Skip to main content
Erschienen in: Journal of Materials Science 29/2023

24.07.2023 | Ceramics

Capacitive energy storage performance of lead-free sodium niobate-based antiferroelectric ceramics

verfasst von: Ye Lu, Ji Zhang, Kedong Zhou, Lei He

Erschienen in: Journal of Materials Science | Ausgabe 29/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Ceramic-based capacitors have attracted great interest due to their large power density and ultrafast charge/discharge time, which are needful properties for pulsed-power devices. Antiferroelectric ceramics normally show ultrahigh energy density and relatively low efficiency, which is ascribed to the electric field-induced antiferroelectric–ferroelectric phase transition. This work reports that the perovskite end-member Bi(Fe1/3Zn1/3Ti1/3)O3 is added into NaNbO3 lead-free antiferroelectric ceramics. The lower tolerance factor of Bi(Fe1/3Zn1/3Ti1/3)O3 facilitates to achieve stable antiferroelectric phase in NaNbO3, and the introduction of various ions enhances the relaxor behavior. Consequently, the optimized 0.88NaNbO3 − 0.12Bi(Fe1/3Zn1/3Ti1/3)O3 ceramics exhibit a large recoverable energy density of 6.8 J/cm3 and a high efficiency of 82% under 49 kV/mm, as well as discharge energy density of 4 J/cm3 and charge/discharge time of 5 μs. This study suggests that the incorporation of relaxor properties into antiferroelectric ceramics is a beneficial route to boost the dielectric energy storage capability.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Fan X, Wang J, Yuan H, Zheng Z, Zhang J, Zhu K (2023) Multi-scale synergic optimization strategy for dielectric energy storage ceramics. J Adv Ceram 12:649–680CrossRef Fan X, Wang J, Yuan H, Zheng Z, Zhang J, Zhu K (2023) Multi-scale synergic optimization strategy for dielectric energy storage ceramics. J Adv Ceram 12:649–680CrossRef
2.
Zurück zum Zitat Yang L, Kong X, Li F, Hao H, Cheng Z, Liu H, Li J−F, Zhang S (2019) Perovskite lead−free dielectrics for energy storage applications. Prog Mater Sci 102:72–108CrossRef Yang L, Kong X, Li F, Hao H, Cheng Z, Liu H, Li J−F, Zhang S (2019) Perovskite lead−free dielectrics for energy storage applications. Prog Mater Sci 102:72–108CrossRef
3.
Zurück zum Zitat Yang Z, Du H, Jin L, Poelman D (2021) High−performance lead−free bulk ceramics for electrical energy storage applications: Design strategies and challenges. J Mater Chem A 9:18026–18085CrossRef Yang Z, Du H, Jin L, Poelman D (2021) High−performance lead−free bulk ceramics for electrical energy storage applications: Design strategies and challenges. J Mater Chem A 9:18026–18085CrossRef
4.
Zurück zum Zitat Yang F, Li Q, Zhang A, Jia Y, Sun Y, Wang W, Fan H (2022) High energy storage density and temperature stable dielectric properties of (1–x)Bi0.5(Na0.82K0.18)0.5Ti0.99(Y0.5Nb0.5)0.01O3−xNaNbO3 ceramics. J Alloy Compd 925:166782CrossRef Yang F, Li Q, Zhang A, Jia Y, Sun Y, Wang W, Fan H (2022) High energy storage density and temperature stable dielectric properties of (1–x)Bi0.5(Na0.82K0.18)0.5Ti0.99(Y0.5Nb0.5)0.01O3xNaNbO3 ceramics. J Alloy Compd 925:166782CrossRef
5.
