Skip to main content
Erschienen in: Journal of Materials Science 9/2019

30.01.2019 | Metals

Improving corrosion resistance of additively manufactured nickel–titanium biomedical devices by micro-arc oxidation process

verfasst von: Amir Dehghanghadikolaei, Hamdy Ibrahim, Amirhesam Amerinatanzi, Mahdi Hashemi, Narges Shayesteh Moghaddam, Mohammad Elahinia

Erschienen in: Journal of Materials Science | Ausgabe 9/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Nickel–titanium (NiTi) alloys have recently attracted considerable attention due to their unique properties, i.e., shape memory effect and superelasticity. In addition, these promising alloys demonstrate unique biocompatibility, represented in their high stability and corrosion resistance in aqueous environments, qualifying them to be used inside the human body. In recent years, additive manufacturing (AM) processes have been envisioned as an enabling method for the efficient production of NiTi components with complex geometries as patient-specific implants. In spite of its great capabilities, AM as a novel fabrication process may reduce the corrosion resistance of NiTi parts leading to the excess release of the harmful Ni ions as the main corrosion byproducts. The main goal of this study is to create and evaluate a micro-arc oxidation (MAO) coating in order to enhance the corrosion resistance of additively manufacture NiTi medical devices. To this end, the process voltage and electrolyte used to produce MAO coating have been investigated and optimized. The corrosion characteristics of the MAO-coated specimens revealed that the proposed coating methodology significantly improves the corrosion resistance of NiTi parts produced using AM process.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Jinno T et al (1998) Osseointegration of surface-blasted implants made of titanium alloy and cobalt–chromium alloy in a rabbit intramedullary model. J Biomed Mater Res A 42(1):20–29CrossRef Jinno T et al (1998) Osseointegration of surface-blasted implants made of titanium alloy and cobalt–chromium alloy in a rabbit intramedullary model. J Biomed Mater Res A 42(1):20–29CrossRef
2.
Zurück zum Zitat Moghaddam NS et al (2016) Metals for bone implants: safety, design, and efficacy. Biomanuf Rev 1(1):1–16CrossRef Moghaddam NS et al (2016) Metals for bone implants: safety, design, and efficacy. Biomanuf Rev 1(1):1–16CrossRef
3.
Zurück zum Zitat Mehrpouya M et al (2018) Laser welding of NiTi shape memory sheets using a diode laser. Opt Laser Technol 108:142–149CrossRef Mehrpouya M et al (2018) Laser welding of NiTi shape memory sheets using a diode laser. Opt Laser Technol 108:142–149CrossRef
4.
Zurück zum Zitat Reece PL (2007) Progress in smart materials and structures. Nova Publishers, New York Reece PL (2007) Progress in smart materials and structures. Nova Publishers, New York
5.
Zurück zum Zitat Mehrabi R et al (2015) Microplane modeling of shape memory alloy tubes under tension, torsion, and proportional tension–torsion loading. J Intell Mater Syst Struct 26(2):144–155CrossRef Mehrabi R et al (2015) Microplane modeling of shape memory alloy tubes under tension, torsion, and proportional tension–torsion loading. J Intell Mater Syst Struct 26(2):144–155CrossRef
6.
Zurück zum Zitat Amerinatanzi A et al (2017) Application of the superelastic NiTi spring in Ankle Foot Orthosis (AFO) to create normal ankle joint behavior. Bioengineering 4(4):95CrossRef Amerinatanzi A et al (2017) Application of the superelastic NiTi spring in Ankle Foot Orthosis (AFO) to create normal ankle joint behavior. Bioengineering 4(4):95CrossRef
7.
Zurück zum Zitat Moghaddam NS et al (2018) Anisotropic tensile and actuation properties of NiTi fabricated with selective laser melting. Mater Sci Eng, A 724:220–230CrossRef Moghaddam NS et al (2018) Anisotropic tensile and actuation properties of NiTi fabricated with selective laser melting. Mater Sci Eng, A 724:220–230CrossRef
8.
Zurück zum Zitat Andani MT et al (2014) Metals for bone implants. Part 1. Powder metallurgy and implant rendering. Acta Biomaterialia 10(10):4058–4070CrossRef Andani MT et al (2014) Metals for bone implants. Part 1. Powder metallurgy and implant rendering. Acta Biomaterialia 10(10):4058–4070CrossRef
9.
Zurück zum Zitat Köhl M et al (2011) Characterization of porous, net-shaped NiTi alloy regarding its damping and energy-absorbing capacity. Mater Sci Eng A 528(6):2454–2462CrossRef Köhl M et al (2011) Characterization of porous, net-shaped NiTi alloy regarding its damping and energy-absorbing capacity. Mater Sci Eng A 528(6):2454–2462CrossRef
10.
Zurück zum Zitat Wazen RM et al (2010) Initial evaluation of bone ingrowth into a novel porous titanium coating. J Biomed Mater Res B Appl Biomater 94(1):64–71 Wazen RM et al (2010) Initial evaluation of bone ingrowth into a novel porous titanium coating. J Biomed Mater Res B Appl Biomater 94(1):64–71
11.
