Skip to main content
Erschienen in: Journal of Materials Science: Materials in Electronics 16/2019

20.07.2019

Synthesis, structure, and gas sensing of icicle-like NiO/In2O3 nanocomposites

verfasst von: Ou-Hsiang Lee, Wenjea J. Tseng

Erschienen in: Journal of Materials Science: Materials in Electronics | Ausgabe 16/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

One-dimensional In2O3 nanoicicles with decorative NiO nanoparticles have been prepared facilely by thermal vapor transport and chemical wet deposition followed by heat treatment. Growth of the single-crystalline In2O3 nanoicicles depends critically on temperature at which oxygen was introduced. An aggregated assembly of In2O3 nanorods with pyramidal tip first appears, which evolves into discrete, tapered nanoicicle geometry at 900 °C as the isothermal time lengthens. Gas-sensing properties of the nanoicicles have been examined against oxidizing NO2 and reducing H2S gases, respectively, over a range of working temperatures. A pronouncedly enhanced sensing response toward NO2 has been found for the NiO/In2O3 composite nanoicicles at a relatively low working temperature (≤ 100 °C), when compared to the pristine In2O3 counterpart. More importantly, the composite nanoicicles also show a sensing response of 25 times higher for the oxidizing NO2 gas than for the reducing H2S gas.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat J. Zhang, X. Liu, G. Neri, N. Pinna, Nanostructured materials for room-temperature gas sensors. Adv. Mater. 28, 795–831 (2016)CrossRef J. Zhang, X. Liu, G. Neri, N. Pinna, Nanostructured materials for room-temperature gas sensors. Adv. Mater. 28, 795–831 (2016)CrossRef
2.
Zurück zum Zitat Z.L. Wang, Self-powered nanosensors and nanosystems. Adv. Mater. 24, 280–285 (2012)CrossRef Z.L. Wang, Self-powered nanosensors and nanosystems. Adv. Mater. 24, 280–285 (2012)CrossRef
3.
Zurück zum Zitat P.-C. Chen, G. Shen, C. Zhou, Chemical sensors and electronic noses based on 1-D metal oxide nanostructures. IEEE Trans. Nanotechnol. 7, 668–682 (2008)CrossRef P.-C. Chen, G. Shen, C. Zhou, Chemical sensors and electronic noses based on 1-D metal oxide nanostructures. IEEE Trans. Nanotechnol. 7, 668–682 (2008)CrossRef
4.
Zurück zum Zitat I.-D. Kim, A. Rothschild, H.L. Tuller, Advances and new directions in gas-sensing devices. Acta Mater. 61, 974–1000 (2013)CrossRef I.-D. Kim, A. Rothschild, H.L. Tuller, Advances and new directions in gas-sensing devices. Acta Mater. 61, 974–1000 (2013)CrossRef
5.
Zurück zum Zitat C. Li, D. Zhang, X. Liu, S. Han, T. Tang, J. Han, C. Zhou, In2O3 nanowires as chemical sensors. Appl. Phys. Lett. 82, 1613–1615 (2003)CrossRef C. Li, D. Zhang, X. Liu, S. Han, T. Tang, J. Han, C. Zhou, In2O3 nanowires as chemical sensors. Appl. Phys. Lett. 82, 1613–1615 (2003)CrossRef
6.
Zurück zum Zitat C. Li, D. Zhang, B. Lei, S. Han, X. Liu, C. Zhou, Surface treatment and doping dependence of In2O3 nanowires as ammonia sensors. J. Phys. Chem. B 107, 12451–12455 (2003)CrossRef C. Li, D. Zhang, B. Lei, S. Han, X. Liu, C. Zhou, Surface treatment and doping dependence of In2O3 nanowires as ammonia sensors. J. Phys. Chem. B 107, 12451–12455 (2003)CrossRef
7.
Zurück zum Zitat D. Zhang, Z. Liu, C. Li, T. Tang, X. Liu, S. Han, B. Lei, C. Zhou, Detection of NO2 down to ppb levels using individual and multiple In2O3 nanowire devices. Nano Lett. 4, 1919–1924 (2004)CrossRef D. Zhang, Z. Liu, C. Li, T. Tang, X. Liu, S. Han, B. Lei, C. Zhou, Detection of NO2 down to ppb levels using individual and multiple In2O3 nanowire devices. Nano Lett. 4, 1919–1924 (2004)CrossRef
8.
