Skip to main content
Erschienen in: Journal of Materials Science: Materials in Electronics 10/2018

16.03.2018

Inorganic based hole transport materials for perovskite solar cells

verfasst von: S. Karuppuchamy, G. Murugadoss, K. Ramachandran, Vibha Saxena, R. Thangamuthu

Erschienen in: Journal of Materials Science: Materials in Electronics | Ausgabe 10/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this article, we report the photovoltaic performance of MAPbI3 perovskite using inorganic hole transport materials such as CuI and CuSCN. Structural, optical and morphological investigations were carried out by X-ray diffraction, X-ray photoelectron spectroscopy, UV–visible absorption and scanning electron microscopy. Two different architectures such as mesoscopic (FTO/TiO2/MAPbI3/CuSCN/Au) and inverted (ITO/CuI/MAPbI3/PCBM/Ag) structures were used. The devices displayed (cell area of 0.25 cm2) a short-circuit current density (Jsc) of 16.82 mA/cm2, open-circuit voltage (Voc) of 0.89 V, fill factor of 61.4%, and a PCE of 9.2%. Under similar conditions, the device with CuI shows a PCE of 3.4%, with a decrease in the Jsc (12.30 mA/cm2), fill factor (47.20%) and Voc (0.57 V). The variations of the device performance have been discussed in detail.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131, 6050–6051 (2009)CrossRef A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131, 6050–6051 (2009)CrossRef
2.
Zurück zum Zitat H. Zhou, Q. Chen, G. Li et al., Interface engineering of highly efficient perovskite solar cells. Science 345(6196), 542–546 (2014)CrossRef H. Zhou, Q. Chen, G. Li et al., Interface engineering of highly efficient perovskite solar cells. Science 345(6196), 542–546 (2014)CrossRef
3.
Zurück zum Zitat W.S. Yang, J.H. Noh, N.J. Jeon et al., High-performance photovoltaic perovskite layers: fabricated through intramolecular exchange. Science 348(6240), 1234–1237 (2015)CrossRef W.S. Yang, J.H. Noh, N.J. Jeon et al., High-performance photovoltaic perovskite layers: fabricated through intramolecular exchange. Science 348(6240), 1234–1237 (2015)CrossRef
4.
Zurück zum Zitat N.J. Jeon, J.H. Noh, W.S. Yang et al., Compositional engineering of perovskite materials for high-performance solar cells. Nature 517(7535), 476–480 (2015)CrossRef N.J. Jeon, J.H. Noh, W.S. Yang et al., Compositional engineering of perovskite materials for high-performance solar cells. Nature 517(7535), 476–480 (2015)CrossRef
6.
Zurück zum Zitat S. Albrecht, M. Saliba, J.P. Baena et al., Monolithic perovskite/silicon-heterojunction tandem solar cells processed at low temperature. Energy Environ. Sci. 9(1), 81–88 (2016)CrossRef S. Albrecht, M. Saliba, J.P. Baena et al., Monolithic perovskite/silicon-heterojunction tandem solar cells processed at low temperature. Energy Environ. Sci. 9(1), 81–88 (2016)CrossRef
7.
Zurück zum Zitat W.S. Yang, B.-W. Park, E.H. Jung, N.J. Jeon, Y.C. Kim, D.U. Lee, S.S. Shin, J. Seo, E.K. Kim, J.H. Noh, S.I. Seok, Iodide management in formamidinium-lead-halide-based perovskite layers for efficient solar cells. Science 356, 1376–1379 (2017)CrossRef W.S. Yang, B.-W. Park, E.H. Jung, N.J. Jeon, Y.C. Kim, D.U. Lee, S.S. Shin, J. Seo, E.K. Kim, J.H. Noh, S.I. Seok, Iodide management in formamidinium-lead-halide-based perovskite layers for efficient solar cells. Science 356, 1376–1379 (2017)CrossRef
8.
Zurück zum Zitat G. Chen, J. Seo, C. Yang, P.N. Prasad, Nanochemistry and nanomaterials for photovoltaics. Chem. Soc. Rev. 42(21), 8304–8338 (2013)CrossRef G. Chen, J. Seo, C. Yang, P.N. Prasad, Nanochemistry and nanomaterials for photovoltaics. Chem. Soc. Rev. 42(21), 8304–8338 (2013)CrossRef
9.
Zurück zum Zitat M.A. Green, A. Ho-Baillie, H.J. Snaith, The emergence of perovskite solar cells. Nat. Photonics 8(7), 514–560 (2014)CrossRef M.A. Green, A. Ho-Baillie, H.J. Snaith, The emergence of perovskite solar cells. Nat. Photonics 8(7), 514–560 (2014)CrossRef
10.
Zurück zum Zitat M.-H. Li, P.-S. Shen, K.-C. Wang, T.F. Guo, P. Chen, Inorganic p-type contact materials for perovskite-based solar cells. J. Mater. Chem. A 3(17), 9011–9019 (2015)CrossRef M.-H. Li, P.-S. Shen, K.-C. Wang, T.F. Guo, P. Chen, Inorganic p-type contact materials for perovskite-based solar cells. J. Mater. Chem. A 3(17), 9011–9019 (2015)CrossRef
11.
Zurück zum Zitat J.-Y. Jeng et al., CH3NH3PbI3 perovskite/fullerene planar-heterojunction hybrid solar cells. Adv. Mater. 25, 3727–3732 (2013)CrossRef J.-Y. Jeng et al., CH3NH3PbI3 perovskite/fullerene planar-heterojunction hybrid solar cells. Adv. Mater. 25, 3727–3732 (2013)CrossRef
12.
Zurück zum Zitat J. You et al., Low-temperature solution-processed perovskite solar cells with high efficiency and flexibility. ACS Nano 8, 1674–1680 (2014)CrossRef J. You et al., Low-temperature solution-processed perovskite solar cells with high efficiency and flexibility. ACS Nano 8, 1674–1680 (2014)CrossRef
13.
Zurück zum Zitat Y. Shao, Y. Yuan, J. Huang, Correlation of energy disorder and open-circuit voltage in hybrid perovskite solar cells. Nat. Energy 1, 15001 (2016)CrossRef Y. Shao, Y. Yuan, J. Huang, Correlation of energy disorder and open-circuit voltage in hybrid perovskite solar cells. Nat. Energy 1, 15001 (2016)CrossRef
14.
Zurück zum Zitat W. Nie et al., High-efficiency solution-processed perovskite solar cells with millimeter-scale grains. Science 347:522–525 W. Nie et al., High-efficiency solution-processed perovskite solar cells with millimeter-scale grains. Science 347:522–525
15.
Zurück zum Zitat F. Hou et al., Efficient and stable planar heterojunction perovskite solar cells with an MoO3/PEDOT:PSS hole transporting layer. Nanoscale 7, 9427–9432 (2015)CrossRef F. Hou et al., Efficient and stable planar heterojunction perovskite solar cells with an MoO3/PEDOT:PSS hole transporting layer. Nanoscale 7, 9427–9432 (2015)CrossRef
16.
Zurück zum Zitat D.B. Kim et al., Improved performance of perovskite light-emitting diodes using a PEDOT:PSS and MoO3 composite layer. J. Mater. Chem. C 4, 8161–8165 (2016)CrossRef D.B. Kim et al., Improved performance of perovskite light-emitting diodes using a PEDOT:PSS and MoO3 composite layer. J. Mater. Chem. C 4, 8161–8165 (2016)CrossRef
17.
Zurück zum Zitat P. Qin, S. Tanaka, S. Ito, N. Tetreault, K. Manabe, H. Nishino, M.K. Nazeeruddin, M. Grätzel, Inorganic hole conductor-based lead halide perovskite solar cells with 12.4% conversion efficiency. Nat. Commun. 5, 3834 (2014)CrossRef P. Qin, S. Tanaka, S. Ito, N. Tetreault, K. Manabe, H. Nishino, M.K. Nazeeruddin, M. Grätzel, Inorganic hole conductor-based lead halide perovskite solar cells with 12.4% conversion efficiency. Nat. Commun. 5, 3834 (2014)CrossRef
