Skip to main content
Erschienen in: Journal of Materials Science 1/2018

31.08.2017 | Electronic materials

Magnetoresistance of graphite intercalated with cobalt

verfasst von: Iryna Ovsiienko, Lyudmila Matzui, Igor Berkutov, Il’gar Mirzoiev, Tetyana Len, Yuriy Prylutskyy, Oleksandr Prokopov, Uwe Ritter

Erschienen in: Journal of Materials Science | Ausgabe 1/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The results of experimental studies of magnetoresistance, resistivity and Hall coefficient of graphite intercalated with cobalt are presented. A highly oriented pyrolitic graphite was chosen as source for intercalation. A two-step method of synthesis was used for graphite intercalation compound (GIC) obtaining. The electro- and magnetoresistance and Hall coefficient were measured in temperature range of (1.6–293) K and magnetic field up to 5 T. The effects of asymmetric and linear relatively to magnetic field magnetoresistance have been revealed for GIC. It was shown that the linear magnetoresistance is not saturated with increasing magnetic field up to 5 T and is not dependent on temperature. The effect of linear magnetoresistance in GIC was explained within Abrikosov model of quantum magnetoresistance.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Xu R, Husmann A, Rosenbaum TF, Saboungi ML, Enderby JE, Littlewood PB (1997) Large magnetoresistance in non-magnetic silver chalcogenides. Nature 390:57–60CrossRef Xu R, Husmann A, Rosenbaum TF, Saboungi ML, Enderby JE, Littlewood PB (1997) Large magnetoresistance in non-magnetic silver chalcogenides. Nature 390:57–60CrossRef
2.
Zurück zum Zitat Lee M, Rosenbaum T, Saboungi M, Schnyders H (2002) Band-gap tuning and linear magnetoresistance in the silver chalcogenides. Phys Rev Lett 88:066602–066604CrossRef Lee M, Rosenbaum T, Saboungi M, Schnyders H (2002) Band-gap tuning and linear magnetoresistance in the silver chalcogenides. Phys Rev Lett 88:066602–066604CrossRef
3.
Zurück zum Zitat Kreutzbruck M, Lembke G, Mogwitz B, Korte C, Janek J (2009) Linear magnetoresistance in Ag2 + δSe thin films. Phys Rev B 79:035204–035205CrossRef Kreutzbruck M, Lembke G, Mogwitz B, Korte C, Janek J (2009) Linear magnetoresistance in Ag2 + δSe thin films. Phys Rev B 79:035204–035205CrossRef
4.
Zurück zum Zitat Branforda WR, Husmann A, Solin SA, Clowes SK, Zhang T, Bugoslavsky YV, Cohen LF (2005) Geometric manipulation of the high-field linear magnetoresistance in InSb epilayers on GaAs (001). Appl Phys Lett 86:202116-1–202116-3. doi:10.1063/1.1923755 Branforda WR, Husmann A, Solin SA, Clowes SK, Zhang T, Bugoslavsky YV, Cohen LF (2005) Geometric manipulation of the high-field linear magnetoresistance in InSb epilayers on GaAs (001). Appl Phys Lett 86:202116-1–202116-3. doi:10.​1063/​1.​1923755
5.
Zurück zum Zitat Johnson H, Bennett S, Barua R, Lewis L, Heiman D (2010) Universal properties of linear magnetoresis-tance in strongly disordered MnAs-GaAs composite semi-conductors. Phys Rev B 82(6):085202–085204CrossRef Johnson H, Bennett S, Barua R, Lewis L, Heiman D (2010) Universal properties of linear magnetoresis-tance in strongly disordered MnAs-GaAs composite semi-conductors. Phys Rev B 82(6):085202–085204CrossRef
6.
Zurück zum Zitat Bhoi D, Mandal P, Choudhury P, Pandya S, Ganesan V (2011) Quantum magnetoresistance of the PrFeAsO oxypnictide. Appl Phys Lett 98(17):172105-1–172105-3CrossRef Bhoi D, Mandal P, Choudhury P, Pandya S, Ganesan V (2011) Quantum magnetoresistance of the PrFeAsO oxypnictide. Appl Phys Lett 98(17):172105-1–172105-3CrossRef
7.
Zurück zum Zitat Wang XL, Du Y, Dou SX, Zhang C (2012) Room temperature giant and linear magnetoresistance in topological insulator Bi2Te3 nanosheets. Phys Rev Lett 108(26):266806-1–266806-5 Wang XL, Du Y, Dou SX, Zhang C (2012) Room temperature giant and linear magnetoresistance in topological insulator Bi2Te3 nanosheets. Phys Rev Lett 108(26):266806-1–266806-5
8.
Zurück zum Zitat Yan Y, Wang X, Yu DP, Liao ZM (2013) Large magnetoresistance in high mobility topological insulator Bi2Se3. Appl Phys Lett 103(2):033106-1–033106-4CrossRef Yan Y, Wang X, Yu DP, Liao ZM (2013) Large magnetoresistance in high mobility topological insulator Bi2Se3. Appl Phys Lett 103(2):033106-1–033106-4CrossRef
9.
Zurück zum Zitat Singh S, Gopal RK, Sarkar J, Mitra C (2015) Quantum and classical contributions to linear magnetoresistance in topological insulator thin films. In International Conference on Condensed Matter and Applied Physics (ICC 2015) AIP Conf. Proc. 1728 pp. 020557-1–020557-4 Singh S, Gopal RK, Sarkar J, Mitra C (2015) Quantum and classical contributions to linear magnetoresistance in topological insulator thin films. In International Conference on Condensed Matter and Applied Physics (ICC 2015) AIP Conf. Proc. 1728 pp. 020557-1–020557-4
10.
Zurück zum Zitat Hu J, Parish MM, Rosenbaum TF (2007) Nonsaturating magnetoresistance of inhomogeneous conductors: comparison of experiment and simulation. Phys Rev B 75(21):214203-1–214203-9CrossRef Hu J, Parish MM, Rosenbaum TF (2007) Nonsaturating magnetoresistance of inhomogeneous conductors: comparison of experiment and simulation. Phys Rev B 75(21):214203-1–214203-9CrossRef
11.
Zurück zum Zitat Abrikosov A (1998) Quantum magnetoresistance. Phys Rev B 58(5):2788–2794CrossRef Abrikosov A (1998) Quantum magnetoresistance. Phys Rev B 58(5):2788–2794CrossRef
12.
Zurück zum Zitat Friedman AL, Tedesco JL, Campbell PM, Culbertson JC, Aifer E, Perkins FK, Myers-Ward RL, Hite JK et al (2010) Quantum linear magnetoresistance in multilayer epitaxial graphene. Nano Lett 10:3962–3965CrossRef Friedman AL, Tedesco JL, Campbell PM, Culbertson JC, Aifer E, Perkins FK, Myers-Ward RL, Hite JK et al (2010) Quantum linear magnetoresistance in multilayer epitaxial graphene. Nano Lett 10:3962–3965CrossRef
13.
Zurück zum Zitat Singh RS, Wang X, Chen W, Wee ATS (2012) Large room-temperature quantum linear magnetoresistance in multilayered epitaxial graphene: evidence for two-dimensional magnetotransport. Appl Phys Lett 101(18):183105-1–183105-5 Singh RS, Wang X, Chen W, Wee ATS (2012) Large room-temperature quantum linear magnetoresistance in multilayered epitaxial graphene: evidence for two-dimensional magnetotransport. Appl Phys Lett 101(18):183105-1–183105-5
14.
Zurück zum Zitat Gryglas-Borysiewicz M, Jouault B, Tworzydło J, Lewinska S, Strupinski W, Baranowski JM (2009) Transport properties of disordered graphene layers. Acta Phys Polonica A 116(5):838–840CrossRef Gryglas-Borysiewicz M, Jouault B, Tworzydło J, Lewinska S, Strupinski W, Baranowski JM (2009) Transport properties of disordered graphene layers. Acta Phys Polonica A 116(5):838–840CrossRef
15.
Zurück zum Zitat Kisslinger F, Ott C, Heide C, Kampert E, Butz B, Spiecker E, Shallcross S, Weber HB (2015) Linear magnetoresistance in mosaic-like bilayer graphene. Nat Phys Lett 11:650–653CrossRef Kisslinger F, Ott C, Heide C, Kampert E, Butz B, Spiecker E, Shallcross S, Weber HB (2015) Linear magnetoresistance in mosaic-like bilayer graphene. Nat Phys Lett 11:650–653CrossRef
16.
