitat Khanam PN, Ponnamma D, Al-Madee MA (2015) Graphene-based polymer nanocomposites in electronics, Sadasivuni KK et al (eds). Springer, Berlin Khanam PN, Ponnamma D, Al-Madee MA (2015) Graphene-based polymer nanocomposites in electronics, Sadasivuni KK et al (eds). Springer, Berlin
9.
Zurück zum Zitat Marra F, D’Aloia AG, Tamburran A, Ochando IM, De Bellis G, Ellis G, Sarto MS (2016) Electromagnetic and dynamic mechanical properties of epoxy and vinylester-based composites filled with graphene nanoplatelets. Polymers 8:272(1)–272(18)CrossRef Marra F, D’Aloia AG, Tamburran A, Ochando IM, De Bellis G, Ellis G, Sarto MS (2016) Electromagnetic and dynamic mechanical properties of epoxy and vinylester-based composites filled with graphene nanoplatelets. Polymers 8:272(1)–272(18)CrossRef
10.
Zurück zum Zitat Qin F, Brosseau C (2011) A review and analysis of microwave absorption in polymer composites filled with carbonaceous particles. J Appl Phys 111:061301(1)–061301(24) Qin F, Brosseau C (2011) A review and analysis of microwave absorption in polymer composites filled with carbonaceous particles. J Appl Phys 111:061301(1)–061301(24)
11.
Zurück zum Zitat Zhao X, Zhang Z, Wang L, Xi K, Cao Q, Wang D, Yang Y, Du Y (2013) Excellent microwave absorption property of Graphene-coated Fe nanocomposites. Nat Sci Rep 3:3421(1)–3421(5) Zhao X, Zhang Z, Wang L, Xi K, Cao Q, Wang D, Yang Y, Du Y (2013) Excellent microwave absorption property of Graphene-coated Fe nanocomposites. Nat Sci Rep 3:3421(1)–3421(5)
12.
Zurück zum Zitat Sharifi T, Gracia-Espino E, Reza Barzegar H, Jia X, Nitze F, Hu G, Nordblad P, Tai C-W, Wågberg T (2013) Formation of nitrogen-doped graphene nanoscrolls by adsorption of magnetic γ-Fe2O3 nanoparticles. Nat Commun 4:2319(1)–2319(9)CrossRef Sharifi T, Gracia-Espino E, Reza Barzegar H, Jia X, Nitze F, Hu G, Nordblad P, Tai C-W, Wågberg T (2013) Formation of nitrogen-doped graphene nanoscrolls by adsorption of magnetic γ-Fe2O3 nanoparticles. Nat Commun 4:2319(1)–2319(9)CrossRef
13.
Zurück zum Zitat Bludov YV, Peres NMR, Vasilevskiy MI (2013) Unusual reflection of electromagnetic radiation from a stack of graphene layers at oblique incidence. J Opt 15:114004(1)–114004(7) Bludov YV, Peres NMR, Vasilevskiy MI (2013) Unusual reflection of electromagnetic radiation from a stack of graphene layers at oblique incidence. J Opt 15:114004(1)–114004(7)
14.
Zurück zum Zitat Liu P, Huang Y, Zhang X (2014) Superparamagnetic NiFe2O4 particles on poly(3,4-ethylenedioxythiophene)–graphene: synthesis, characterization and their excellent microwave absorption properties. Compos Sci Technol 95:107–113CrossRef Liu P, Huang Y, Zhang X (2014) Superparamagnetic NiFe2O4 particles on poly(3,4-ethylenedioxythiophene)–graphene: synthesis, characterization and their excellent microwave absorption properties. Compos Sci Technol 95:107–113CrossRef
15.
Zurück zum Zitat Jang B, Zhamu A (2008) Processing of nanographene platelets (NGPs) and NGP nanocomposites: a review. J Mater Sci 43:5092–5101CrossRef Jang B, Zhamu A (2008) Processing of nanographene platelets (NGPs) and NGP nanocomposites: a review. J Mater Sci 43:5092–5101CrossRef
16.
Zurück zum Zitat Yang Y, Rigdon W, Huang X, Li X (2013) Enhancing graphene reinforcing potential in composites by hydrogen passivation induced dispersion. Nat Sci Rep 3:2086(1)–2086(7) Yang Y, Rigdon W, Huang X, Li X (2013) Enhancing graphene reinforcing potential in composites by hydrogen passivation induced dispersion. Nat Sci Rep 3:2086(1)–2086(7)
17.
Zurück zum Zitat Kuilla T, Bhadra S, Yao D, Kim NH, Bose S, Lee JH (2010) Recent advances in graphene based polymer composites. Prog Polym Sci 35:1350–1375CrossRef Kuilla T, Bhadra S, Yao D, Kim NH, Bose S, Lee JH (2010) Recent advances in graphene based polymer composites. Prog Polym Sci 35:1350–1375CrossRef
18.
Zurück zum Zitat Potts JR, Dreyer DR, Bielawski CW, Ruoff RS (2011) Graphene-based polymer nanocomposites. Polymer 52:5–25CrossRef Potts JR, Dreyer DR, Bielawski CW, Ruoff RS (2011) Graphene-based polymer nanocomposites. Polymer 52:5–25CrossRef
19.