Zurück zum Zitat Z. Zeng, K. Wang, Z. Zhang, J. Chen, W. Zhou, The detection of H2S at room temperature by using individual indium oxide nanowire transistors. Nanotechnology 20, 045503 (2009)CrossRef Z. Zeng, K. Wang, Z. Zhang, J. Chen, W. Zhou, The detection of H2S at room temperature by using individual indium oxide nanowire transistors. Nanotechnology 20, 045503 (2009)CrossRef
9.
Zurück zum Zitat N. Singh, C. Yan, P.S. Lee, E. Comini, Sensing properties of different classes of gases based on the nanowire-electrode junction barrier modulation. Nanoscale 3, 1760–1765 (2011)CrossRef N. Singh, C. Yan, P.S. Lee, E. Comini, Sensing properties of different classes of gases based on the nanowire-electrode junction barrier modulation. Nanoscale 3, 1760–1765 (2011)CrossRef
10.
Zurück zum Zitat P. Gali, G. Sapkota, A.J. Syllaios, C. Littler, U. Philipose, Stoichiometry dependent electron transport and gas sensing properties of indium oxide nanowires. Nanotechnology 24, 225704 (2013)CrossRef P. Gali, G. Sapkota, A.J. Syllaios, C. Littler, U. Philipose, Stoichiometry dependent electron transport and gas sensing properties of indium oxide nanowires. Nanotechnology 24, 225704 (2013)CrossRef
11.
Zurück zum Zitat J.-H. Lee, Gas sensors using hierarchical and hollow oxide nanostructures: overview. Sens. Actuators B 140, 319–336 (2009)CrossRef J.-H. Lee, Gas sensors using hierarchical and hollow oxide nanostructures: overview. Sens. Actuators B 140, 319–336 (2009)CrossRef
12.
Zurück zum Zitat N. Singh, R.K. Gupta, P.S. Lee, Gold-nanoparticle-functionalized In2O3 nanowires as CO gas sensors with a significant enhancement in response. ACS Appl. Mater. Interface 3, 2246–2252 (2011)CrossRef N. Singh, R.K. Gupta, P.S. Lee, Gold-nanoparticle-functionalized In2O3 nanowires as CO gas sensors with a significant enhancement in response. ACS Appl. Mater. Interface 3, 2246–2252 (2011)CrossRef
13.
Zurück zum Zitat X. Zou, J. Wang, X. Liu, C. Wang, Y. Jiang, Y. Wang, X. Xiao, J.C. Ho, J. Li, C. Jiang, Y. Fang, W. Liu, L. Liao, Rational design of sub-parts per million specific gas sensors array based on metal nanoparticles decorated nanowire enhancement-mode transistors. Nano Lett. 13, 3287–3292 (2013)CrossRef X. Zou, J. Wang, X. Liu, C. Wang, Y. Jiang, Y. Wang, X. Xiao, J.C. Ho, J. Li, C. Jiang, Y. Fang, W. Liu, L. Liao, Rational design of sub-parts per million specific gas sensors array based on metal nanoparticles decorated nanowire enhancement-mode transistors. Nano Lett. 13, 3287–3292 (2013)CrossRef
14.
Zurück zum Zitat B. Liu, D. Cai, Y. Liu, H. Li, C. Weng, G. Zeng, Q. Li, T. Wang, High-performance room-temperature hydrogen sensors based on combined effects of Pd decoration and Schottky barriers. Nanoscale 5, 2505–2510 (2013)CrossRef B. Liu, D. Cai, Y. Liu, H. Li, C. Weng, G. Zeng, Q. Li, T. Wang, High-performance room-temperature hydrogen sensors based on combined effects of Pd decoration and Schottky barriers. Nanoscale 5, 2505–2510 (2013)CrossRef
15.
Zurück zum Zitat Q. Qi, P.-P. Wang, J. Zhao, L.-L. Feng, L.-J. Zhou, R.-F. Xuan, Y.-P. Liu, G.-D. Li, SnO2 nanoparticle-coated In2O3 nanofibers with improved NH3 sensing properties. Sens. Actuators B 194, 440–446 (2014)CrossRef Q. Qi, P.-P. Wang, J. Zhao, L.-L. Feng, L.-J. Zhou, R.-F. Xuan, Y.-P. Liu, G.-D. Li, SnO2 nanoparticle-coated In2O3 nanofibers with improved NH3 sensing properties. Sens. Actuators B 194, 440–446 (2014)CrossRef
16.
Zurück zum Zitat L. Wang, J. Gao, B. Wu, K. Kan, S. Xu, Y. Xie, L. Li, K. Shi, Designed synthesis of In2O3 beads@TiO2-In2O3 composite nanofibers for high performance NO2 sensor at room temperature. ACS Appl. Mater. Interfaces 7, 27152–27159 (2015)CrossRef L. Wang, J. Gao, B. Wu, K. Kan, S. Xu, Y. Xie, L. Li, K. Shi, Designed synthesis of In2O3 beads@TiO2-In2O3 composite nanofibers for high performance NO2 sensor at room temperature. ACS Appl. Mater. Interfaces 7, 27152–27159 (2015)CrossRef
17.
Zurück zum Zitat X.J. Yue, T.S. Hong, