Skip to main content
Erschienen in: Journal of Materials Science 4/2020

08.10.2019 | Composites & nanocomposites

Preparation of paraffin/SiO2 aerogel stable-stabilized phase change composites for high-humidity environment

verfasst von: Yuxi Yu, Jian Xu, Guanchun Wang, Ruiqian Zhang, Xiaoming Peng

Erschienen in: Journal of Materials Science | Ausgabe 4/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The shape stabilization ability of solid–liquid phase change composites (PCCs), which are determined by the interaction between the terminal group of the phase change material molecule and the surface properties of the porous matrix material, is a prerequisite for long-term stable work of PCCs. Here, mesoporous SiO2 aerogel (MSA) surface properties were engineered to regulate the interactions between paraffin wax (PW) composites. To evaluate the effect of the surface properties of MSA on the stability of the composite, the sol–gel method combined with a supercritical drying process was firstly used to prepare CH3/HO–MSA. Then, HO–MSA and CH3–MSA were obtained by hydroxylation and alkylation modification on the basis of the as-prepared CH3/HO–MSA, respectively. The alkyl group modified on the surface of the MSA pores eliminates the phase separation of PCCs caused by the hydrogen-bonding interaction between MSA and water molecules. Therefore, the obtained CH3–MSA/PW has no leakage for more than 24 h even in an environment of high humidity and a temperature exceeding the melting point of PW. In addition, large phase change latent heat, good thermal conductivity and thermal stability are also well achieved. This paves the way for the development of PCCs for use in high-humidity environments.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Sharma RK, Ganesan P, Tyagi VV, Metselaar HSC, Sandaran SC (2015) Developments in organic solid–liquid phase change materials and their applications in thermal energy storage. Energy Convers Manage 95:193–228CrossRef Sharma RK, Ganesan P, Tyagi VV, Metselaar HSC, Sandaran SC (2015) Developments in organic solid–liquid phase change materials and their applications in thermal energy storage. Energy Convers Manage 95:193–228CrossRef
2.
Zurück zum Zitat Huang X, Chen X, Li A, Atinafu D, Gao H, Dong W, Wang G (2019) Shape-stabilized phase change materials based on porous supports for thermal energy storage applications. Chem Eng J 356:641–661CrossRef Huang X, Chen X, Li A, Atinafu D, Gao H, Dong W, Wang G (2019) Shape-stabilized phase change materials based on porous supports for thermal energy storage applications. Chem Eng J 356:641–661CrossRef
3.
Zurück zum Zitat Gao H, Wang J, Chen X, Wang G, Huang X, Li A, Dong W (2018) Nanoconfinement effects on thermal properties of nanoporous shape-stabilized composite PCMs: a review. Nano Energy 53:769–797CrossRef Gao H, Wang J, Chen X, Wang G, Huang X, Li A, Dong W (2018) Nanoconfinement effects on thermal properties of nanoporous shape-stabilized composite PCMs: a review. Nano Energy 53:769–797CrossRef
4.
Zurück zum Zitat Zhou X, Xiao H, Feng J, Zhang C, Jiang Y (2009) Preparation and thermal properties of paraffin/porous silica ceramic composite. Compos Sci Technol 69(7–8):1246–1249CrossRef Zhou X, Xiao H, Feng J, Zhang C, Jiang Y (2009) Preparation and thermal properties of paraffin/porous silica ceramic composite. Compos Sci Technol 69(7–8):1246–1249CrossRef
5.
Zurück zum Zitat Xiangfa Z, Hanning X, Jian F, Changrui Z, Yonggang J (2012) Preparation, properties and thermal control applications of silica aerogel infiltrated with solid–liquid phase change materials. J Exp Nanosci 7(1):17–26CrossRef Xiangfa Z, Hanning X, Jian F, Changrui Z, Yonggang J (2012) Preparation, properties and thermal control applications of silica aerogel infiltrated with solid–liquid phase change materials. J Exp Nanosci 7(1):17–26CrossRef
6.
Zurück zum Zitat Hurwitz FI, Rogers RB, Guo H, Yu K, Domanowski J, Schmid E, Fields MG (2017) The role of phase changes in maintaining pore structure on thermal exposure of aluminosilicate aerogels. MRS Commun 7(03):642–650CrossRef Hurwitz FI, Rogers RB, Guo H, Yu K, Domanowski J, Schmid E, Fields MG (2017) The role of phase changes in maintaining pore structure on thermal exposure of aluminosilicate aerogels. MRS Commun 7(03):642–650CrossRef
7.
Zurück zum Zitat Tahan Latibari S, Sadrameli SM (2018) Carbon based material included-shaped stabilized phase change materials for sunlight-driven energy conversion and storage: an extensive review. Sol Energy 170:1130–1161CrossRef Tahan Latibari S, Sadrameli SM (2018) Carbon based material included-shaped stabilized phase change materials for sunlight-driven energy conversion and storage: an extensive review. Sol Energy 170:1130–1161CrossRef
8.
Zurück zum Zitat Zhang Z, Zhang N, Peng J, Fang X, Gao X, Fang Y (2012) Preparation and thermal energy storage properties of paraffin/expanded graphite composite phase change material. Appl Energy 91(1):426–431CrossRef Zhang Z, Zhang N, Peng J, Fang X, Gao X, Fang Y (2012) Preparation and thermal energy storage properties of paraffin/expanded graphite composite phase change material. Appl Energy 91(1):426–431CrossRef
9.
Zurück zum Zitat Ling Z, Chen J, Xu T, Fang X, Gao X, Zhang Z (2015) Thermal conductivity of an organic phase change material/expanded graphite composite across the phase change temperature range and a novel thermal conductivity model. Energy Convers Manage 102:202–208CrossRef Ling Z, Chen J, Xu T, Fang X, Gao X, Zhang Z (2015) Thermal conductivity of an organic phase change material/expanded graphite composite across the phase change temperature range and a novel thermal conductivity model. Energy Convers Manage 102:202–208CrossRef
10.
Zurück zum Zitat Yu C, Yang SH, Pak SY, Youn JR, Song YS (2018) Graphene embedded form stable phase change materials for drawing the thermo-electric energy harvesting. Energy Convers Manage 169:88–96CrossRef Yu C, Yang SH, Pak SY, Youn JR, Song YS (2018) Graphene embedded form stable phase change materials for drawing the thermo-electric energy harvesting. Energy Convers Manage 169:88–96CrossRef
11.
Zurück zum Zitat Wu W, Yao R, Huang X, Chen R, Li K, Gao S, Zou R (2017) Dual-encapsulation of octadecanol in thermal/electric conductor for enhanced thermoconductivity and efficient energy storage. Mater Chem Front 1(7):1430–1434CrossRef Wu W, Yao R, Huang X, Chen R, Li K, Gao S, Zou R (2017) Dual-encapsulation of octadecanol in thermal/electric conductor for enhanced thermoconductivity and efficient energy storage. Mater Chem Front 1(7):1430–1434CrossRef
12.
Zurück zum Zitat Sarı A (2004) Form-stable paraffin/high density polyethylene composites as solid–liquid phase change material for thermal energy storage: preparation and thermal properties. Energy Convers Manage 45(13–14):2033–2042CrossRef Sarı A (2004) Form-stable paraffin/high density polyethylene composites as solid–liquid phase change material for thermal energy storage: preparation and thermal properties. Energy Convers Manage 45(13–14):2033–2042CrossRef
13.
Zurück zum Zitat Xiangfa Z, Hanning X, Jian F, Changrui Z, Yonggang J (2010) Pore structure modification of silica matrix infiltrated with paraffin as phase change material. Chem Eng Res Des 88(8):1013–1017CrossRef Xiangfa Z, Hanning X, Jian F, Changrui Z, Yonggang J (2010) Pore structure modification of silica matrix infiltrated with paraffin as phase change material. Chem Eng Res Des 88(8):1013–1017CrossRef
14.
Zurück zum Zitat Goitandia AM, Beobide G, Aranzabe E, Aranzabe A (2015) Development of content-stable phase change composites by infiltration into inorganic porous supports. Sol Energy Mater Sol Cells 134:318–328CrossRef Goitandia AM, Beobide G, Aranzabe E, Aranzabe A (2015) Development of content-stable phase change composites by infiltration into inorganic porous supports. Sol Energy Mater Sol Cells 134:318–328CrossRef
15.
