Skip to main content
Erschienen in: Journal of Materials Science 6/2019

26.11.2018 | Polymers

Fabrication of highly interconnected porous poly(ɛ-caprolactone) scaffolds with supercritical CO2 foaming and polymer leaching

verfasst von: Kangkang Zhang, Yuqi Wang, Jing Jiang, Xiaofeng Wang, Jianhua Hou, Shuhao Sun, Qian Li

Erschienen in: Journal of Materials Science | Ausgabe 6/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Highly interconnected porous poly(ɛ-caprolactone) (PCL) scaffolds combined with supercritical carbon dioxide (CO2) foaming and a polymer leaching process were fabricated by blending PCL with water-soluble poly(ethyleneoxide) (PEO) as a sacrificial material. The effects of foaming conditions and the phase morphology of blend on foaming behavior and pore morphology were investigated. Rheological results and phase morphology indicated that the PCL and PEO were immiscible. For both spherical droplets and co-continuous phase morphologies of PCL/PEO blend, batch foaming experimental results indicated that increasing CO2 saturation time and foaming pressure led to significant decreases in pore size, but increasing temperature led to opposite results. The incorporation of PEO not only facilitated the foaming of PCL by increasing its viscosity, but it also improved the porosity and interconnectivity of the post-leached PCL scaffolds. The porosity improved by up to 93.5%, and the open pore content increased by up to 90.9% for the PCL50 blend (50% PCL by weight). The leaching process had more contribution on the open pore content for PCL/PEO porous scaffolds with co-continuous phase morphologies than for the spherical droplet structures due to different cell-opening mechanisms. The results gathered in this study may provide a theoretical basis and data to support research into porous scaffolds for tissue engineering.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Griffith LG, Naughton G (2002) Tissue engineering: current challenges and expanding opportunities. Science 295(5557):1009–1014CrossRef Griffith LG, Naughton G (2002) Tissue engineering: current challenges and expanding opportunities. Science 295(5557):1009–1014CrossRef
2.
Zurück zum Zitat Jiang YC, Lin J, An H, Wang XF, Qian L, Turng LS (2017) Electrospun polycaprolactone/gelatin composites with enhanced cell–matrix interactions as blood vessel endothelial layer scaffolds. Mater Sci Eng C 71:901–908CrossRef Jiang YC, Lin J, An H, Wang XF, Qian L, Turng LS (2017) Electrospun polycaprolactone/gelatin composites with enhanced cell–matrix interactions as blood vessel endothelial layer scaffolds. Mater Sci Eng C 71:901–908CrossRef
3.
Zurück zum Zitat Hutmacher DW (2000) Scaffolds in tissue engineering bone and cartilage. Biomaterials 21(24):2529–2543CrossRef Hutmacher DW (2000) Scaffolds in tissue engineering bone and cartilage. Biomaterials 21(24):2529–2543CrossRef
4.
Zurück zum Zitat Zhang C, Wang L, Zhai T, Wang X, Dan Y, Turng LS (2016) The surface grafting of graphene oxide with poly(ethylene glycol) as a reinforcement for poly(lactic acid) nanocomposite scaffolds for potential tissue engineering applications. J Mech Behav Biomed Mater 53:403–413CrossRef Zhang C, Wang L, Zhai T, Wang X, Dan Y, Turng LS (2016) The surface grafting of graphene oxide with poly(ethylene glycol) as a reinforcement for poly(lactic acid) nanocomposite scaffolds for potential tissue engineering applications. J Mech Behav Biomed Mater 53:403–413CrossRef
5.
Zurück zum Zitat Bonfield W (2006) Designing porous scaffolds for tissue engineering. Philos Trans 364(1838):227–232CrossRef Bonfield W (2006) Designing porous scaffolds for tissue engineering. Philos Trans 364(1838):227–232CrossRef
6.
Zurück zum Zitat Mi HY, Jing X, Salick MR, Cordie TM, Peng XF, Turng LS (2014) Morphology, mechanical properties, and mineralization of rigid thermoplastic polyurethane/hydroxyapatite scaffolds for bone tissue applications: effects of fabrication approaches and hydroxyapatite size. J Mater Sci 49(5):2324–2337. https://doi.org/10.1007/s10853-013-7931-3 CrossRef Mi HY, Jing X, Salick MR, Cordie TM, Peng XF, Turng LS (2014) Morphology, mechanical properties, and mineralization of rigid thermoplastic polyurethane/hydroxyapatite scaffolds for bone tissue applications: effects of fabrication approaches and hydroxyapatite size. J Mater Sci 49(5):2324–2337. https://​doi.​org/​10.​1007/​s10853-013-7931-3 CrossRef
7.
