Skip to main content
Erschienen in: Journal of Materials Science 2/2019

25.09.2018 | Metals

Structure and growth of core–shell nanoprecipitates in Al–Er–Sc–Zr–V–Si high-temperature alloys

verfasst von: Wahaz Nasim, Sadegh Yazdi, Ruben Santamarta, Jahanzaib Malik, Dinc Erdeniz, Bilal Mansoor, David N. Seidman, David C. Dunand, Ibrahim Karaman

Erschienen in: Journal of Materials Science | Ausgabe 2/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Lightweight Sc-containing aluminum alloys exhibit superior mechanical performance at high temperatures due to core–shell, L12-ordered trialuminide nanoprecipitates. In this study, the structure of these nanoprecipitates was studied, using different transmission electron microscopy (TEM) techniques, for an Al–Er–Sc–Zr–V–Si alloy that was subjected to a two-stage overaging heat treatment. Energy-dispersive X-ray spectroscopy of the spherical Al3(Sc, Zr, Er ,V) nanoprecipitates revealed a core–shell structure with an Sc- and Er-enriched core and a Zr-enriched shell, without a clear V outer shell. This structure is stable up to 72% of the absolute melting temperature of Al for extended periods of time. High-angle annular dark-field scanning TEM was used to image the {100} planes of the nanoprecipitates, demonstrating a homogeneous L12-ordered superlattice structure for the entire nanoprecipitates, despite the variations in the concentrations of solute atoms within the unit cells. A possible growth path and compositional trajectory for these nanoprecipitates was proposed using high-resolution TEM observations, where different rod-like structural defects were detected, which are considered to be precursors to the spherical L12-ordered nanoprecipitates. It is also hypothesized that the structural defects could consist of segregated Si; however, this was not possible to verify with HAADF-STEM because of the small differences in Al and Si atomic numbers. The results herein allow a better understanding of how the Al–Sc alloys’ core–shell nanoprecipitates form and evolve temporally, thereby providing a better physical picture for future atomistic structural mappings and simulations.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Fuller CB, Seidman DN, Dunand DC (1999) Creep properties of coarse-grained Al(Sc) alloys at 300 °C. Scr Mater 40:691–696CrossRef Fuller CB, Seidman DN, Dunand DC (1999) Creep properties of coarse-grained Al(Sc) alloys at 300 °C. Scr Mater 40:691–696CrossRef
2.
Zurück zum Zitat Novotny GM, Ardell AJ (2001) Precipitation of AlSc in binary Al–Sc alloys. Mater Sci Eng, A 318:144–154CrossRef Novotny GM, Ardell AJ (2001) Precipitation of AlSc in binary Al–Sc alloys. Mater Sci Eng, A 318:144–154CrossRef
3.
Zurück zum Zitat Seidman DN, Marquis EA, Dunand DC (2002) Precipitation strengthening at ambient and elevated temperatures of heat-treatable Al(Sc) alloys. Acta Mater 50:4021–4035CrossRef Seidman DN, Marquis EA, Dunand DC (2002) Precipitation strengthening at ambient and elevated temperatures of heat-treatable Al(Sc) alloys. Acta Mater 50:4021–4035CrossRef
4.
Zurück zum Zitat Marquis EA, Seidman DN (2001) Nanoscale structural evolution of Al3Sc precipitates in Al(Sc) alloys. Acta Mater 49:1909–1919CrossRef Marquis EA, Seidman DN (2001) Nanoscale structural evolution of Al3Sc precipitates in Al(Sc) alloys. Acta Mater 49:1909–1919CrossRef
5.
Zurück zum Zitat Fuller CB, Seidman DN, Dunand DC (2003) Mechanical properties of Al(Sc, Zr) alloys at ambient and elevated temperatures. Acta Mater 51:4803–4814CrossRef Fuller CB, Seidman DN, Dunand DC (2003) Mechanical properties of Al(Sc, Zr) alloys at ambient and elevated temperatures. Acta Mater 51:4803–4814CrossRef
6.