Zurück zum Zitat Moghaddam NS, et al (2016) Metallic fixation of mandibular segmental defects: graft immobilization and orofacial functional maintenance. Plast Reconstr Surg Glob Open 4(9):1–8 Moghaddam NS, et al (2016) Metallic fixation of mandibular segmental defects: graft immobilization and orofacial functional maintenance. Plast Reconstr Surg Glob Open 4(9):1–8
12.
Zurück zum Zitat Jahadakbar A et al (2016) Finite element simulation and additive manufacturing of stiffness-matched niti fixation hardware for mandibular reconstruction surgery. Bioengineering 3(4):36–56CrossRef Jahadakbar A et al (2016) Finite element simulation and additive manufacturing of stiffness-matched niti fixation hardware for mandibular reconstruction surgery. Bioengineering 3(4):36–56CrossRef
13.
Zurück zum Zitat Amerinatanzi A, et al (2016) On the advantages of superelastic Niti in Ankle Foot Orthoses. In: ASME 2016 conference on smart materials, adaptive structures and intelligent systems. American Society of Mechanical Engineers Amerinatanzi A, et al (2016) On the advantages of superelastic Niti in Ankle Foot Orthoses. In: ASME 2016 conference on smart materials, adaptive structures and intelligent systems. American Society of Mechanical Engineers
14.
Zurück zum Zitat Amerinatanzi A, et al (2016) The effect of porosity type on the mechanical performance of porous niti bone implants. In: ASME 2016 conference on smart materials, adaptive structures and intelligent systems. American Society of Mechanical Engineers Amerinatanzi A, et al (2016) The effect of porosity type on the mechanical performance of porous niti bone implants. In: ASME 2016 conference on smart materials, adaptive structures and intelligent systems. American Society of Mechanical Engineers
15.
Zurück zum Zitat Excell J, Nathan S (2010) The rise of additive manufacturing. Engineer 24:677–688 Excell J, Nathan S (2010) The rise of additive manufacturing. Engineer 24:677–688
16.
Zurück zum Zitat Fotovvati B, et al (2018) A review on melt-pool characteristics in laser welding of metals. Adv Mater Sci Eng 2018:1–18CrossRef Fotovvati B, et al (2018) A review on melt-pool characteristics in laser welding of metals. Adv Mater Sci Eng 2018:1–18CrossRef
17.
Zurück zum Zitat Elahinia M et al (2016) Fabrication of NiTi through additive manufacturing: a review. Prog Mater Sci 83:630–663CrossRef Elahinia M et al (2016) Fabrication of NiTi through additive manufacturing: a review. Prog Mater Sci 83:630–663CrossRef
18.
Zurück zum Zitat Dehghanghadikolaei A (2018) Additive manufacturing as a new technique of fabrication. J 3D Print Appl 1(1):3–4 Dehghanghadikolaei A (2018) Additive manufacturing as a new technique of fabrication. J 3D Print Appl 1(1):3–4
19.
Zurück zum Zitat Ghoreishi R, Roohi AH, Ghadikolaei AD (2018) Analysis of the influence of cutting parameters on surface roughness and cutting forces in high speed face milling of Al/SiC MMC. Mater Res Express 5(8):1–16CrossRef Ghoreishi R, Roohi AH, Ghadikolaei AD (2018) Analysis of the influence of cutting parameters on surface roughness and cutting forces in high speed face milling of Al/SiC MMC. Mater Res Express 5(8):1–16CrossRef
20.
Zurück zum Zitat Dehghan Ghadikolaei A, Vahdati M (2015) Experimental study on the effect of finishing parameters on surface roughness in magneto-rheological abrasive flow finishing process. Proc Inst Mech Eng B J Eng Manuf 229(9):1517–1524CrossRef Dehghan Ghadikolaei A, Vahdati M (2015) Experimental study on the effect of finishing parameters on surface roughness in magneto-rheological abrasive flow finishing process. Proc Inst Mech Eng B J Eng Manuf 229(9):1517–1524CrossRef
21.
Zurück zum Zitat Mehrpouya M, Lavvafi H, Darafsheh A (2018) Microstructural characterization and mechanical reliability of laser-machined structures. In: Advances in laser materials processing, 2nd edn. Elsevier, pp 731–761 Mehrpouya M, Lavvafi H, Darafsheh A (2018) Microstructural characterization and mechanical reliability of laser-machined structures. In: Advances in laser materials processing, 2nd edn. Elsevier, pp 731–761
22.
Zurück zum Zitat Fotovvati B, Namdari N, Dehghanghadikolaei A (2018) Fatigue performance of selective laser melted Ti6Al4V components: state of the art. Mater Res Express 6(1):012002CrossRef Fotovvati B, Namdari N, Dehghanghadikolaei A (2018) Fatigue performance of selective laser melted Ti6Al4V components: state of the art. Mater Res Express 6(1):012002CrossRef
23.
Zurück zum Zitat Sahasrabudhe H, Bose S, Bandyopadhyay A (2018) Laser-based additive manufacturing processes. In: Advances in laser materials processing, 2nd edn. Elsevier, pp 507–539 Sahasrabudhe H, Bose S, Bandyopadhyay A (2018) Laser-based additive manufacturing processes. In: Advances in laser materials processing, 2nd edn. Elsevier, pp 507–539
24.
Zurück zum Zitat Saedi S et al (2018) On the effects of selective laser melting process parameters on microstructure and thermomechanical response of Ni-rich NiTi. Acta Mater 144:552–560CrossRef Saedi S et al (2018) On the effects of selective laser melting process parameters on microstructure and thermomechanical response of Ni-rich NiTi. Acta Mater 144:552–560CrossRef
25.
Zurück zum Zitat Pasebani S et al (2018) Effects of atomizing media and post processing on mechanical properties of 17-4 PH stainless steel manufactured via selective laser melting. Addit Manuf 22:127–137CrossRef Pasebani S et al (2018) Effects of atomizing media and post processing on mechanical properties of 17-4 PH stainless steel manufactured via selective laser melting. Addit Manuf 22:127–137CrossRef
26.
Zurück zum Zitat Frazier WE (2014) Metal additive manufacturing: a review. J Mater Eng Perform 23(6):1917–1928CrossRef Frazier WE (2014) Metal additive manufacturing: a review. J Mater Eng Perform 23(6):1917–1928CrossRef
27.
Zurück zum Zitat Kok Y et al (2018) Anisotropy and heterogeneity of microstructure and mechanical properties in metal additive manufacturing: a critical review. Mater Des 139:565–586CrossRef Kok Y et al (2018) Anisotropy and heterogeneity of microstructure and mechanical properties in metal additive manufacturing: a critical review. Mater Des 139:565–586CrossRef
28.
Zurück zum Zitat Bartolo P et al (2012) Biomedical production of implants by additive electro-chemical and physical processes. CIRP Ann Manuf Technol 61(2):635–655CrossRef Bartolo P et al (2012) Biomedical production of implants by additive electro-chemical and physical processes. CIRP Ann Manuf Technol 61(2):635–655CrossRef
29.
Zurück zum Zitat Ibrahim H et al (2018) In vitro corrosion assessment of additively manufactured porous NiTi structures for bone fixation applications. Metals 8(3):164CrossRef Ibrahim H et al (2018) In vitro corrosion assessment of additively manufactured porous NiTi structures for bone fixation applications. Metals 8(3):164CrossRef
30.
Zurück zum Zitat Ševčíková J et al (2018) On the Ni-ion release rate from surfaces of binary NiTi shape memory alloys. Appl Surf Sci 427:434–443CrossRef Ševčíková J et al (2018) On the Ni-ion release rate from surfaces of binary NiTi shape memory alloys. Appl Surf Sci 427:434–443CrossRef
31.
Zurück zum Zitat Qiu D, Wang A, Yin Y (2010) Characterization and corrosion behavior of hydroxyapatite/zirconia composite coating on NiTi fabricated by electrochemical deposition. Appl Surf Sci 257(5):1774–1778CrossRef Qiu D, Wang A, Yin Y (2010) Characterization and corrosion behavior of hydroxyapatite/zirconia composite coating on NiTi fabricated by electrochemical deposition. Appl Surf Sci 257(5):1774–1778CrossRef
32.
Zurück zum Zitat Aun DP et al (2016) Enhancement of NiTi superelastic endodontic instruments by TiO 2 coating. Mater Sci Eng C 68:675–680CrossRef Aun DP et al (2016) Enhancement of NiTi superelastic endodontic instruments by TiO 2 coating. Mater Sci Eng C 68:675–680CrossRef
33.
Zurück zum Zitat Huan Z et al (2013) Porous TiO2 surface formed on nickel–titanium alloy by plasma electrolytic oxidation: a prospective polymer-free reservoir for drug eluting stent applications. J Biomed Mater Res B Appl Biomater 101(5):700–708CrossRef Huan Z et al (2013) Porous TiO2 surface formed on nickel–titanium alloy by plasma electrolytic oxidation: a prospective polymer-free reservoir for drug eluting stent applications. J Biomed Mater Res B Appl Biomater 101(5):700–708CrossRef
34.
Zurück zum Zitat Wang D, Bierwagen GP (2009) Sol–gel coatings on metals for corrosion protection. Prog Org Coat 64(4):327–338CrossRef Wang D, Bierwagen GP (2009) Sol–gel coatings on metals for corrosion protection. Prog Org Coat 64(4):327–338CrossRef
35.
Zurück zum Zitat Asri R et al (2016) A review of hydroxyapatite-based coating techniques: sol–gel and electrochemical depositions on biocompatible metals. J Mech Behav Biomed Mater 57:95–108CrossRef Asri R et al (2016) A review of hydroxyapatite-based coating techniques: sol–gel and electrochemical depositions on biocompatible metals. J Mech Behav Biomed Mater 57:95–108CrossRef
36.
Zurück zum Zitat Ohtsu N, Suginishi S, Hirano M (2017) Antibacterial effect of nickel–titanium alloy owing to nickel ion release. Appl Surf Sci 405:215–219CrossRef Ohtsu N, Suginishi S, Hirano M (2017) Antibacterial effect of nickel–titanium alloy owing to nickel ion release. Appl Surf Sci 405:215–219CrossRef
37.