Zurück zum Zitat Huang A, Jiang Y, Napiwocki B, Mi H, Peng X, Turng LS (2017) Fabrication of poly(ε-caprolactone) tissue engineering scaffolds with fibrillated and interconnected pores utilizing microcellular injection molding and polymer leaching. RSC Adv 7(69):43432–43444CrossRef Huang A, Jiang Y, Napiwocki B, Mi H, Peng X, Turng LS (2017) Fabrication of poly(ε-caprolactone) tissue engineering scaffolds with fibrillated and interconnected pores utilizing microcellular injection molding and polymer leaching. RSC Adv 7(69):43432–43444CrossRef
8.
Zurück zum Zitat Gao Q, Gu H, Zhao P, Zhang C, Cao M, Fu J, He Y (2018) Fabrication of electrospun nanofibrous scaffolds with 3D controllable geometric shapes. Mater Des 157:159–169CrossRef Gao Q, Gu H, Zhao P, Zhang C, Cao M, Fu J, He Y (2018) Fabrication of electrospun nanofibrous scaffolds with 3D controllable geometric shapes. Mater Des 157:159–169CrossRef
9.
Zurück zum Zitat Zhao P, Cao M, Gu H, Gao Q, Xia N, He Y, Fu J (2018) Research on the electrospun foaming process to fabricate three-dimensional tissue engineering scaffolds. J Appl Polym Sci 135(46):46898CrossRef Zhao P, Cao M, Gu H, Gao Q, Xia N, He Y, Fu J (2018) Research on the electrospun foaming process to fabricate three-dimensional tissue engineering scaffolds. J Appl Polym Sci 135(46):46898CrossRef
10.
Zurück zum Zitat Jiang L, Wang L, Wang N, Gong S, Wang L, Li Q, Shen C, Turng LS (2017) Fabrication of polycaprolactone electrospun fibers with different hierarchical structures mimicking collagen fibrils for tissue engineering scaffolds. Appl Surf Sci 427:311–325CrossRef Jiang L, Wang L, Wang N, Gong S, Wang L, Li Q, Shen C, Turng LS (2017) Fabrication of polycaprolactone electrospun fibers with different hierarchical structures mimicking collagen fibrils for tissue engineering scaffolds. Appl Surf Sci 427:311–325CrossRef
11.
Zurück zum Zitat Sun S, Li Q, Zhao N, Jiang J, Zhang K, Hou J, Wang X, Liu G (2018) Preparation of highly interconnected porous poly(ε-caprolactone)/poly(lactic acid) scaffolds via supercritical foaming. Polym Adv Technol 29(12):3065–3074CrossRef Sun S, Li Q, Zhao N, Jiang J, Zhang K, Hou J, Wang X, Liu G (2018) Preparation of highly interconnected porous poly(ε-caprolactone)/poly(lactic acid) scaffolds via supercritical foaming. Polym Adv Technol 29(12):3065–3074CrossRef
13.
Zurück zum Zitat Nie J, Gao Q, Qiu JJ, Sun M, Liu A, Shao L, Fu JZ, Zhao P, He Y (2018) 3D printed Lego®-like modular microfluidic devices based on capillary driving. Biofabrication 10(3):035001CrossRef Nie J, Gao Q, Qiu JJ, Sun M, Liu A, Shao L, Fu JZ, Zhao P, He Y (2018) 3D printed Lego®-like modular microfluidic devices based on capillary driving. Biofabrication 10(3):035001CrossRef
14.
Zurück zum Zitat Zhao H, Chen Y, Shao L, Xie M, Nie J, Qiu J, Zhao P, Ramezani H, Fu J, Ouyang H, He Y (2018) Airflow-assisted 3D bioprinting of human heterogeneous microspheroidal organoids with microfluidic nozzle. Small 14(39):1802630CrossRef Zhao H, Chen Y, Shao L, Xie M, Nie J, Qiu J, Zhao P, Ramezani H, Fu J, Ouyang H, He Y (2018) Airflow-assisted 3D bioprinting of human heterogeneous microspheroidal organoids with microfluidic nozzle. Small 14(39):1802630CrossRef
15.