Zurück zum Zitat Zhang X, Xue QZ, Zhu DD (2004) Positive and negative linear magnetoresistance of graphite. Phys Lett A 320:471–477CrossRef Zhang X, Xue QZ, Zhu DD (2004) Positive and negative linear magnetoresistance of graphite. Phys Lett A 320:471–477CrossRef
17.
Zurück zum Zitat Chacon-Torres JC, Wirtz L, Pichler T (2014) Raman spectroscopy of graphite intercalation compounds: charge transfer, strain, and electron-phonon coupling in graphene layers. Phys St Sol B 251(11):2337–2355CrossRef Chacon-Torres JC, Wirtz L, Pichler T (2014) Raman spectroscopy of graphite intercalation compounds: charge transfer, strain, and electron-phonon coupling in graphene layers. Phys St Sol B 251(11):2337–2355CrossRef
18.
Zurück zum Zitat Shuvayev A, Helmer B, Lyubeznova T, Mirmilstein A, Kvacheva L, Novikov Yu, Volpin M (1989) EXAFS study of graphite intercalation compounds with transition metals (Fe, Ni). J Phys 50:1145–1151CrossRef Shuvayev A, Helmer B, Lyubeznova T, Mirmilstein A, Kvacheva L, Novikov Yu, Volpin M (1989) EXAFS study of graphite intercalation compounds with transition metals (Fe, Ni). J Phys 50:1145–1151CrossRef
19.
Zurück zum Zitat Touzain F, N’Guessan G, Bonnin D, Kaiser P, Chouteau G (1996) Electrochemically reduced cobalt-graphite intercalation compound. Synth Met 79(3):241–251CrossRef Touzain F, N’Guessan G, Bonnin D, Kaiser P, Chouteau G (1996) Electrochemically reduced cobalt-graphite intercalation compound. Synth Met 79(3):241–251CrossRef
20.
Zurück zum Zitat Korolovych VF, Nedyak SP, Moroz KO, Prylutskyy YuI, Scharff P, Ritter U (2013) Compressibility of water containing single-walled carbon nanotubes. Fullerenes, Nanotubes, Carbon Nanostruct 21(1):24–30CrossRef Korolovych VF, Nedyak SP, Moroz KO, Prylutskyy YuI, Scharff P, Ritter U (2013) Compressibility of water containing single-walled carbon nanotubes. Fullerenes, Nanotubes, Carbon Nanostruct 21(1):24–30CrossRef
21.
Zurück zum Zitat Korolovych VF, Bulavin LA, Prylutskyy YuI, Khrapatiy SV, Tsierkezos N, Ritter U (2014) Influence of single-walled carbon nanotubes on the thermal expansion of water. Int J Thermophys 35(1):19–31CrossRef Korolovych VF, Bulavin LA, Prylutskyy YuI, Khrapatiy SV, Tsierkezos N, Ritter U (2014) Influence of single-walled carbon nanotubes on the thermal expansion of water. Int J Thermophys 35(1):19–31CrossRef
22.
Zurück zum Zitat Buchelnikov AS, Voronin DP, Kostjukov VV, Deryabina TA, Khrapatiy SV, Prylutskyy YuI, Ritter U, Evstigneev MP (2014) Complexation of aromatic drugs with single-walled carbon nanotubes. J Nanopart Res 16(7):2472-1–2472-14CrossRef Buchelnikov AS, Voronin DP, Kostjukov VV, Deryabina TA, Khrapatiy SV, Prylutskyy YuI, Ritter U, Evstigneev MP (2014) Complexation of aromatic drugs with single-walled carbon nanotubes. J Nanopart Res 16(7):2472-1–2472-14CrossRef
23.
Zurück zum Zitat Radchenko NV, Prylutskyy YI, Shapoval LM, Sagach VF, Davydovska TL, Dmitrenko OV, Stepanenko LG, Pobigailo LS, Schütze C, Ritter U (2013) Impact of single-walled carbon nanotubes on the medullary neurons in spontaneously hypertensive rats. Mat-Wiss U Werkstofftech 44(2–3):171–175CrossRef Radchenko NV, Prylutskyy YI, Shapoval LM, Sagach VF, Davydovska TL, Dmitrenko OV, Stepanenko LG, Pobigailo LS, Schütze C, Ritter U (2013) Impact of single-walled carbon nanotubes on the medullary neurons in spontaneously hypertensive rats. Mat-Wiss U Werkstofftech 44(2–3):171–175CrossRef
24.