Zurück zum Zitat Wang J, Yang M, Lu Y, Jin Z, Tan L, Gao H, Fan S, Dong W, Wang G (2016) Surface functionalization engineering driven crystallization behavior of polyethylene glycol confined in mesoporous silica for shape-stabilized phase change materials. Nano Energy 19:78–87CrossRef Wang J, Yang M, Lu Y, Jin Z, Tan L, Gao H, Fan S, Dong W, Wang G (2016) Surface functionalization engineering driven crystallization behavior of polyethylene glycol confined in mesoporous silica for shape-stabilized phase change materials. Nano Energy 19:78–87CrossRef
16.
Zurück zum Zitat Qian T, Li J, Min X, Fan B (2017) Integration of pore confinement and hydrogen-bond influence on the crystallization behavior of C18 PCMs in mesoporous silica for form-stable phase change materials. ACS Sustain Chem Eng 6(1):897–908CrossRef Qian T, Li J, Min X, Fan B (2017) Integration of pore confinement and hydrogen-bond influence on the crystallization behavior of C18 PCMs in mesoporous silica for form-stable phase change materials. ACS Sustain Chem Eng 6(1):897–908CrossRef
17.
Zurück zum Zitat Wang Y, Zhang L, Tao S, An Y, Meng C, Hu T (2014) Phase change in modified hierarchically porous monolith: an extra energy increase. Microporous Mesoporous Mater 193:69–76CrossRef Wang Y, Zhang L, Tao S, An Y, Meng C, Hu T (2014) Phase change in modified hierarchically porous monolith: an extra energy increase. Microporous Mesoporous Mater 193:69–76CrossRef
18.
Zurück zum Zitat Yu Y, Wu X, Fang J (2015) Superhydrophobic and superoleophilic “sponge-like” aerogels for oil/water separation. J Mater Sci 50(15):5115–5124CrossRef Yu Y, Wu X, Fang J (2015) Superhydrophobic and superoleophilic “sponge-like” aerogels for oil/water separation. J Mater Sci 50(15):5115–5124CrossRef
19.
Zurück zum Zitat Yu Y, Guo D, Fang J (2015) Synthesis of silica aerogel microspheres by a two-step acid–base sol–gel reaction with emulsification technique. J Porous Mater 22(3):621–628CrossRef Yu Y, Guo D, Fang J (2015) Synthesis of silica aerogel microspheres by a two-step acid–base sol–gel reaction with emulsification technique. J Porous Mater 22(3):621–628CrossRef
20.
Zurück zum Zitat Yu Y, Guo D, Fang J (2015) A facile and fast gelation process to prepare highly spherical millimeter-sized silica aerogel beads. Int J Appl Ceram Technol 12:E244–E248CrossRef Yu Y, Guo D, Fang J (2015) A facile and fast gelation process to prepare highly spherical millimeter-sized silica aerogel beads. Int J Appl Ceram Technol 12:E244–E248CrossRef
21.
Zurück zum Zitat Parvathy Rao A, Venkateswara Rao A (2010) Modifying the surface energy and hydrophobicity of the low-density silica aerogels through the use of combinations of surface-modification agents. J Mater Sci 45(1):51–63CrossRef Parvathy Rao A, Venkateswara Rao A (2010) Modifying the surface energy and hydrophobicity of the low-density silica aerogels through the use of combinations of surface-modification agents. J Mater Sci 45(1):51–63CrossRef
22.
Zurück zum Zitat Nah H-Y, Parale VG, Lee K-Y, Choi H, Kim T, Lim C-H, Seo J-Y, Ku YS, Park J-W, Park H-H (2018) Silylation of sodium silicate-based silica aerogel using trimethylethoxysilane as alternative surface modification agent. J Sol-Gel Sci Technol 87(2):319–330CrossRef Nah H-Y, Parale VG, Lee K-Y, Choi H, Kim T, Lim C-H, Seo J-Y, Ku YS, Park J-W, Park H-H (2018) Silylation of sodium silicate-based silica aerogel using trimethylethoxysilane as alternative surface modification agent. J Sol-Gel Sci Technol 87(2):319–330CrossRef
23.
Zurück zum Zitat Zheng Z, Chang Z, Xu GK, McBride F, Ho A, Zhuola Z, Michailidis M, Li W, Raval R, Akhtar R, Shchukin D (2017) Microencapsulated phase change materials in solar–thermal conversion systems: understanding geometry-dependent heating efficiency and system reliability. ACS Nano 11(1):721–729CrossRef Zheng Z, Chang Z, Xu GK, McBride F, Ho A, Zhuola Z, Michailidis M, Li W, Raval R, Akhtar R, Shchukin D (2017) Microencapsulated phase change materials in solar–thermal conversion systems: understanding geometry-dependent heating efficiency and system reliability. ACS Nano 11(1):721–729CrossRef
24.
Zurück zum Zitat Zhang Y, Zheng S, Zhu S, Ma J, Sun Z, Farid M (2018) Evaluation of paraffin infiltrated in various porous silica matrices as shape-stabilized phase change materials for thermal energy storage. Energy Convers Manage 171:361–370CrossRef Zhang Y, Zheng S, Zhu S, Ma J, Sun Z, Farid M (2018) Evaluation of paraffin infiltrated in various porous silica matrices as shape-stabilized phase change materials for thermal energy storage. Energy Convers Manage 171:361–370CrossRef
25.
Zurück zum Zitat Nomura T, Zhu C, Sheng N, Tabuchi K, Sagara A, Akiyama T (2015) Shape-stabilized phase change composite by impregnation of octadecane into mesoporous SiO. Sol Energy Mater Sol Cells 143:424–429CrossRef Nomura T, Zhu C, Sheng N, Tabuchi K, Sagara A, Akiyama T (2015) Shape-stabilized phase change composite by impregnation of octadecane into mesoporous SiO. Sol Energy Mater Sol Cells 143:424–429CrossRef
26.
Zurück zum Zitat Zhong Y, Zhou M, Huang F, Lin T, Wan D (2013) Effect of graphene aerogel on thermal behavior of phase change materials for thermal management. Sol Energy Mater Sol Cells 113:195–200CrossRef Zhong Y, Zhou M, Huang F, Lin T, Wan D (2013) Effect of graphene aerogel on thermal behavior of phase change materials for thermal management. Sol Energy Mater Sol Cells 113:195–200CrossRef
27.
Zurück zum Zitat Yang J, Tang L-S, Bai L, Bao R-Y, Liu Z, Xie B-H, Yang M-B, Yang W (2018) Photodriven shape-stabilized phase change materials with optimized thermal conductivity by tailoring the microstructure of hierarchically ordered hybrid porous scaffolds. ACS Sustain Chem Eng 6(5):6761–6770CrossRef Yang J, Tang L-S, Bai L, Bao R-Y, Liu Z, Xie B-H, Yang M-B, Yang W (2018) Photodriven shape-stabilized phase change materials with optimized thermal conductivity by tailoring the microstructure of hierarchically ordered hybrid porous scaffolds. ACS Sustain Chem Eng 6(5):6761–6770CrossRef
28.
Zurück zum Zitat Yang J, Tang L-S, Bai L, Bao R-Y, Liu Z-Y, Xie B-H, Yang M-B, Yang W (2019) High-performance composite phase change materials for energy conversion based on macroscopically three-dimensional structural materials. Mater Horiz 6(2):250–273CrossRef Yang J, Tang L-S, Bai L, Bao R-Y, Liu Z-Y, Xie B-H, Yang M-B, Yang W (2019) High-performance composite phase change materials for energy conversion based on macroscopically three-dimensional structural materials. Mater Horiz 6(2):250–273CrossRef
Metadaten
Titel
Preparation of paraffin/SiO2 aerogel stable-stabilized phase change composites for high-humidity environment
verfasst von
Yuxi Yu
Jian Xu
Guanchun Wang
Ruiqian Zhang
Xiaoming Peng
Publikationsdatum
08.10.2019
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 4/2020
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-019-04107-1

Weitere Artikel der Ausgabe 4/2020

Journal of Materials Science 4/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.