Zurück zum Zitat Yan S, Zhang X, Zhang L, Liu H, Wang X, Li Q (2017) Polymer scaffolds for vascular tissue engineering fabricated by combined electrospinning and hot embossing. Biomed Mater 13(1):015003CrossRef Yan S, Zhang X, Zhang L, Liu H, Wang X, Li Q (2017) Polymer scaffolds for vascular tissue engineering fabricated by combined electrospinning and hot embossing. Biomed Mater 13(1):015003CrossRef
16.
Zurück zum Zitat Huaguo L, Yingjun W, Chengyun N, Huade Z (2007) Preparation of poly(ε-caprolactone) tissue engineering scaffold by freeze-drying/particle-leaching method. Mater Rev 2:032 Huaguo L, Yingjun W, Chengyun N, Huade Z (2007) Preparation of poly(ε-caprolactone) tissue engineering scaffold by freeze-drying/particle-leaching method. Mater Rev 2:032
17.
Zurück zum Zitat Kuang T, Chen F, Chang L, Zhao Y, Fu D, Gong X, Peng X (2017) Facile preparation of open-cellular porous poly (l-lactic acid) scaffold by supercritical carbon dioxide foaming for potential tissue engineering applications. Chem Eng J 307:1017–1025CrossRef Kuang T, Chen F, Chang L, Zhao Y, Fu D, Gong X, Peng X (2017) Facile preparation of open-cellular porous poly (l-lactic acid) scaffold by supercritical carbon dioxide foaming for potential tissue engineering applications. Chem Eng J 307:1017–1025CrossRef
18.
Zurück zum Zitat Reignier J, Huneault MA (2006) Preparation of interconnected poly(ε-caprolactone) porous scaffolds by a combination of polymer and salt particulate leaching. Polymer 47(13):4703–4717CrossRef Reignier J, Huneault MA (2006) Preparation of interconnected poly(ε-caprolactone) porous scaffolds by a combination of polymer and salt particulate leaching. Polymer 47(13):4703–4717CrossRef
19.
Zurück zum Zitat Jing X, Mi HY, Cordie T, Salick M, Peng XF, Turng LS (2014) Fabrication of porous poly(ε-caprolactone) scaffolds containing chitosan nanofibers by combining extrusion foaming, leaching, and freeze-drying methods. Ind Eng Chem Res 53(46):17909–17918CrossRef Jing X, Mi HY, Cordie T, Salick M, Peng XF, Turng LS (2014) Fabrication of porous poly(ε-caprolactone) scaffolds containing chitosan nanofibers by combining extrusion foaming, leaching, and freeze-drying methods. Ind Eng Chem Res 53(46):17909–17918CrossRef
20.
Zurück zum Zitat Zhao N, Zhu C, Howe Mark L, Park CB, Li Q (2015) Batch foaming poly(vinyl alcohol)/microfibrillated cellulose composites with CO2 and water as co-blowing agents. J Appl Polym Sci 132(48):42551 Zhao N, Zhu C, Howe Mark L, Park CB, Li Q (2015) Batch foaming poly(vinyl alcohol)/microfibrillated cellulose composites with CO2 and water as co-blowing agents. J Appl Polym Sci 132(48):42551
21.
Zurück zum Zitat Goel SK, Beckman EJ (1994) Generation of microcellular polymeric foams using supercritical carbon dioxide 1-effect of pressure and temperature on nucleation. Polym Eng Sci 34:1137–1146CrossRef Goel SK, Beckman EJ (1994) Generation of microcellular polymeric foams using supercritical carbon dioxide 1-effect of pressure and temperature on nucleation. Polym Eng Sci 34:1137–1146CrossRef
22.
Zurück zum Zitat Goel SK, Beckman EJ (1994) Generation of microcellular polymeric foams usingsupercritical carbon dioxide 2-cell growth and skin formation. Polym Eng Sci 34:1148–1156CrossRef Goel SK, Beckman EJ (1994) Generation of microcellular polymeric foams usingsupercritical carbon dioxide 2-cell growth and skin formation. Polym Eng Sci 34:1148–1156CrossRef
23.
Zurück zum Zitat White LJ, Hutter V, Tai H, Howdle SM, Shakesheff KM (2012) The effect of processing variables on morphological and mechanical properties of supercritical CO2 foamed scaffolds for tissue engineering. Acta Biomater 8(1):61–71CrossRef White LJ, Hutter V, Tai H, Howdle SM, Shakesheff KM (2012) The effect of processing variables on morphological and mechanical properties of supercritical CO2 foamed scaffolds for tissue engineering. Acta Biomater 8(1):61–71CrossRef
24.