Zurück zum Zitat Minchenko OH, Tsymbal DO, Minchenko DO, Prylutska SV, Cherepanov VV, Prylutskyy YI, Tsierkezos NG (2016) Single-walled carbon nanotubes affect the expression of the CCND2 gene in human U87 glioma cells. Mat-Wiss U Werkstofftech 47(2–3):180–188CrossRef Minchenko OH, Tsymbal DO, Minchenko DO, Prylutska SV, Cherepanov VV, Prylutskyy YI, Tsierkezos NG (2016) Single-walled carbon nanotubes affect the expression of the CCND2 gene in human U87 glioma cells. Mat-Wiss U Werkstofftech 47(2–3):180–188CrossRef
25.
Zurück zum Zitat Shapoval LM, Prylutska SV, Kotsyuruba AV, Dmitrenko OV, Prylutskyy YuI, Sagach VF, Ritter U (2016) Single-walled carbon nanotubes modulate cardiovascular control in rats. Mat-Wiss U Werkstofftech 47(2–3):208–215CrossRef Shapoval LM, Prylutska SV, Kotsyuruba AV, Dmitrenko OV, Prylutskyy YuI, Sagach VF, Ritter U (2016) Single-walled carbon nanotubes modulate cardiovascular control in rats. Mat-Wiss U Werkstofftech 47(2–3):208–215CrossRef
26.
Zurück zum Zitat Mykhailenko OV, Prylutskyy YuI, Matsuy DV, Strzhemechny YM, Le Normand F, Ritter U, Scharff P (2010) Structure and thermal stability of Co- and Fe-intercalated double graphene layers. J Comput Theor Nanosci 7(6):996–999CrossRef Mykhailenko OV, Prylutskyy YuI, Matsuy DV, Strzhemechny YM, Le Normand F, Ritter U, Scharff P (2010) Structure and thermal stability of Co- and Fe-intercalated double graphene layers. J Comput Theor Nanosci 7(6):996–999CrossRef
27.
Zurück zum Zitat Radchenko TM, Tatarenko VA, Sagalianov IYu, Prylutskyy YuI, Szroeder P, Biniak S (2016) On adatomic-configuration-mediated correlation between electrotransport and electrochemical properties of graphene. Carbon 101:37–48CrossRef Radchenko TM, Tatarenko VA, Sagalianov IYu, Prylutskyy YuI, Szroeder P, Biniak S (2016) On adatomic-configuration-mediated correlation between electrotransport and electrochemical properties of graphene. Carbon 101:37–48CrossRef
28.
Zurück zum Zitat Mykhailenko OV, Prylutskyy YuI, Кomarov IV, Strungar AV (2017) Structure and thermal stability of Co- and Fe-intercalated double silicene layers. Nanoscale Res Lett 12:110-1–110-5CrossRef Mykhailenko OV, Prylutskyy YuI, Кomarov IV, Strungar AV (2017) Structure and thermal stability of Co- and Fe-intercalated double silicene layers. Nanoscale Res Lett 12:110-1–110-5CrossRef
29.
Zurück zum Zitat Matsui D, Prylutskyy Yu, Matzui L, Zakharenko N, Normand F, Derory A (2010) Magnetic properties of cobalt-carbon nanocomposites. Phys St Sol C 7:1264–1268 Matsui D, Prylutskyy Yu, Matzui L, Zakharenko N, Normand F, Derory A (2010) Magnetic properties of cobalt-carbon nanocomposites. Phys St Sol C 7:1264–1268
30.
Zurück zum Zitat Matzui L, Vovchenko L, Dvorkina I (1995) Transport properties of acceptor graphite intercalated compounds. Ukr J Phys 40(1–2):107–111 Matzui L, Vovchenko L, Dvorkina I (1995) Transport properties of acceptor graphite intercalated compounds. Ukr J Phys 40(1–2):107–111
31.
Zurück zum Zitat Sugihara K, Matsubara K, Suzuki S, Suzuki M (1998) Theory of the a- and c- axis resistivity and magnetoresistance in MoCl5 graphite intercalation compounds. J Phys Soc Jap 67(12):4169–4177CrossRef Sugihara K, Matsubara K, Suzuki S, Suzuki M (1998) Theory of the a- and c- axis resistivity and magnetoresistance in MoCl5 graphite intercalation compounds. J Phys Soc Jap 67(12):4169–4177CrossRef
32.