Zurück zum Zitat Nieboer E, Nriagu JO (1992) Nickel and human health: current perspectives. Wiley, Hoboken Nieboer E, Nriagu JO (1992) Nickel and human health: current perspectives. Wiley, Hoboken
38.
Zurück zum Zitat Cisse O et al (2002) Effect of surface treatment of NiTi alloy on its corrosion behavior in Hanks’ solution. J Biomed Mater Res 61(3):339–345CrossRef Cisse O et al (2002) Effect of surface treatment of NiTi alloy on its corrosion behavior in Hanks’ solution. J Biomed Mater Res 61(3):339–345CrossRef
39.
Zurück zum Zitat Michiardi A et al (2006) New oxidation treatment of NiTi shape memory alloys to obtain Ni-free surfaces and to improve biocompatibility. J Biomed Mater Res B Appl Biomater 77(2):249–256CrossRef Michiardi A et al (2006) New oxidation treatment of NiTi shape memory alloys to obtain Ni-free surfaces and to improve biocompatibility. J Biomed Mater Res B Appl Biomater 77(2):249–256CrossRef
40.
Zurück zum Zitat Armitage DA, Parker TL, Grant DM (2003) Biocompatibility and hemocompatibility of surface-modified NiTi alloys. J Biomed Mater Res A 66(1):129–137CrossRef Armitage DA, Parker TL, Grant DM (2003) Biocompatibility and hemocompatibility of surface-modified NiTi alloys. J Biomed Mater Res A 66(1):129–137CrossRef
41.
Zurück zum Zitat Cheng X, Wang Z, Yan Y (2001) Corrosion-resistant zeolite coatings by in situ crystallization. Electrochem Solid-State Lett 4(5):B23–B26CrossRef Cheng X, Wang Z, Yan Y (2001) Corrosion-resistant zeolite coatings by in situ crystallization. Electrochem Solid-State Lett 4(5):B23–B26CrossRef
42.
Zurück zum Zitat Tillmann W et al (2016) Influence of PVD-coating technology and pretreatments on residual stresses for sheet-bulk metal forming tools. Prod Eng Res Dev 10(1):17–24CrossRef Tillmann W et al (2016) Influence of PVD-coating technology and pretreatments on residual stresses for sheet-bulk metal forming tools. Prod Eng Res Dev 10(1):17–24CrossRef
43.
Zurück zum Zitat Dehghanghadikolaei A, Ansary J, Ghoreishi R (2018) Sol-gel process applications: a mini-review. Proc Nat Res Soc 2:02008CrossRef Dehghanghadikolaei A, Ansary J, Ghoreishi R (2018) Sol-gel process applications: a mini-review. Proc Nat Res Soc 2:02008CrossRef
44.
Zurück zum Zitat Dehghanghadikolaei A (2018) Enhance its corrosion behavior of additively manufactured NiTi by micro-arc oxidation coating. University of Toledo, Toledo Dehghanghadikolaei A (2018) Enhance its corrosion behavior of additively manufactured NiTi by micro-arc oxidation coating. University of Toledo, Toledo
45.
Zurück zum Zitat Verdian M, Raeissi K, Salehi M (2010) Corrosion performance of HVOF and APS thermally sprayed NiTi intermetallic coatings in 3.5% NaCl solution. CorrosSci 52(3):1052–1059 Verdian M, Raeissi K, Salehi M (2010) Corrosion performance of HVOF and APS thermally sprayed NiTi intermetallic coatings in 3.5% NaCl solution. CorrosSci 52(3):1052–1059
46.
Zurück zum Zitat Peng F et al (2017) Sealing the pores of PEO coating with Mg–Al layered double hydroxide: enhanced corrosion resistance, cytocompatibility and drug delivery ability. Sci Rep 7(1):8167–8179CrossRef Peng F et al (2017) Sealing the pores of PEO coating with Mg–Al layered double hydroxide: enhanced corrosion resistance, cytocompatibility and drug delivery ability. Sci Rep 7(1):8167–8179CrossRef
47.
Zurück zum Zitat Ibrahim H et al (2017) Microstructural, mechanical and corrosion characteristics of heat-treated Mg-1.2 Zn-0.5 Ca (wt%) alloy for use as resorbable bone fixation material. J Mech Behav Biomed Mater 69:203–212CrossRef Ibrahim H et al (2017) Microstructural, mechanical and corrosion characteristics of heat-treated Mg-1.2 Zn-0.5 Ca (wt%) alloy for use as resorbable bone fixation material. J Mech Behav Biomed Mater 69:203–212CrossRef
48.
Zurück zum Zitat Ibrahim H et al (2017) Resorbable bone fixation alloys, forming, and post-fabrication treatments. Mater Sci Eng C 70:870–888CrossRef Ibrahim H et al (2017) Resorbable bone fixation alloys, forming, and post-fabrication treatments. Mater Sci Eng C 70:870–888CrossRef
49.
Zurück zum Zitat Xu J et al (2008) Alumina coating formed on medical NiTi alloy by micro-arc oxidation. Mater Lett 62(25):4112–4114CrossRef Xu J et al (2008) Alumina coating formed on medical NiTi alloy by micro-arc oxidation. Mater Lett 62(25):4112–4114CrossRef
50.