Zurück zum Zitat Wen SP, Gao KY, Li Y, Huang H, Nie ZR (2011) Synergetic effect of Er and Zr on the precipitation hardening of Al–Er–Zr alloy. Scr Mater 65:592–595CrossRef Wen SP, Gao KY, Li Y, Huang H, Nie ZR (2011) Synergetic effect of Er and Zr on the precipitation hardening of Al–Er–Zr alloy. Scr Mater 65:592–595CrossRef
7.
Zurück zum Zitat Fuller CB, Murray JL, Seidman DN (2005) Temporal evolution of the nanostructure of Al(Sc, Zr) alloys: part I—Chemical compositions of Al(Sc, Zr) precipitates. Acta Mater 53:5401–5413CrossRef Fuller CB, Murray JL, Seidman DN (2005) Temporal evolution of the nanostructure of Al(Sc, Zr) alloys: part I—Chemical compositions of Al(Sc, Zr) precipitates. Acta Mater 53:5401–5413CrossRef
8.
Zurück zum Zitat Booth-Morrison C, Mao Z, Diaz M, Dunand DC, Wolverton C, Seidman DN (2012) Role of silicon in accelerating the nucleation of Al(Sc, Zr) precipitates in dilute Al–Sc–Zr alloys. Acta Mater 60:4740–4752CrossRef Booth-Morrison C, Mao Z, Diaz M, Dunand DC, Wolverton C, Seidman DN (2012) Role of silicon in accelerating the nucleation of Al(Sc, Zr) precipitates in dilute Al–Sc–Zr alloys. Acta Mater 60:4740–4752CrossRef
9.
Zurück zum Zitat Booth-Morrison C, Seidman DN, Dunand DC (2012) Effect of Er additions on ambient and high-temperature strength of precipitation-strengthened Al–Zr–Sc–Si alloys. Acta Mater 60:3643–3654CrossRef Booth-Morrison C, Seidman DN, Dunand DC (2012) Effect of Er additions on ambient and high-temperature strength of precipitation-strengthened Al–Zr–Sc–Si alloys. Acta Mater 60:3643–3654CrossRef
10.
Zurück zum Zitat Erdeniz D, Nasim W, Malik J, Yost AR, Park S, De Luca A, Vo NQ, Karaman I, Mansoor B, Seidman DN, Dunand DC (2017) Effect of vanadium micro-alloying on the microstructural evolution and creep behavior of Al–Er–Sc–Zr–Si alloys. Acta Mater 124:501–512CrossRef Erdeniz D, Nasim W, Malik J, Yost AR, Park S, De Luca A, Vo NQ, Karaman I, Mansoor B, Seidman DN, Dunand DC (2017) Effect of vanadium micro-alloying on the microstructural evolution and creep behavior of Al–Er–Sc–Zr–Si alloys. Acta Mater 124:501–512CrossRef
11.
Zurück zum Zitat Lohar AK, Mondal B, Rafaja D, Klemm V, Panigrahi SC (2009) Microstructural investigations on as-cast and annealed Al–Sc and Al–Sc–Zr alloys. Mater Charact 60:1387–1394CrossRef Lohar AK, Mondal B, Rafaja D, Klemm V, Panigrahi SC (2009) Microstructural investigations on as-cast and annealed Al–Sc and Al–Sc–Zr alloys. Mater Charact 60:1387–1394CrossRef
12.
Zurück zum Zitat Monachon C, Dunand DC, Seidman DN (2010) Atomic-scale characterization of aluminum-based multi-shell nanoparticles created by solid-state synthesis. Small 6(16):1728–1731CrossRef Monachon C, Dunand DC, Seidman DN (2010) Atomic-scale characterization of aluminum-based multi-shell nanoparticles created by solid-state synthesis. Small 6(16):1728–1731CrossRef
13.