18.
Zurück zum Zitat J.A. Christians, R.C.M. Fung, P.V. Kamat, An inorganic hole conductor for organo-lead halide perovskite solar cells: improved hole conductivity with copper iodide. J. Am. Chem. Soc. 136, 758–764 (2013)CrossRef J.A. Christians, R.C.M. Fung, P.V. Kamat, An inorganic hole conductor for organo-lead halide perovskite solar cells: improved hole conductivity with copper iodide. J. Am. Chem. Soc. 136, 758–764 (2013)CrossRef
19.
Zurück zum Zitat B. O’Regan, D.T. Schwartz, S.M. Zakeeruddin, M. Grätzel, Electrodeposited nanocomposite n-p heterojunctions for solid-state dye-sensitized photovoltaics. Adv. Mater. 12, 1263–1267 (2000)CrossRef B. O’Regan, D.T. Schwartz, S.M. Zakeeruddin, M. Grätzel, Electrodeposited nanocomposite n-p heterojunctions for solid-state dye-sensitized photovoltaics. Adv. Mater. 12, 1263–1267 (2000)CrossRef
20.
Zurück zum Zitat J.A. Christians, R.C.M. Fung, P.V. Kamat, An inorganic hole conductor for organo-lead halide perovskite solar cells. Improved hole conductivity with copper iodide. J. Am. Chem. Soc. 136(2), 758–764 (2014)CrossRef J.A. Christians, R.C.M. Fung, P.V. Kamat, An inorganic hole conductor for organo-lead halide perovskite solar cells. Improved hole conductivity with copper iodide. J. Am. Chem. Soc. 136(2), 758–764 (2014)CrossRef
21.
Zurück zum Zitat G. Murugadoss, H. Kanda, S. Tanaka, H. Nishino, S. Ito, H. Imahoric, T. Umeyama, An efficient electron transport material of tin oxide for planar structure perovskite solar cells. J. Power Sources 307, 891–897 (2016)CrossRef G. Murugadoss, H. Kanda, S. Tanaka, H. Nishino, S. Ito, H. Imahoric, T. Umeyama, An efficient electron transport material of tin oxide for planar structure perovskite solar cells. J. Power Sources 307, 891–897 (2016)CrossRef
22.
Zurück zum Zitat V.E. Madhavan, I. Zimmermann, C.R. Carmona, G. Grancini, M. Buffiere, A. Belaidi, M.K. Nazeeruddin, ACS Energy Lett. 1, 1112–1117 (2016)CrossRef V.E. Madhavan, I. Zimmermann, C.R. Carmona, G. Grancini, M. Buffiere, A. Belaidi, M.K. Nazeeruddin, ACS Energy Lett. 1, 1112–1117 (2016)CrossRef
23.
Zurück zum Zitat S. Ye, W. Sun, Y. Li, W. Yan, H. Peng, Z. Bian, Z. Liu, C. Huang, CuSCN-based inverted planar perovskite solar cell with an average PCE of 15.6%. Nano Lett. 15, 3723–3728 (2015)CrossRef S. Ye, W. Sun, Y. Li, W. Yan, H. Peng, Z. Bian, Z. Liu, C. Huang, CuSCN-based inverted planar perovskite solar cell with an average PCE of 15.6%. Nano Lett. 15, 3723–3728 (2015)CrossRef
24.
Zurück zum Zitat W. Zhang, S. Pathak, N. Sakai, T. Stergiopoulos, P.K. Nayak, N.K. Noel, A.A. Haghighirad, V.M. Burlakov, D.W. deQuilettes, A. Sadhanala, W. Li, L. Wang, D.S. Ginger, R.H. Friend, H.J. Snaith, Enhanced optoelectronic quality of perovskite thin films with hypophosphorous acid for planar heterojunction solar cells. Nat. Commun. 6, 10030 (2015)CrossRef W. Zhang, S. Pathak, N. Sakai, T. Stergiopoulos, P.K. Nayak, N.K. Noel, A.A. Haghighirad, V.M. Burlakov, D.W. deQuilettes, A. Sadhanala, W. Li, L. Wang, D.S. Ginger, R.H. Friend, H.J. Snaith, Enhanced optoelectronic quality of perovskite thin films with hypophosphorous acid for planar heterojunction solar cells. Nat. Commun. 6, 10030 (2015)CrossRef