Zurück zum Zitat Fan Y, Wang X, Li H, Feteira A, Wang D, Wang G, Sinclair DC, Reaney IM (2023) Pb, Bi, and rare earth free X6R barium titanate−sodium niobate ceramics for high voltage capacitor applications. Appl Phys Lett 122:143901CrossRef Fan Y, Wang X, Li H, Feteira A, Wang D, Wang G, Sinclair DC, Reaney IM (2023) Pb, Bi, and rare earth free X6R barium titanate−sodium niobate ceramics for high voltage capacitor applications. Appl Phys Lett 122:143901CrossRef
6.
Zurück zum Zitat Guo M, Jiang J, Shen Z, Lin Y, Nan C−W, Shen Y (2019) High−energy−density ferroelectric polymer nanocomposites for capacitive energy storage: enhanced breakdown strength and improved discharge efficiency. Mater Today 29:49–67CrossRef Guo M, Jiang J, Shen Z, Lin Y, Nan C−W, Shen Y (2019) High−energy−density ferroelectric polymer nanocomposites for capacitive energy storage: enhanced breakdown strength and improved discharge efficiency. Mater Today 29:49–67CrossRef
7.
Zurück zum Zitat Jiang J, Shen Z, Qian J, Dan Z, Guo M, Lin Y, Nan C−W, Chen L, Shen Y (2019) Ultrahigh discharge efficiency in multilayered polymer nanocomposites of high energy density. Energy Stor Mater 18:213–221 Jiang J, Shen Z, Qian J, Dan Z, Guo M, Lin Y, Nan C−W, Chen L, Shen Y (2019) Ultrahigh discharge efficiency in multilayered polymer nanocomposites of high energy density. Energy Stor Mater 18:213–221
8.
Zurück zum Zitat Li Q, Chen L, Gadinski MR, Zhang S, Zhang G, Li U, Iagodkine E, Haque A, Chen LQ, Jackson N, Wang Q (2015) Flexible high−temperature dielectric materials from polymer nanocomposites. Nature 523:576–579CrossRef Li Q, Chen L, Gadinski MR, Zhang S, Zhang G, Li U, Iagodkine E, Haque A, Chen LQ, Jackson N, Wang Q (2015) Flexible high−temperature dielectric materials from polymer nanocomposites. Nature 523:576–579CrossRef
9.
Zurück zum Zitat Li X, Dong X, Wang F, Tan Z, Zhang Q, Chen H, Xi J, Xing J, Zhou H, Zhu J (2022) Realizing excellent energy storage properties in Na0.5Bi0.5TiO3−based lead−free relaxor ferroelectrics. J Eur Ceram Soc 42:2221–2229CrossRef Li X, Dong X, Wang F, Tan Z, Zhang Q, Chen H, Xi J, Xing J, Zhou H, Zhu J (2022) Realizing excellent energy storage properties in Na0.5Bi0.5TiO3−based lead−free relaxor ferroelectrics. J Eur Ceram Soc 42:2221–2229CrossRef
10.
Zurück zum Zitat Chen L, Long F, Qi H, Liu H, Deng S, Chen J (2022) Outstanding energy storage performance in high-hardness (Bi0.5K0.5)TiO3-based lead-free relaxors via multi-scale synergistic design. Adv Funct Mater 32:2110478CrossRef Chen L, Long F, Qi H, Liu H, Deng S, Chen J (2022) Outstanding energy storage performance in high-hardness (Bi0.5K0.5)TiO3-based lead-free relaxors via multi-scale synergistic design. Adv Funct Mater 32:2110478CrossRef
11.
Zurück zum Zitat Wang X, Huan Y, Zhu Y, Zhang P, Yang W, Li P, Wei T, Li L, Wang X (2022) Defect engineering of BCZT−based piezoelectric ceramics with high piezoelectric properties. J Adv Ceram 11:184–195CrossRef Wang X, Huan Y, Zhu Y, Zhang P, Yang W, Li P, Wei T, Li L, Wang X (2022) Defect engineering of BCZT−based piezoelectric ceramics with high piezoelectric properties. J Adv Ceram 11:184–195CrossRef
12.