Zurück zum Zitat Hakimizad A et al (2018) Influence of cathodic duty cycle on the properties of tungsten containing Al2O3/TiO2 PEO nano-composite coatings. Surf Coat Technol 340:210–221CrossRef Hakimizad A et al (2018) Influence of cathodic duty cycle on the properties of tungsten containing Al2O3/TiO2 PEO nano-composite coatings. Surf Coat Technol 340:210–221CrossRef
51.
Zurück zum Zitat Narayanan TS, Park IS, Lee MH (2014) Strategies to improve the corrosion resistance of microarc oxidation (MAO) coated magnesium alloys for degradable implants: prospects and challenges. Prog Mater Sci 60:1–71CrossRef Narayanan TS, Park IS, Lee MH (2014) Strategies to improve the corrosion resistance of microarc oxidation (MAO) coated magnesium alloys for degradable implants: prospects and challenges. Prog Mater Sci 60:1–71CrossRef
52.
Zurück zum Zitat Snizhko L et al (2004) Anodic processes in plasma electrolytic oxidation of aluminium in alkaline solutions. Electrochim Acta 49(13):2085–2095CrossRef Snizhko L et al (2004) Anodic processes in plasma electrolytic oxidation of aluminium in alkaline solutions. Electrochim Acta 49(13):2085–2095CrossRef
53.
Zurück zum Zitat Pan Y, Wang D, Chen C (2014) Effect of negative voltage on the microstructure, degradability and in vitro bioactivity of microarc oxidized coatings on ZK60 magnesium alloy. Mater Lett 119:127–130CrossRef Pan Y, Wang D, Chen C (2014) Effect of negative voltage on the microstructure, degradability and in vitro bioactivity of microarc oxidized coatings on ZK60 magnesium alloy. Mater Lett 119:127–130CrossRef
54.
Zurück zum Zitat Liu F et al (2010) Biomimetic deposition of apatite coatings on micro-arc oxidation treated biomedical NiTi alloy. Surf Coat Technol 204(20):3294–3299CrossRef Liu F et al (2010) Biomimetic deposition of apatite coatings on micro-arc oxidation treated biomedical NiTi alloy. Surf Coat Technol 204(20):3294–3299CrossRef
55.
Zurück zum Zitat Xu J et al (2009) The corrosion resistance behavior of Al2O3 coating prepared on NiTi alloy by micro-arc oxidation. J Alloys Compd 472(1–2):276–280CrossRef Xu J et al (2009) The corrosion resistance behavior of Al2O3 coating prepared on NiTi alloy by micro-arc oxidation. J Alloys Compd 472(1–2):276–280CrossRef
56.
Zurück zum Zitat Wang X, Liu F, Song Y (2018) Enhanced corrosion resistance and in vitro bioactivity of NiTi alloys modified with hydroxyapatite-containing Al2O3 coatings. Surf Coat Technol 344:288–294CrossRef Wang X, Liu F, Song Y (2018) Enhanced corrosion resistance and in vitro bioactivity of NiTi alloys modified with hydroxyapatite-containing Al2O3 coatings. Surf Coat Technol 344:288–294CrossRef
57.
Zurück zum Zitat Vangolu Y et al (2010) Optimization of the coating parameters for micro-arc oxidation of Cp-Ti. Surf Coat Technol 205(6):1764–1773CrossRef Vangolu Y et al (2010) Optimization of the coating parameters for micro-arc oxidation of Cp-Ti. Surf Coat Technol 205(6):1764–1773CrossRef
58.
Zurück zum Zitat Lu J et al (2018) Effects of voltage on microstructure and corrosion resistance of micro-arc oxidation ceramic coatings formed on KBM10 magnesium alloy. J Mater Eng Perform 27(1):147–154CrossRef Lu J et al (2018) Effects of voltage on microstructure and corrosion resistance of micro-arc oxidation ceramic coatings formed on KBM10 magnesium alloy. J Mater Eng Perform 27(1):147–154CrossRef
59.
Zurück zum Zitat Wang H et al (2011) Preparation and properties of titanium oxide film on NiTi alloy by micro-arc oxidation. Appl Surf Sci 257(13):5576–5580CrossRef Wang H et al (2011) Preparation and properties of titanium oxide film on NiTi alloy by micro-arc oxidation. Appl Surf Sci 257(13):5576–5580CrossRef
60.
Zurück zum Zitat Jung Y et al (2014) Surface characteristics and biological response of titanium oxide layer formed via micro-arc oxidation in K3 PO4 and Na3 PO4 electrolytes. J Alloys Compd 586:S548–S552CrossRef Jung Y et al (2014) Surface characteristics and biological response of titanium oxide layer formed via micro-arc oxidation in K3 PO4 and Na3 PO4 electrolytes. J Alloys Compd 586:S548–S552CrossRef
61.
Zurück zum Zitat Seyfoori A et al (2012) Biodegradation behavior of micro-arc oxidized AZ31 magnesium alloys formed in two different electrolytes. Appl Surf Sci 261:92–100CrossRef Seyfoori A et al (2012) Biodegradation behavior of micro-arc oxidized AZ31 magnesium alloys formed in two different electrolytes. Appl Surf Sci 261:92–100CrossRef
62.