Zurück zum Zitat Kim H, Abdala AA, Macosko CW (2010) Graphene/polymer nanocomposites. Macromolecules 43:6515–6530CrossRef Kim H, Abdala AA, Macosko CW (2010) Graphene/polymer nanocomposites. Macromolecules 43:6515–6530CrossRef
20.
Zurück zum Zitat Stankovich S, Dikin DA, Dommett GHB, Kohlhaas KM, Zimney EJ, Stach EA, Piner RD, Nguyen ST, Ruoff RS (2006) Graphene-based composite materials. Nature 442:282–286CrossRef Stankovich S, Dikin DA, Dommett GHB, Kohlhaas KM, Zimney EJ, Stach EA, Piner RD, Nguyen ST, Ruoff RS (2006) Graphene-based composite materials. Nature 442:282–286CrossRef
21.
Zurück zum Zitat Liang J, Wang Y, Huang Y, Ma Y, Liu Z, Cai J, Zhang C, Gao H, Chen Y (2009) Electromagnetic interference shielding of graphene/epoxy composites. Carbon 47:922–925CrossRef Liang J, Wang Y, Huang Y, Ma Y, Liu Z, Cai J, Zhang C, Gao H, Chen Y (2009) Electromagnetic interference shielding of graphene/epoxy composites. Carbon 47:922–925CrossRef
22.
Zurück zum Zitat Zhang ZC, Meng QJ, Chung TCM (2009) Energy storage study of ferroelectric poly(vinylidene fluoride-trifluoroethylenechlorotrifluoroethylene) terpolymers. Polymer 50:707–715CrossRef Zhang ZC, Meng QJ, Chung TCM (2009) Energy storage study of ferroelectric poly(vinylidene fluoride-trifluoroethylenechlorotrifluoroethylene) terpolymers. Polymer 50:707–715CrossRef
23.
Zurück zum Zitat Xia WM, Xu Z, Wen F, Li WJ, Zhang ZC (2010) Crystalline properties dependence of dielectric and energy storage properties of poly(vinylidene fluoride-chlorotrifluoroethylene). Appl Phys Lett 97:222905CrossRef Xia WM, Xu Z, Wen F, Li WJ, Zhang ZC (2010) Crystalline properties dependence of dielectric and energy storage properties of poly(vinylidene fluoride-chlorotrifluoroethylene). Appl Phys Lett 97:222905CrossRef
24.
Zurück zum Zitat Tagantsev AK, Sherman VO, Astafiev KF, Venkatesh J, Setter N (2013) Ferroelectric materials for microwave tunable applications. J Electroceram 11:5–66CrossRef Tagantsev AK, Sherman VO, Astafiev KF, Venkatesh J, Setter N (2013) Ferroelectric materials for microwave tunable applications. J Electroceram 11:5–66CrossRef
25.
Zurück zum Zitat Hu Z, Tian M, Nysten B, Jonas AM (2008) Regular arrays of highly ordered ferroelectric polymer nanostructures for non-volatile low-voltage memories. Nat Mater 8:62–67CrossRef Hu Z, Tian M, Nysten B, Jonas AM (2008) Regular arrays of highly ordered ferroelectric polymer nanostructures for non-volatile low-voltage memories. Nat Mater 8:62–67CrossRef
26.
Zurück zum Zitat Zheng Y, Ni GX, Toh CT, Tan CY, Yao K, Özyilmaz B (2010) Graphene field-effect transistors with ferroelectric gating. Phys Rev Lett 105:166602(1)–166602(5)CrossRef Zheng Y, Ni GX, Toh CT, Tan CY, Yao K, Özyilmaz B (2010) Graphene field-effect transistors with ferroelectric gating. Phys Rev Lett 105:166602(1)–166602(5)CrossRef
27.
Zurück zum Zitat Zheng Y, Ni GX, Toh CT, Zeng MG, Chen ST, Yao K, Özyilmaz B (2009) Gate-controlled nonvolatile graphene-ferroelectric memory. Appl Phys Lett 94:163505(1)–163505(5) Zheng Y, Ni GX, Toh CT, Zeng MG, Chen ST, Yao K, Özyilmaz B (2009) Gate-controlled nonvolatile graphene-ferroelectric memory. Appl Phys Lett 94:163505(1)–163505(5)
28.
Zurück zum Zitat Park J, Kim M, Lee Y, Lee HS, Ko H (2015) Fingertip skin-inspired microstructured ferroelectric skins discriminate static/dynamic pressure and temperature stimuli. Sci Adv 1:e1500661CrossRef Park J, Kim M, Lee Y, Lee HS, Ko H (2015) Fingertip skin-inspired microstructured ferroelectric skins discriminate static/dynamic pressure and temperature stimuli. Sci Adv 1:e1500661CrossRef
29.