Zurück zum Zitat Wang X, Huan Y, Ji S, Zhu Y, Wei T, Cheng Z (2022) Ultra−high piezoelectric performance by rational tuning of heterovalent−ion doping in lead−free piezoelectric ceramics. Nano Energy 101:107580CrossRef Wang X, Huan Y, Ji S, Zhu Y, Wei T, Cheng Z (2022) Ultra−high piezoelectric performance by rational tuning of heterovalent−ion doping in lead−free piezoelectric ceramics. Nano Energy 101:107580CrossRef
13.
Zurück zum Zitat Huan Y, Wang X, Yang W, Hou L, Zheng M, Wei T, Wang X (2022) Optimizing energy harvesting performance by tailoring ferroelectric/relaxor behavior in KNN−based piezoceramics. J Adv Ceram 11:935–944CrossRef Huan Y, Wang X, Yang W, Hou L, Zheng M, Wei T, Wang X (2022) Optimizing energy harvesting performance by tailoring ferroelectric/relaxor behavior in KNN−based piezoceramics. J Adv Ceram 11:935–944CrossRef
14.
Zurück zum Zitat Yang D, Gao J, Shu L, LiuYuZhang Y−XJY, Wang X, Zhang B–P, Li J–F (2020) Lead−free antiferroelectric niobates AgNbO3 and NaNbO3 for energy storage applications. J Mater Chem A 8:23724–23737CrossRef Yang D, Gao J, Shu L, LiuYuZhang Y−XJY, Wang X, Zhang B–P, Li J–F (2020) Lead−free antiferroelectric niobates AgNbO3 and NaNbO3 for energy storage applications. J Mater Chem A 8:23724–23737CrossRef
15.
Zurück zum Zitat Fan X, Wang J, Yuan H, Chen L, Zhao L, Zhu K (2022) Synergic enhancement of energy storage density and efficiency in MnO2−doped AgNbO3@SiO2 ceramics via A/B−Site substitutions. ACS Appl Mater Interfaces 14:7052–7062CrossRef Fan X, Wang J, Yuan H, Chen L, Zhao L, Zhu K (2022) Synergic enhancement of energy storage density and efficiency in MnO2−doped AgNbO3@SiO2 ceramics via A/B−Site substitutions. ACS Appl Mater Interfaces 14:7052–7062CrossRef
16.
Zurück zum Zitat Fan Y, Wang W, Zhao J (2020) Fabrication, structural and dielectric property of lead−free perovskite silver niobate ceramics. Ceram Int 46:12269–12274CrossRef Fan Y, Wang W, Zhao J (2020) Fabrication, structural and dielectric property of lead−free perovskite silver niobate ceramics. Ceram Int 46:12269–12274CrossRef
17.
Zurück zum Zitat Wang J, Fan H, Wang M, Fan P (2021) Significantly enhanced energy storage performance in Sm−doped 0.88NaNbO3−0.12Sr0.7Bi0.2TiO3 lead−free ceramics. Ceram Int 47:17964–17970CrossRef Wang J, Fan H, Wang M, Fan P (2021) Significantly enhanced energy storage performance in Sm−doped 0.88NaNbO3−0.12Sr0.7Bi0.2TiO3 lead−free ceramics. Ceram Int 47:17964–17970CrossRef
18.
Zurück zum Zitat Jiang S, Zhang J, Wang J, Wang S, Wang J, Wang Y (2023) Delayed phase switching field and improved capacitive energy storage in Ca2+−modified (Pb, La)(Zr, Sn)O3 antiferroelectric ceramics. Scr Mater 235:115602CrossRef Jiang S, Zhang J, Wang J, Wang S, Wang J, Wang Y (2023) Delayed phase switching field and improved capacitive energy storage in Ca2+−modified (Pb, La)(Zr, Sn)O3 antiferroelectric ceramics. Scr Mater 235:115602CrossRef
19.