Zurück zum Zitat Monachon C, Krug ME, Seidman DN, Dunand DC (2011) Chemically and structurally complex nanoscale core/double-shell nanoscale precipitates in an Al–Li–Sc–Yb alloy. Acta Mater 59:3398–3409CrossRef Monachon C, Krug ME, Seidman DN, Dunand DC (2011) Chemically and structurally complex nanoscale core/double-shell nanoscale precipitates in an Al–Li–Sc–Yb alloy. Acta Mater 59:3398–3409CrossRef
14.
Zurück zum Zitat Marquis EA, Seidman DN (2002) A subnanoscale study of segregation at Al/Al3Sc interfaces. Microsc Microanal 8:1100–1101 Marquis EA, Seidman DN (2002) A subnanoscale study of segregation at Al/Al3Sc interfaces. Microsc Microanal 8:1100–1101
15.
Zurück zum Zitat Marquis EA, Seidman DN (2004) Nanostructural evolution of Al3Sc precipitates in an Al–Sc–Mg alloy by three-dimensional Atom-Probe microscopy. Surf Interface Anal 36:559–563CrossRef Marquis EA, Seidman DN (2004) Nanostructural evolution of Al3Sc precipitates in an Al–Sc–Mg alloy by three-dimensional Atom-Probe microscopy. Surf Interface Anal 36:559–563CrossRef
16.
Zurück zum Zitat Marquis EA, Seidman DN (2005) Coarsening kinetics of nanoscale Al3Sc precipitates in an Al–Mg–Sc alloy. Acta Mater 53:4259–4268CrossRef Marquis EA, Seidman DN (2005) Coarsening kinetics of nanoscale Al3Sc precipitates in an Al–Mg–Sc alloy. Acta Mater 53:4259–4268CrossRef
17.
Zurück zum Zitat Marquis EA, Riesterer JL, Seidman DN, Larson DJ (2006) Analysis of Mg segregation at Al/Al3Sc interfaces by atom-probe tomography. Microsc Microanal 12:914CrossRef Marquis EA, Riesterer JL, Seidman DN, Larson DJ (2006) Analysis of Mg segregation at Al/Al3Sc interfaces by atom-probe tomography. Microsc Microanal 12:914CrossRef
18.
Zurück zum Zitat Fallah V, Korinek A, Ofori-Opoku N, Provatas N, Esmaeili S (2013) Atomistic investigation of clustering phenomenon in the Al–Cu system: three-dimensional phase-field crystal simulation and HRTEM/HTEM characterization. Acta Mater 61:6372–6386CrossRef Fallah V, Korinek A, Ofori-Opoku N, Provatas N, Esmaeili S (2013) Atomistic investigation of clustering phenomenon in the Al–Cu system: three-dimensional phase-field crystal simulation and HRTEM/HTEM characterization. Acta Mater 61:6372–6386CrossRef
19.
Zurück zum Zitat Berg LK, Gjønnes J, Hansen V, Li XZ, Knutson-Wedel M, Waterloo G, Schryvers D, Wallenberg LR (2001) GP-zones in Al–Zn–Mg alloys and their role in artificial aging. Acta Mater 49:3443–3451CrossRef Berg LK, Gjønnes J, Hansen V, Li XZ, Knutson-Wedel M, Waterloo G, Schryvers D, Wallenberg LR (2001) GP-zones in Al–Zn–Mg alloys and their role in artificial aging. Acta Mater 49:3443–3451CrossRef
20.
Zurück zum Zitat Deng Y, Yin Z, Zhao K, Duan J, He Z (2012) Effects of Sc and Zr microalloying additions on the microstructure and mechanical properties of new Al–Zn–Mg alloys. J Alloys Compd 530:71–80CrossRef Deng Y, Yin Z, Zhao K, Duan J, He Z (2012) Effects of Sc and Zr microalloying additions on the microstructure and mechanical properties of new Al–Zn–Mg alloys. J Alloys Compd 530:71–80CrossRef
21.