Zurück zum Zitat Bae S-H, Kahya O, Sharma BK, Kwon J, Cho HJ, Özyilmaz B, Ahn J-H (2013) Graphene-P(VDF-TrFE) multilayer film for flexible applications. ACS Nano 7:3130–3138CrossRef Bae S-H, Kahya O, Sharma BK, Kwon J, Cho HJ, Özyilmaz B, Ahn J-H (2013) Graphene-P(VDF-TrFE) multilayer film for flexible applications. ACS Nano 7:3130–3138CrossRef
30.
Zurück zum Zitat Zhang S, Neese B, Ren K, Chu B, Zhang QM (2006) Microstructure and electromechanical responses in semicrystalline ferroelectric relaxor polymer blends. J Appl Phys 100:044113(1)–044113(6) Zhang S, Neese B, Ren K, Chu B, Zhang QM (2006) Microstructure and electromechanical responses in semicrystalline ferroelectric relaxor polymer blends. J Appl Phys 100:044113(1)–044113(6)
31.
Zurück zum Zitat Eda G, Franchini G, Chhowalla M (2008) Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nat Nanotechnol 3:270–274CrossRef Eda G, Franchini G, Chhowalla M (2008) Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nat Nanotechnol 3:270–274CrossRef
32.
Zurück zum Zitat Nioua Y, El Bouazzaoui S, Melo BMG, Prezas PRS, Achour ME, Graça MPF, Costa LC. Electrical studies on reduced graphene oxide/epoxy resin composites. J Comp Mater (in press) Nioua Y, El Bouazzaoui S, Melo BMG, Prezas PRS, Achour ME, Graça MPF, Costa LC. Electrical studies on reduced graphene oxide/epoxy resin composites. J Comp Mater (in press)
33.
Zurück zum Zitat Boukheir S, Len A, Füzi J, Kenderesi V, Achour ME, Eber N, Costa LC, Oueriagli A, Outzourhit A (2016) Structural characterization and electrical properties of carbon nanotubes/epoxy polymer composites. J Appl Polym Sci 134:44514(1)–44514(8) Boukheir S, Len A, Füzi J, Kenderesi V, Achour ME, Eber N, Costa LC, Oueriagli A, Outzourhit A (2016) Structural characterization and electrical properties of carbon nanotubes/epoxy polymer composites. J Appl Polym Sci 134:44514(1)–44514(8)
34.
Zurück zum Zitat Jonscher AK (1977) The ‘universal’ dielectric response. Nature 267:673–679CrossRef Jonscher AK (1977) The ‘universal’ dielectric response. Nature 267:673–679CrossRef
35.
Zurück zum Zitat Almond DP, Bowen CR, Rees DAS (2006) Composite dielectrics and conductors: simulation, characterization and design. J Phys D Appl Phys 39:1295–1304CrossRef Almond DP, Bowen CR, Rees DAS (2006) Composite dielectrics and conductors: simulation, characterization and design. J Phys D Appl Phys 39:1295–1304CrossRef
36.
Zurück zum Zitat Bowen CR, Almond DP (2006) Modelling the ‘universal’ dielectric response in heterogeneous materials using microstructural electrical networks. Mater Sci Technol 22:719–724CrossRef Bowen CR, Almond DP (2006) Modelling the ‘universal’ dielectric response in heterogeneous materials using microstructural electrical networks. Mater Sci Technol 22:719–724CrossRef
37.
Zurück zum Zitat Barsoukov E, Macdonald JR (2005) Impedance spectroscopy: theory, experiment and applications. Wiley Interscience, HobokenCrossRef Barsoukov E, Macdonald JR (2005) Impedance spectroscopy: theory, experiment and applications. Wiley Interscience, HobokenCrossRef
38.
Zurück zum Zitat Aribou N, EL Bouazzaoui S, Achour ME, Brosseau C (2014) Investigating the dielectric properties of carbon black-epoxy composites. Spectrosc Lett 47:336–340CrossRef Aribou N, EL Bouazzaoui S, Achour ME, Brosseau C (2014) Investigating the dielectric properties of carbon black-epoxy composites. Spectrosc Lett 47:336–340CrossRef
39.
Zurück zum Zitat Gong S, Zhu ZH, Li Z (2017) Electron tunnelling and hopping effects on the temperature coefficient of resistance of carbon nanotube/polymer nanocomposites. Phys Chem Chem Phys 19:5113–5120CrossRef Gong S, Zhu ZH, Li Z (2017) Electron tunnelling and hopping effects on the temperature coefficient of resistance of carbon nanotube/polymer nanocomposites. Phys Chem Chem Phys 19:5113–5120CrossRef
Metadaten
Titel
Analyzing the frequency and temperature dependences of the ac conductivity and dielectric analysis of reduced graphene oxide/epoxy polymer nanocomposites
verfasst von
Y. Nioua
S. El Bouazzaoui
B. M. G. Melo
P. R. S. Prezas
M. P. F. Graça
M. E. Achour
L. C. Costa
C. Brosseau
Publikationsdatum
18.08.2017
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 24/2017
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-017-1462-2

Weitere Artikel der Ausgabe 24/2017

Journal of Materials Science 24/2017 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.