Zurück zum Zitat Jiang J, Meng X, Li L, Zhang J, Guo S, Wang J, Hao X, Zhu H, Zhang S−T (2021) Enhanced energy storage properties of lead−free NaNbO3−based ceramics via A/B−Site substitution. Chem Eng J 422:130130CrossRef Jiang J, Meng X, Li L, Zhang J, Guo S, Wang J, Hao X, Zhu H, Zhang S−T (2021) Enhanced energy storage properties of lead−free NaNbO3−based ceramics via A/B−Site substitution. Chem Eng J 422:130130CrossRef
20.
Zurück zum Zitat Ma J, Zhang J, Guo J, Li X, Guo S, Huan Y, Wang J, Zhang S–T, Wang Y (2022) Achieving ultrahigh energy storage density in lead−free sodium niobate−based ceramics by modulating the antiferroelectric phase. Chem Mater 34:7313–7322CrossRef Ma J, Zhang J, Guo J, Li X, Guo S, Huan Y, Wang J, Zhang S–T, Wang Y (2022) Achieving ultrahigh energy storage density in lead−free sodium niobate−based ceramics by modulating the antiferroelectric phase. Chem Mater 34:7313–7322CrossRef
21.
Zurück zum Zitat Randall CA, Fan Z, Reaney I, Chen L−Q, Trolier−McKinstry S (2021) Antiferroelectrics: history, fundamentals, crystal chemistry, crystal structures, size effects, and applications. J Am Ceram Soc 104:3775–3810CrossRef Randall CA, Fan Z, Reaney I, Chen L−Q, Trolier−McKinstry S (2021) Antiferroelectrics: history, fundamentals, crystal chemistry, crystal structures, size effects, and applications. J Am Ceram Soc 104:3775–3810CrossRef
22.
Zurück zum Zitat Shimizu H, Guo H, Reyes−Lillo SE, Mizuno Y, Rabe KM, Randall CA (2015) Lead−free antiferroelectric: xCaZrO3−(1–x)NaNbO3 system (0 ≤ x ≤ 0.10). Dalton Trans 44:10763–10772CrossRef Shimizu H, Guo H, Reyes−Lillo SE, Mizuno Y, Rabe KM, Randall CA (2015) Lead−free antiferroelectric: xCaZrO3−(1–x)NaNbO3 system (0 ≤ x ≤ 0.10). Dalton Trans 44:10763–10772CrossRef
23.
Zurück zum Zitat Shannon RD (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst 32:751–767CrossRef Shannon RD (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst 32:751–767CrossRef
24.
Zurück zum Zitat Ma J, Zhang D, Ying F, Li X, Li L, Guo S, Huan Y, Zhang J, Wang J, Zhang S−T, (2022) Ultrahigh energy storage density and high efficiency in lead−free (Bi0.9Na0.1)(Fe0.8Ti0.2)O3−modified NaNbO3 ceramics via stabilizing antiferroelectric phase and enhancing relaxor behavior. ACS Appl Mater Interfaces 14:19704–19713CrossRef Ma J, Zhang D, Ying F, Li X, Li L, Guo S, Huan Y, Zhang J, Wang J, Zhang S−T, (2022) Ultrahigh energy storage density and high efficiency in lead−free (Bi0.9Na0.1)(Fe0.8Ti0.2)O3−modified NaNbO3 ceramics via stabilizing antiferroelectric phase and enhancing relaxor behavior. ACS Appl Mater Interfaces 14:19704–19713CrossRef
25.
Zurück zum Zitat Cui T, Zhang J, Guo J, Li X, Guo S, Huan Y, Wang J, Zhang S−T, Wang Y (2022) Outstanding comprehensive energy storage performance in lead−free BiFeO3−based relaxor ferroelectric ceramics by multiple optimization design. Acta Mater 240:118286CrossRef Cui T, Zhang J, Guo J, Li X, Guo S, Huan Y, Wang J, Zhang S−T, Wang Y (2022) Outstanding comprehensive energy storage performance in lead−free BiFeO3−based relaxor ferroelectric ceramics by multiple optimization design. Acta Mater 240:118286CrossRef
26.