25.
Zurück zum Zitat P. Pattanasattayavong et al., Hole-transporting transistors and circuits based on the transparent inorganic semiconductor copper(I) thiocyanate (CuSCN) processed from solution. Adv. Mater. 25, 1504–1509 (2013)CrossRef P. Pattanasattayavong et al., Hole-transporting transistors and circuits based on the transparent inorganic semiconductor copper(I) thiocyanate (CuSCN) processed from solution. Adv. Mater. 25, 1504–1509 (2013)CrossRef
26.
Zurück zum Zitat P. Pattansattayavong et al., Electricield-induced hole transport in copper(I) thiocyaniate (CuSCN) thin-films processed from solution at room temperature. Chem. Commun. 49, 4154–4156 (2013)CrossRef P. Pattansattayavong et al., Electricield-induced hole transport in copper(I) thiocyaniate (CuSCN) thin-films processed from solution at room temperature. Chem. Commun. 49, 4154–4156 (2013)CrossRef
27.
Zurück zum Zitat G. Murugadoss, R. Thangamuthu, S.M.S. Kumar, Fabrication of CH3NH3PbI3 perovskite-based solar cells: developing various new solvents for CuSCN hole transport material. Sol. Energy Mater. Sol. Cells. 164, 56–62 (2017)CrossRef G. Murugadoss, R. Thangamuthu, S.M.S. Kumar, Fabrication of CH3NH3PbI3 perovskite-based solar cells: developing various new solvents for CuSCN hole transport material. Sol. Energy Mater. Sol. Cells. 164, 56–62 (2017)CrossRef
28.
Zurück zum Zitat G. Murugadoss, R. Thangamuthu, M.R. Kumar, S.M.S. Kumar, V. Prabu, Air free fast solution annealing method for perovskite solar cells. Mater. Lett. 205, 130–133 (2017)CrossRef G. Murugadoss, R. Thangamuthu, M.R. Kumar, S.M.S. Kumar, V. Prabu, Air free fast solution annealing method for perovskite solar cells. Mater. Lett. 205, 130–133 (2017)CrossRef
29.
Zurück zum Zitat K. Takahashi, Y. Suzuki, Perovskite solar cells with CuI inorganic hole conductor. Jpn. J. Appl. Phys. 56, 08MC04 (2017)CrossRef K. Takahashi, Y. Suzuki, Perovskite solar cells with CuI inorganic hole conductor. Jpn. J. Appl. Phys. 56, 08MC04 (2017)CrossRef
30.
Zurück zum Zitat S. Chavhan, O. Miguel, H.-J. Grande, V. Gonzalez-Pedro, R.S. Sanchez, E.M. Barea, I. Mora-Sero, R. Tena-Zaera, Organo-metal halide perovskite-based solar cells with CuSCN as the inorganic hole selective contact. J. Mater. Chem. A 2, 12754 (2014)CrossRef S. Chavhan, O. Miguel, H.-J. Grande, V. Gonzalez-Pedro, R.S. Sanchez, E.M. Barea, I. Mora-Sero, R. Tena-Zaera, Organo-metal halide perovskite-based solar cells with CuSCN as the inorganic hole selective contact. J. Mater. Chem. A 2, 12754 (2014)CrossRef
Metadaten
Titel
Inorganic based hole transport materials for perovskite solar cells
verfasst von
S. Karuppuchamy
G. Murugadoss
K. Ramachandran
Vibha Saxena
R. Thangamuthu
Publikationsdatum
16.03.2018
Verlag
Springer US
Erschienen in
Journal of Materials Science: Materials in Electronics / Ausgabe 10/2018
Print ISSN: 0957-4522
Elektronische ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-018-8902-x

Weitere Artikel der Ausgabe 10/2018

Journal of Materials Science: Materials in Electronics 10/2018 Zur Ausgabe

Neuer Inhalt