Zurück zum Zitat Venkateswarlu K et al (2013) Fabrication and characterization of micro-arc oxidized fluoride containing titania films on Cp Ti. Ceram Int 39(1):801–812CrossRef Venkateswarlu K et al (2013) Fabrication and characterization of micro-arc oxidized fluoride containing titania films on Cp Ti. Ceram Int 39(1):801–812CrossRef
63.
Zurück zum Zitat Liang J, Hu L, Hao J (2007) Characterization of microarc oxidation coatings formed on AM60B magnesium alloy in silicate and phosphate electrolytes. Appl Surf Sci 253(10):4490–4496CrossRef Liang J, Hu L, Hao J (2007) Characterization of microarc oxidation coatings formed on AM60B magnesium alloy in silicate and phosphate electrolytes. Appl Surf Sci 253(10):4490–4496CrossRef
64.
Zurück zum Zitat Venkateswarlu K et al (2013) Role of electrolyte chemistry on electronic and in vitro electrochemical properties of micro-arc oxidized titania films on Cp Ti. Electrochim Acta 105:468–480CrossRef Venkateswarlu K et al (2013) Role of electrolyte chemistry on electronic and in vitro electrochemical properties of micro-arc oxidized titania films on Cp Ti. Electrochim Acta 105:468–480CrossRef
65.
Zurück zum Zitat Wang Y et al (2015) Review of the biocompatibility of micro-arc oxidation coated titanium alloys. Mater Des 85:640–652CrossRef Wang Y et al (2015) Review of the biocompatibility of micro-arc oxidation coated titanium alloys. Mater Des 85:640–652CrossRef
66.
Zurück zum Zitat Xu J et al (2009) The corrosion resistance behavior of Al2O3 coating prepared on NiTi alloy by micro-arc oxidation. J Alloys Compd 472(1):276–280CrossRef Xu J et al (2009) The corrosion resistance behavior of Al2O3 coating prepared on NiTi alloy by micro-arc oxidation. J Alloys Compd 472(1):276–280CrossRef
67.
Zurück zum Zitat Liu F et al (2009) Wear resistance of micro-arc oxidation coatings on biomedical NiTi alloy. J Alloys Compd 487(1):391–394 Liu F et al (2009) Wear resistance of micro-arc oxidation coatings on biomedical NiTi alloy. J Alloys Compd 487(1):391–394
68.
Zurück zum Zitat Jing W et al (2015) Assessment of osteoinduction using a porous hydroxyapatite coating prepared by micro-arc oxidation on a new titanium alloy. Int J Surg 24:51–56CrossRef Jing W et al (2015) Assessment of osteoinduction using a porous hydroxyapatite coating prepared by micro-arc oxidation on a new titanium alloy. Int J Surg 24:51–56CrossRef
69.
Zurück zum Zitat Elahinia M et al (2018) Additive manufacturing of NiTiHf high temperature shape memory alloy. Scripta Mater 145:90–94CrossRef Elahinia M et al (2018) Additive manufacturing of NiTiHf high temperature shape memory alloy. Scripta Mater 145:90–94CrossRef
70.
Zurück zum Zitat Walker JM et al (2016) Process development and characterization of additively manufactured nickel–titanium shape memory parts. J Intell Mater Syst Struct 27(19):2653–2660CrossRef Walker JM et al (2016) Process development and characterization of additively manufactured nickel–titanium shape memory parts. J Intell Mater Syst Struct 27(19):2653–2660CrossRef
71.
Zurück zum Zitat Saedi S et al (2018) Shape memory response of porous NiTi shape memory alloys fabricated by selective laser melting. J Mater Sci Mater Med 29(4):40–52CrossRef Saedi S et al (2018) Shape memory response of porous NiTi shape memory alloys fabricated by selective laser melting. J Mater Sci Mater Med 29(4):40–52CrossRef
72.
Zurück zum Zitat Huang X, Liu Y (2001) Effect of annealing on the transformation behavior and superelasticity of NiTi shape memory alloy. Scripta Mater 45(2):153–160CrossRef Huang X, Liu Y (2001) Effect of annealing on the transformation behavior and superelasticity of NiTi shape memory alloy. Scripta Mater 45(2):153–160CrossRef
73.
Zurück zum Zitat Elahinia MH et al (2012) Manufacturing and processing of NiTi implants: a review. Prog Mater Sci 57(5):911–946CrossRef Elahinia MH et al (2012) Manufacturing and processing of NiTi implants: a review. Prog Mater Sci 57(5):911–946CrossRef
74.
Zurück zum Zitat Haberland C et al (2014) On the development of high quality NiTi shape memory and pseudoelastic parts by additive manufacturing. Smart Mater Struct 23(10):104002–1040016CrossRef Haberland C et al (2014) On the development of high quality NiTi shape memory and pseudoelastic parts by additive manufacturing. Smart Mater Struct 23(10):104002–1040016CrossRef
75.
Zurück zum Zitat Ma C et al (2017) Improving surface finish and wear resistance of additive manufactured nickel-titanium by ultrasonic nano-crystal surface modification. J Mater Process Technol 249:433–440CrossRef Ma C et al (2017) Improving surface finish and wear resistance of additive manufactured nickel-titanium by ultrasonic nano-crystal surface modification. J Mater Process Technol 249:433–440CrossRef
76.