Zurück zum Zitat Yang Z, Du H, Jin L, Hu Q, Qu S, Yang Z, Yu Y, Wei X, Xu Z (2019) A new family of sodium niobate−based dielectrics for electrical energy storage applications. J Eur Ceram Soc 39:2899–2907CrossRef Yang Z, Du H, Jin L, Hu Q, Qu S, Yang Z, Yu Y, Wei X, Xu Z (2019) A new family of sodium niobate−based dielectrics for electrical energy storage applications. J Eur Ceram Soc 39:2899–2907CrossRef
27.
Zurück zum Zitat Zhou X, Xue G, Su Y, Luo H, Zhang Y, Wang D, Zhang D (2023) Optimized dielectric energy storage performance in ZnO−modified Bi0.5Na0.5TiO3−Sr0.7Bi0.2□0.1TiO3 ceramics with composite structure and element segregation. Chem Eng J 458:141449CrossRef Zhou X, Xue G, Su Y, Luo H, Zhang Y, Wang D, Zhang D (2023) Optimized dielectric energy storage performance in ZnO−modified Bi0.5Na0.5TiO3−Sr0.7Bi0.2□0.1TiO3 ceramics with composite structure and element segregation. Chem Eng J 458:141449CrossRef
28.
Zurück zum Zitat Jiang J, Meng X, Li L, Guo S, Huang M, Zhang J, Wang J, Hao X, Zhu H, Zhang S−T, (2021) Ultrahigh energy storage density in lead−free relaxor antiferroelectric ceramics via domain engineering. Energy Stor Mater 43:383–390 Jiang J, Meng X, Li L, Guo S, Huang M, Zhang J, Wang J, Hao X, Zhu H, Zhang S−T, (2021) Ultrahigh energy storage density in lead−free relaxor antiferroelectric ceramics via domain engineering. Energy Stor Mater 43:383–390
29.
Zurück zum Zitat Pan Z, Zhang J, Che D, Wang Z, Wang J, Wang J, Wang Y (2023) Improved capacitive energy storage in sodium niobate−based relaxor antiferroelectric ceramics. Appl Phys Lett 122:072902CrossRef Pan Z, Zhang J, Che D, Wang Z, Wang J, Wang J, Wang Y (2023) Improved capacitive energy storage in sodium niobate−based relaxor antiferroelectric ceramics. Appl Phys Lett 122:072902CrossRef
30.
Zurück zum Zitat Zhang M−H, Fulanović L, Zhao C, Koruza J (2023) Review on field−induced phase transitions in lead−free NaNbO3−based antiferroelectric perovskite oxides for energy storage. J Materiomics 9:1–18CrossRef Zhang M−H, Fulanović L, Zhao C, Koruza J (2023) Review on field−induced phase transitions in lead−free NaNbO3−based antiferroelectric perovskite oxides for energy storage. J Materiomics 9:1–18CrossRef
31.
Zurück zum Zitat Wu L, Huan Y, Wang X, Li C, Luo Y, Wei T (2022) A combinatorial improvement strategy to enhance the energy storage performances of the KNN−based ferroelectric ceramic capacitors. J Mater Sci 57:15876–15888CrossRef Wu L, Huan Y, Wang X, Li C, Luo Y, Wei T (2022) A combinatorial improvement strategy to enhance the energy storage performances of the KNN−based ferroelectric ceramic capacitors. J Mater Sci 57:15876–15888CrossRef
Metadaten
Titel
Capacitive energy storage performance of lead-free sodium niobate-based antiferroelectric ceramics
verfasst von
Ye Lu
Ji Zhang
Kedong Zhou
Lei He
Publikationsdatum
24.07.2023
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 29/2023
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-023-08769-w

Weitere Artikel der Ausgabe 29/2023

Journal of Materials Science 29/2023 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.