Zurück zum Zitat Matsubara K, Sugihara K, Suzuki I, Suzuki M (1999) A- and c-axis resistivity and magnetoresistance in MoCl5 graphite intercalation compounds. J Phys Cond Matt 11:3149–3160CrossRef Matsubara K, Sugihara K, Suzuki I, Suzuki M (1999) A- and c-axis resistivity and magnetoresistance in MoCl5 graphite intercalation compounds. J Phys Cond Matt 11:3149–3160CrossRef
33.
Zurück zum Zitat Matsui D, Ovsiyenko I, Lazarenko O, Prylutskyy Yu, Matsui V (2011) Abnormal electron transport in graphite intercalation compounds with iron. Mol Cryst Liq Cryst 535(1):64–73CrossRef Matsui D, Ovsiyenko I, Lazarenko O, Prylutskyy Yu, Matsui V (2011) Abnormal electron transport in graphite intercalation compounds with iron. Mol Cryst Liq Cryst 535(1):64–73CrossRef
34.
Zurück zum Zitat Piraux L, Bayot V, Dresselhaus M (1992) Influence of magnetic fields on the two-dimensional electron transport in weakly desordered fluorine-intercalated graphite fibers. Phys Rev B 45(24):14315–14320CrossRef Piraux L, Bayot V, Dresselhaus M (1992) Influence of magnetic fields on the two-dimensional electron transport in weakly desordered fluorine-intercalated graphite fibers. Phys Rev B 45(24):14315–14320CrossRef
35.
Zurück zum Zitat Matzui L, Vovchenko L, Dvorkina I (1994) Low-temperature thermopower in disordered graphite intercalated with SbCl5. Low Temp Phys 20(5):463–468 Matzui L, Vovchenko L, Dvorkina I (1994) Low-temperature thermopower in disordered graphite intercalated with SbCl5. Low Temp Phys 20(5):463–468
36.
Zurück zum Zitat Matsui D, Prylutskyy Yu, Matzuy L, Normand F, Ritter U, Scharff P (2008) Transverse and longitudinal magnetoresistance in graphite intercalated by Co. Physica E 40(7):2630–2634CrossRef Matsui D, Prylutskyy Yu, Matzuy L, Normand F, Ritter U, Scharff P (2008) Transverse and longitudinal magnetoresistance in graphite intercalated by Co. Physica E 40(7):2630–2634CrossRef
37.
Zurück zum Zitat Grechnev GE, Lyogenkaya AA, Kolesnichenko YA, Prylutskyy YI, Hayn R (2014) Electronic structure and magnetic properties of graphite intercalated with 3d-metals. Low Temp Phys 40(5):580–584CrossRef Grechnev GE, Lyogenkaya AA, Kolesnichenko YA, Prylutskyy YI, Hayn R (2014) Electronic structure and magnetic properties of graphite intercalated with 3d-metals. Low Temp Phys 40(5):580–584CrossRef
38.
Zurück zum Zitat Tkachuk V, Ovsiyenko I, Matzui L, Len T, Prylutskyy Yu, Brusylovets O, Berkutov I, Mirzoiev I et al (2016) Asymmetric magnetoresistance in the graphite intercalation compounds with cobalt. Mol Cryst Liq Cryst 639(1):137–150CrossRef Tkachuk V, Ovsiyenko I, Matzui L, Len T, Prylutskyy Yu, Brusylovets O, Berkutov I, Mirzoiev I et al (2016) Asymmetric magnetoresistance in the graphite intercalation compounds with cobalt. Mol Cryst Liq Cryst 639(1):137–150CrossRef
39.
Zurück zum Zitat Segal O, Shaya O, Karpovski M, Gerber A (2009) Asymmetric field dependence of magnetoresistance in magnetic films. Phys Rev B 79(14):144434–144436CrossRef Segal O, Shaya O, Karpovski M, Gerber A (2009) Asymmetric field dependence of magnetoresistance in magnetic films. Phys Rev B 79(14):144434–144436CrossRef
40.
Zurück zum Zitat Cheng X, Urazhdin S, Tchernyshyov O, Chien C, Nikitenko V, Shapiro A, Shull R (2004) Antisymmetric magnetoresistance in magnetic multilayers with perpendicular anisotropy. Phys Rev Lett 94:017203–017204CrossRef Cheng X, Urazhdin S, Tchernyshyov O, Chien C, Nikitenko V, Shapiro A, Shull R (2004) Antisymmetric magnetoresistance in magnetic multilayers with perpendicular anisotropy. Phys Rev Lett 94:017203–017204CrossRef
41.