Zurück zum Zitat Hatta F et al (2005) Electrical conductivity studies on PVA/PVP-KOH alkaline solid polymer blend electrolyte. Ionics 11(5–6):418–422CrossRef Hatta F et al (2005) Electrical conductivity studies on PVA/PVP-KOH alkaline solid polymer blend electrolyte. Ionics 11(5–6):418–422CrossRef
77.
Zurück zum Zitat Zhang X et al (2009) Effects of scan rate on the potentiodynamic polarization curve obtained to determine the Tafel slopes and corrosion current density. Corros Sci 51(3):581–587CrossRef Zhang X et al (2009) Effects of scan rate on the potentiodynamic polarization curve obtained to determine the Tafel slopes and corrosion current density. Corros Sci 51(3):581–587CrossRef
78.
Zurück zum Zitat Turner BN, Gold SA (2015) A review of melt extrusion additive manufacturing processes: II. Materials, dimensional accuracy, and surface roughness. Rapid Prototyp J 21(3):250–261CrossRef Turner BN, Gold SA (2015) A review of melt extrusion additive manufacturing processes: II. Materials, dimensional accuracy, and surface roughness. Rapid Prototyp J 21(3):250–261CrossRef
79.
Zurück zum Zitat Rajabi M et al (2009) Effect of rapid solidification on the microstructure and mechanical properties of hot-pressed Al–20Si–5Fe alloys. Mater Charact 60(11):1370–1381CrossRef Rajabi M et al (2009) Effect of rapid solidification on the microstructure and mechanical properties of hot-pressed Al–20Si–5Fe alloys. Mater Charact 60(11):1370–1381CrossRef
80.
Zurück zum Zitat Galvele J (2005) Tafel’s law in pitting corrosion and crevice corrosion susceptibility. Corros Sci 47(12):3053–3067CrossRef Galvele J (2005) Tafel’s law in pitting corrosion and crevice corrosion susceptibility. Corros Sci 47(12):3053–3067CrossRef
81.
Zurück zum Zitat Li W et al (2018) Additive manufacturing of a new Fe–Cr–Ni alloy with gradually changing compositions with elemental powder mixes and thermodynamic calculation. Int J Adv Manuf Technol 95(1–4):1013–1023CrossRef Li W et al (2018) Additive manufacturing of a new Fe–Cr–Ni alloy with gradually changing compositions with elemental powder mixes and thermodynamic calculation. Int J Adv Manuf Technol 95(1–4):1013–1023CrossRef
82.
Zurück zum Zitat Cheng F, Shi P, Man H (2005) Nature of oxide layer formed on NiTi by anodic oxidation in methanol. Mater Lett 59(12):1516–1520CrossRef Cheng F, Shi P, Man H (2005) Nature of oxide layer formed on NiTi by anodic oxidation in methanol. Mater Lett 59(12):1516–1520CrossRef
83.
Zurück zum Zitat Xu J et al (2012) Effect of micro-arc oxidation surface modification on the properties of the NiTi shape memory alloy. J Mater Sci Mater Med 23(12):2839–2846CrossRef Xu J et al (2012) Effect of micro-arc oxidation surface modification on the properties of the NiTi shape memory alloy. J Mater Sci Mater Med 23(12):2839–2846CrossRef
84.
Zurück zum Zitat Shi P, Cheng F, Man H (2007) Improvement in corrosion resistance of NiTi by anodization in acetic acid. Mater Lett 61(11–12):2385–2388CrossRef Shi P, Cheng F, Man H (2007) Improvement in corrosion resistance of NiTi by anodization in acetic acid. Mater Lett 61(11–12):2385–2388CrossRef
85.
Zurück zum Zitat Rao KP, Ram GJ, Stucker B (2008) Improvement in corrosion resistance of friction stir welded aluminum alloys with micro arc oxidation coatings. Scripta Mater 58(11):998–1001CrossRef Rao KP, Ram GJ, Stucker B (2008) Improvement in corrosion resistance of friction stir welded aluminum alloys with micro arc oxidation coatings. Scripta Mater 58(11):998–1001CrossRef
86.
Zurück zum Zitat Li L, Achara C (2004) Chemical assisted laser machining for the minimisation of recast and heat affected zone. CIRP Ann Manuf Technol 53(1):175–178CrossRef Li L, Achara C (2004) Chemical assisted laser machining for the minimisation of recast and heat affected zone. CIRP Ann Manuf Technol 53(1):175–178CrossRef
87.
Zurück zum Zitat Hamann S, Linton M (1969) Electrical conductivities of aqueous solutions of KCl, KOH and HCl, and the ionization of water at high shock pressures. Trans Faraday Soc 65:2186–2196CrossRef Hamann S, Linton M (1969) Electrical conductivities of aqueous solutions of KCl, KOH and HCl, and the ionization of water at high shock pressures. Trans Faraday Soc 65:2186–2196CrossRef
89.