Zurück zum Zitat Gualandi C, White LJ, Chen L, Gross RA, Shakesheff KM, Howdle SM, Scandola M (2010) Scaffold for tissue engineering fabricated by non-isothermal supercritical carbon dioxide foaming of a highly crystalline polyester. Acta Biomater 6(1):130–136CrossRef Gualandi C, White LJ, Chen L, Gross RA, Shakesheff KM, Howdle SM, Scandola M (2010) Scaffold for tissue engineering fabricated by non-isothermal supercritical carbon dioxide foaming of a highly crystalline polyester. Acta Biomater 6(1):130–136CrossRef
25.
Zurück zum Zitat Chen CX, Liu QQ, Xin X, Guan YX, Yao SJ (2016) Pore formation of poly(ε-caprolactone) scaffolds with melting point reduction in supercritical CO2 foaming. J Supercrit Fluids 117:279–288CrossRef Chen CX, Liu QQ, Xin X, Guan YX, Yao SJ (2016) Pore formation of poly(ε-caprolactone) scaffolds with melting point reduction in supercritical CO2 foaming. J Supercrit Fluids 117:279–288CrossRef
26.
Zurück zum Zitat Nemiroski A, Soh S, Kwok SW, Yu HD, Whitesides GM (2016) Tilted magnetic levitation enables measurement of the complete range of densities of materials with low magnetic permeability. J Am Chem Soc 138(4):1252–1257CrossRef Nemiroski A, Soh S, Kwok SW, Yu HD, Whitesides GM (2016) Tilted magnetic levitation enables measurement of the complete range of densities of materials with low magnetic permeability. J Am Chem Soc 138(4):1252–1257CrossRef
27.
Zurück zum Zitat Zhang C, Zhao P, Gu F, Xie J, Xia N, He Y, Fu J (2018) A single ring magnetic levitation configuration for object manipulation and density-based measurement. Anal Chem 90(15):9226–9233CrossRef Zhang C, Zhao P, Gu F, Xie J, Xia N, He Y, Fu J (2018) A single ring magnetic levitation configuration for object manipulation and density-based measurement. Anal Chem 90(15):9226–9233CrossRef
28.
Zurück zum Zitat Zhang C, Zhao PW, Xie J, Xia N, Fu J (2018) Density measurement via magnetic levitation: linear relationship investigation. Polym Test 70:520–525CrossRef Zhang C, Zhao PW, Xie J, Xia N, Fu J (2018) Density measurement via magnetic levitation: linear relationship investigation. Polym Test 70:520–525CrossRef
29.
Zurück zum Zitat Rizvi A, Chu RK, Lee JH, Park CB (2014) Superhydrophobic and oleophilic open-cell foams from fibrillar blends of polypropylene and polytetrafluoroethylene. ACS Appl Mater Interfaces 6(23):21131–21140CrossRef Rizvi A, Chu RK, Lee JH, Park CB (2014) Superhydrophobic and oleophilic open-cell foams from fibrillar blends of polypropylene and polytetrafluoroethylene. ACS Appl Mater Interfaces 6(23):21131–21140CrossRef
31.
Zurück zum Zitat González J, Rosales C, González M, León N, Escalona R, Rojas H (2017) Rheological and mechanical properties of blends of LDPE with high contents of UHMWPE wastes. J Appl Polym Sci 134(26):44996CrossRef González J, Rosales C, González M, León N, Escalona R, Rojas H (2017) Rheological and mechanical properties of blends of LDPE with high contents of UHMWPE wastes. J Appl Polym Sci 134(26):44996CrossRef
32.
Zurück zum Zitat Friedrich C, Braun H (1992) Generalized Cole–Cole behavior and its rheological relevance. Rheol Acta 31(4):309–322CrossRef Friedrich C, Braun H (1992) Generalized Cole–Cole behavior and its rheological relevance. Rheol Acta 31(4):309–322CrossRef
33.
Zurück zum Zitat Liao R, Yu W, Zhou C (2010) Rheological control in foaming polymeric materials: I. Amorphous polymers. Polymer 51(2):568–580CrossRef Liao R, Yu W, Zhou C (2010) Rheological control in foaming polymeric materials: I. Amorphous polymers. Polymer 51(2):568–580CrossRef
34.