Zurück zum Zitat Marump T, Fujikawa S, Hirono K (1973) Diffusion of zirconium in aluminum. J Jpn Inst Met 23:17CrossRef Marump T, Fujikawa S, Hirono K (1973) Diffusion of zirconium in aluminum. J Jpn Inst Met 23:17CrossRef
22.
Zurück zum Zitat Fujikawa S (1997) Impurity diffusion of scandium in aluminium. Diffus Def Data A 115:143–147 Fujikawa S (1997) Impurity diffusion of scandium in aluminium. Diffus Def Data A 115:143–147
23.
Zurück zum Zitat van Dalen ME, Karnesky RA, Cabotaje JR, Dunand DC, Seidman DN (2009) Erbium and ytterbium solubilities and diffusivities in aluminum as determined by nanoscale characterization of precipitates. Acta Mater 57:4081CrossRef van Dalen ME, Karnesky RA, Cabotaje JR, Dunand DC, Seidman DN (2009) Erbium and ytterbium solubilities and diffusivities in aluminum as determined by nanoscale characterization of precipitates. Acta Mater 57:4081CrossRef
24.
Zurück zum Zitat Karnesky RA, Dunand DC, Seidman DN (2009) Evolution of nanoscale precipitates in Al microalloyed with Sc and Er. Acta Mater 57:4022–4031CrossRef Karnesky RA, Dunand DC, Seidman DN (2009) Evolution of nanoscale precipitates in Al microalloyed with Sc and Er. Acta Mater 57:4022–4031CrossRef
25.
Zurück zum Zitat Knipling KE, Dunand DC, Seidman DN (2006) Criteria for developing castable, creep-resistant aluminum-based alloys—a review. Int J Mater Res 97:246–265 Knipling KE, Dunand DC, Seidman DN (2006) Criteria for developing castable, creep-resistant aluminum-based alloys—a review. Int J Mater Res 97:246–265
26.
Zurück zum Zitat Hong T, Watson-Yang TJ, Freeman AJ, Oguchi T, Xu J (1990) Crystal structure, phase stability, and electronic structure of Ti–Al intermetallics. Phys Rev B, Am Phys Soc 41:12462–12467CrossRef Hong T, Watson-Yang TJ, Freeman AJ, Oguchi T, Xu J (1990) Crystal structure, phase stability, and electronic structure of Ti–Al intermetallics. Phys Rev B, Am Phys Soc 41:12462–12467CrossRef
27.
Zurück zum Zitat Lupini AR, Pennycook SJ (2003) Localization in elastic and inelastic scattering. Ultramicroscopy 96:313–322CrossRef Lupini AR, Pennycook SJ (2003) Localization in elastic and inelastic scattering. Ultramicroscopy 96:313–322CrossRef
28.
Zurück zum Zitat Van den Broek W, Rosenauer A, Goris B, Martinez GT, Bals S, Van Aert S, Van Dyck D (2012) Ultramicroscopy 116:8–12CrossRef Van den Broek W, Rosenauer A, Goris B, Martinez GT, Bals S, Van Aert S, Van Dyck D (2012) Ultramicroscopy 116:8–12CrossRef
29.
Zurück zum Zitat LeClaire AD, Lidiard AB (1956) Correlation effects in diffusion in crystals. Philos Mag 1(1956):518–527CrossRef LeClaire AD, Lidiard AB (1956) Correlation effects in diffusion in crystals. Philos Mag 1(1956):518–527CrossRef
30.
Zurück zum Zitat Alnatt AR, Lidiard AB (1993) Atomic transport in solids, vol 99. Cambridge University Press, Cambridge, p 787CrossRef Alnatt AR, Lidiard AB (1993) Atomic transport in solids, vol 99. Cambridge University Press, Cambridge, p 787CrossRef
31.
Zurück zum Zitat Starink MJ (2004) The analysis of Al-based alloys by calorimetry: quantitative analysis of reactions and reaction kinetics. Int Mater Rev 49:191–226CrossRef Starink MJ (2004) The analysis of Al-based alloys by calorimetry: quantitative analysis of reactions and reaction kinetics. Int Mater Rev 49:191–226CrossRef
32.