Zurück zum Zitat Han Y, Hong S-H, Xu K (2002) Synthesis of nanocrystalline titania films by micro-arc oxidation. Mater Lett 56(5):744–747CrossRef Han Y, Hong S-H, Xu K (2002) Synthesis of nanocrystalline titania films by micro-arc oxidation. Mater Lett 56(5):744–747CrossRef
90.
Zurück zum Zitat Siu H, Man H (2013) Fabrication of bioactive titania coating on nitinol by plasma electrolytic oxidation. Appl Surf Sci 274:181–187CrossRef Siu H, Man H (2013) Fabrication of bioactive titania coating on nitinol by plasma electrolytic oxidation. Appl Surf Sci 274:181–187CrossRef
91.
Zurück zum Zitat Weng Y et al (2018) A promising orthopedic implant material with enhanced osteogenic and antibacterial activity: Al2O3-coated aluminum alloy. Appl Surface Sci 457:1025–1034CrossRef Weng Y et al (2018) A promising orthopedic implant material with enhanced osteogenic and antibacterial activity: Al2O3-coated aluminum alloy. Appl Surface Sci 457:1025–1034CrossRef
92.
Zurück zum Zitat Landolt D (1987) Fundamental aspects of electropolishing. Electrochim Acta 32(1):1–11CrossRef Landolt D (1987) Fundamental aspects of electropolishing. Electrochim Acta 32(1):1–11CrossRef
93.
Zurück zum Zitat AlMangour B, Yang J-M (2016) Improving the surface quality and mechanical properties by shot-peening of 17-4 stainless steel fabricated by additive manufacturing. Mater Des 110:914–924CrossRef AlMangour B, Yang J-M (2016) Improving the surface quality and mechanical properties by shot-peening of 17-4 stainless steel fabricated by additive manufacturing. Mater Des 110:914–924CrossRef
94.
Zurück zum Zitat Bhowmik S, Naik R (2018) Selection of abrasive materials for manufacturing grinding wheels. Mater Today: Proc 5(1):2860–2864 Bhowmik S, Naik R (2018) Selection of abrasive materials for manufacturing grinding wheels. Mater Today: Proc 5(1):2860–2864
95.
Zurück zum Zitat Bakhsheshi-Rad H et al (2018) In vitro degradation behavior, antibacterial activity and cytotoxicity of TiO2-MAO/ZnHA composite coating on Mg alloy for orthopedic implants. Surf Coat Technol 334:450–460CrossRef Bakhsheshi-Rad H et al (2018) In vitro degradation behavior, antibacterial activity and cytotoxicity of TiO2-MAO/ZnHA composite coating on Mg alloy for orthopedic implants. Surf Coat Technol 334:450–460CrossRef
96.
Zurück zum Zitat Amerinatanzi A et al (2018) Predicting the biodegradation of magnesium alloy implants: modeling, parameter identification, and validation. Bioengineering 5(4):105CrossRef Amerinatanzi A et al (2018) Predicting the biodegradation of magnesium alloy implants: modeling, parameter identification, and validation. Bioengineering 5(4):105CrossRef
97.
Zurück zum Zitat Jeznach O et al (2018) New calcium-free Na2O–Al2O3–P2O5 bioactive glasses with potential applications in bone tissue engineering. J Am Ceram Soc 101(2):602–611CrossRef Jeznach O et al (2018) New calcium-free Na2O–Al2O3–P2O5 bioactive glasses with potential applications in bone tissue engineering. J Am Ceram Soc 101(2):602–611CrossRef
98.
Zurück zum Zitat Zhang Z, Wang Y, Frenzel J (2010) Ancient technology/novel nanomaterials: casting titanium carbide nanowires. CrystEngComm 12(10):2835–2840CrossRef Zhang Z, Wang Y, Frenzel J (2010) Ancient technology/novel nanomaterials: casting titanium carbide nanowires. CrystEngComm 12(10):2835–2840CrossRef
99.
Zurück zum Zitat AlMangour B, Grzesiak D, Yang J-M (2018) In situ formation of TiC-particle-reinforced stainless steel matrix nanocomposites during ball milling: feedstock powder preparation for selective laser melting at various energy densities. Powder Technol 326:467–478CrossRef AlMangour B, Grzesiak D, Yang J-M (2018) In situ formation of TiC-particle-reinforced stainless steel matrix nanocomposites during ball milling: feedstock powder preparation for selective laser melting at various energy densities. Powder Technol 326:467–478CrossRef
100.
Zurück zum Zitat Mehrpouya M, Gisario A, Elahinia M (2018) Laser welding of NiTi shape memory alloy: a review. Journal of Manufacturing Processes 31:162–186CrossRef Mehrpouya M, Gisario A, Elahinia M (2018) Laser welding of NiTi shape memory alloy: a review. Journal of Manufacturing Processes 31:162–186CrossRef
Metadaten
Titel
Improving corrosion resistance of additively manufactured nickel–titanium biomedical devices by micro-arc oxidation process
verfasst von
Amir Dehghanghadikolaei
Hamdy Ibrahim
Amirhesam Amerinatanzi
Mahdi Hashemi
Narges Shayesteh Moghaddam
Mohammad Elahinia
Publikationsdatum
30.01.2019
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 9/2019
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-019-03375-1

Weitere Artikel der Ausgabe 9/2019

Journal of Materials Science 9/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.