Zurück zum Zitat Xiang G, Holleitner A, Sheu B, Mendoza F, Maksimov O, Stone M, Schiffer P, Awschalom D, Samarth N (2005) Magnetoresistance anomalies in (Ga, Mn)As epilayers with perpendicular magnetic anisotropy. Phys Rev B 71(24):241307-1–241307-4CrossRef Xiang G, Holleitner A, Sheu B, Mendoza F, Maksimov O, Stone M, Schiffer P, Awschalom D, Samarth N (2005) Magnetoresistance anomalies in (Ga, Mn)As epilayers with perpendicular magnetic anisotropy. Phys Rev B 71(24):241307-1–241307-4CrossRef
42.
Zurück zum Zitat Wang X-L, Dou SX, Zhang C (2010) Zero-gap materials for future spintronics, electronics and optics. NPG Asia Mater 2(1):31–38CrossRef Wang X-L, Dou SX, Zhang C (2010) Zero-gap materials for future spintronics, electronics and optics. NPG Asia Mater 2(1):31–38CrossRef
43.
Zurück zum Zitat Abrikosov AA (2000) Quantum linear magnetoresistance. Europhys Lett 49(6):789–793CrossRef Abrikosov AA (2000) Quantum linear magnetoresistance. Europhys Lett 49(6):789–793CrossRef
44.
Zurück zum Zitat Abrikosov A (1999) Quantum magnetoresistance of layered semimetals. Phys Rev B 60(6):4231–4234CrossRef Abrikosov A (1999) Quantum magnetoresistance of layered semimetals. Phys Rev B 60(6):4231–4234CrossRef
45.
Zurück zum Zitat Blinowski J, Rigaux C, Nguyen H (1980) Band structure model and dynamical dielectric function in lowest stages of graphite acceptor compounds. J Phys 41(1):47–58CrossRef Blinowski J, Rigaux C, Nguyen H (1980) Band structure model and dynamical dielectric function in lowest stages of graphite acceptor compounds. J Phys 41(1):47–58CrossRef
46.
Zurück zum Zitat Blinowski J, Rigaux C (1980) Electronic properties of graphite intercalation compounds. J Phys 41(7):667–674CrossRef Blinowski J, Rigaux C (1980) Electronic properties of graphite intercalation compounds. J Phys 41(7):667–674CrossRef
47.
Zurück zum Zitat Hau NH, Blinowski J, Rigaux C (1981) Intervalence transitions in graphite acceptor compounds. Synth Met 3:99–105CrossRef Hau NH, Blinowski J, Rigaux C (1981) Intervalence transitions in graphite acceptor compounds. Synth Met 3:99–105CrossRef
48.
Zurück zum Zitat Matzui LYu, Ovsienko IV, Vovchenko LL (2000) Phonon drag in GICs based on disordered graphite. Mol Cryst Liq Cryst 340(1):319–324CrossRef Matzui LYu, Ovsienko IV, Vovchenko LL (2000) Phonon drag in GICs based on disordered graphite. Mol Cryst Liq Cryst 340(1):319–324CrossRef
49.
Zurück zum Zitat Buryakov T, Romanenko A, Anikeeva O, Okotrub A, Yudanov N, Kotosonov A (2007) Electrophysical properties of bromine-intercalated low-dimensional carbon structures. Low Temp Phys 33(2):268–271CrossRef Buryakov T, Romanenko A, Anikeeva O, Okotrub A, Yudanov N, Kotosonov A (2007) Electrophysical properties of bromine-intercalated low-dimensional carbon structures. Low Temp Phys 33(2):268–271CrossRef
Metadaten
Titel
Magnetoresistance of graphite intercalated with cobalt
verfasst von
Iryna Ovsiienko
Lyudmila Matzui
Igor Berkutov
Il’gar Mirzoiev
Tetyana Len
Yuriy Prylutskyy
Oleksandr Prokopov
Uwe Ritter
Publikationsdatum
31.08.2017
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 1/2018
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-017-1511-x

Weitere Artikel der Ausgabe 1/2018

Journal of Materials Science 1/2018 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.