Zurück zum Zitat Koch S, Abad MD, Renhart S, Antrekowitsch H, Hosemann P (2015) A high temperature nanoindentation study of Al–Cu wrought alloy. Mater Sci Eng, A 644:218–224CrossRef Koch S, Abad MD, Renhart S, Antrekowitsch H, Hosemann P (2015) A high temperature nanoindentation study of Al–Cu wrought alloy. Mater Sci Eng, A 644:218–224CrossRef
33.
Zurück zum Zitat Smith GW (1998) Precipitation kinetics in solutionized aluminum alloy 2124: determination by scanning and isothermal calorimetry. Thermochim Acta 317:7–23CrossRef Smith GW (1998) Precipitation kinetics in solutionized aluminum alloy 2124: determination by scanning and isothermal calorimetry. Thermochim Acta 317:7–23CrossRef
34.
Zurück zum Zitat Kaiser MS (2013) Thermal analysis and kinetics of the precipitation in wrought Al–Mg, Al–Mg–Sc and Al–Mg–Sc–Me (Me = Zr, Ti) alloys. Iran J Mater Sci Eng 10:1–11 Kaiser MS (2013) Thermal analysis and kinetics of the precipitation in wrought Al–Mg, Al–Mg–Sc and Al–Mg–Sc–Me (Me = Zr, Ti) alloys. Iran J Mater Sci Eng 10:1–11
35.
Zurück zum Zitat van Dalen ME, Karnesky RA, Cabotaje JR, Dunand DC, Seidman DN (2009) Erbium and ytterbium solubilities and diffusivities in aluminum as determined by nanoscale characterization of precipitates. Acta Mater 57:4081–4089CrossRef van Dalen ME, Karnesky RA, Cabotaje JR, Dunand DC, Seidman DN (2009) Erbium and ytterbium solubilities and diffusivities in aluminum as determined by nanoscale characterization of precipitates. Acta Mater 57:4081–4089CrossRef
36.
Zurück zum Zitat Pennycook SJ (1992) Z-contrast transmission electron microscopy: direct atomic imaging of materials. Annu Rev Mater Sci 22:171CrossRef Pennycook SJ (1992) Z-contrast transmission electron microscopy: direct atomic imaging of materials. Annu Rev Mater Sci 22:171CrossRef
37.
Zurück zum Zitat Biswas A, Siegel DJ, Wolverton C, Seidman DN (2011) Precipitates in Al–Cu alloys revisited: atom-probe tomographic experiments and first-principles calculations of compositional evolution and interfacial segregation. Acta Mater 59:6187–6204CrossRef Biswas A, Siegel DJ, Wolverton C, Seidman DN (2011) Precipitates in Al–Cu alloys revisited: atom-probe tomographic experiments and first-principles calculations of compositional evolution and interfacial segregation. Acta Mater 59:6187–6204CrossRef
38.
Zurück zum Zitat Chen M, Ma E, Hemker KJ, Sheng H, Wang Y, Cheng X (2003) Deformation twinning in nanocrystalline aluminum. Science 300:1275–1277CrossRef Chen M, Ma E, Hemker KJ, Sheng H, Wang Y, Cheng X (2003) Deformation twinning in nanocrystalline aluminum. Science 300:1275–1277CrossRef
Metadaten
Titel
Structure and growth of core–shell nanoprecipitates in Al–Er–Sc–Zr–V–Si high-temperature alloys
verfasst von
Wahaz Nasim
Sadegh Yazdi
Ruben Santamarta
Jahanzaib Malik
Dinc Erdeniz
Bilal Mansoor
David N. Seidman
David C. Dunand
Ibrahim Karaman
Publikationsdatum
25.09.2018
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 2/2019
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-018-2941-9

Weitere Artikel der Ausgabe 2/2019

Journal of Materials Science 2/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.