Zurück zum Zitat Liao R, Yu W, Zhou C (2010) Rheological control in foaming polymeric materials: II. Semi-crystalline polymers. Polymer 51(26):6334–6345CrossRef Liao R, Yu W, Zhou C (2010) Rheological control in foaming polymeric materials: II. Semi-crystalline polymers. Polymer 51(26):6334–6345CrossRef
35.
Zurück zum Zitat Emami M, Thompson MR, Vlachopoulos J (2014) Experimental and numerical studies on bubble dynamics in nonpressurized foaming systems. Polym Eng Sci 54(8):1947–1959CrossRef Emami M, Thompson MR, Vlachopoulos J (2014) Experimental and numerical studies on bubble dynamics in nonpressurized foaming systems. Polym Eng Sci 54(8):1947–1959CrossRef
36.
Zurück zum Zitat Zeltinger J, Sherwood J, Graham D, Mueller R, Griffith L (2001) Effect of pore size and void fraction on cellular adhesion, proliferation, and matrix deposition. Tissue Eng Part A 7(5):557–572CrossRef Zeltinger J, Sherwood J, Graham D, Mueller R, Griffith L (2001) Effect of pore size and void fraction on cellular adhesion, proliferation, and matrix deposition. Tissue Eng Part A 7(5):557–572CrossRef
37.
Zurück zum Zitat Chen S, Zhang Q, Nakamoto T, Kawazoe N, Chen G (2016) Gelatin scaffolds with controlled pore structure and mechanical property for cartilage tissue engineering. Tissue Eng Part C Methods 22(3):189–198CrossRef Chen S, Zhang Q, Nakamoto T, Kawazoe N, Chen G (2016) Gelatin scaffolds with controlled pore structure and mechanical property for cartilage tissue engineering. Tissue Eng Part C Methods 22(3):189–198CrossRef
38.
Zurück zum Zitat Markočič E, Škerget M, Knez Ž (2013) Effect of temperature and pressure on the behavior of poly(ε-caprolactone) in the presence of supercritical carbon dioxide. Ind Eng Chem Res 52(44):15594–15601CrossRef Markočič E, Škerget M, Knez Ž (2013) Effect of temperature and pressure on the behavior of poly(ε-caprolactone) in the presence of supercritical carbon dioxide. Ind Eng Chem Res 52(44):15594–15601CrossRef
39.
Zurück zum Zitat Ivanovic J, Knauer S, Fanovich A, Milovanovic S, Stamenic M, Jaeger P, Zizovic I, Eggers R (2016) Supercritical CO2 sorption kinetics and thymol impregnation of PCL and PCL-HA. J Supercrit Fluids 107(93):486–498CrossRef Ivanovic J, Knauer S, Fanovich A, Milovanovic S, Stamenic M, Jaeger P, Zizovic I, Eggers R (2016) Supercritical CO2 sorption kinetics and thymol impregnation of PCL and PCL-HA. J Supercrit Fluids 107(93):486–498CrossRef
40.
Zurück zum Zitat Yang C, Kang YQ, Liao XM, Yao YD, Huang ZB, Yin GF (2010) Preparation of PLGA/β-TCP composite scaffolds with supercritical CO2 foaming technique. Front Mater Sci Chin 4(3):314–320CrossRef Yang C, Kang YQ, Liao XM, Yao YD, Huang ZB, Yin GF (2010) Preparation of PLGA/β-TCP composite scaffolds with supercritical CO2 foaming technique. Front Mater Sci Chin 4(3):314–320CrossRef
42.
Zurück zum Zitat Leung SN, Wong A, Wang LC, Park CB (2012) Mechanism of extensional stress-induced cell formation in polymeric foaming processes with the presence of nucleating agents. J Supercrit Fluids 63:187–198CrossRef Leung SN, Wong A, Wang LC, Park CB (2012) Mechanism of extensional stress-induced cell formation in polymeric foaming processes with the presence of nucleating agents. J Supercrit Fluids 63:187–198CrossRef
Metadaten
Titel
Fabrication of highly interconnected porous poly(ɛ-caprolactone) scaffolds with supercritical CO2 foaming and polymer leaching
verfasst von
Kangkang Zhang
Yuqi Wang
Jing Jiang
Xiaofeng Wang
Jianhua Hou
Shuhao Sun
Qian Li
Publikationsdatum
26.11.2018
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 6/2019
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-018-3166-7

Weitere Artikel der Ausgabe 6/2019

Journal of Materials Science 6/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.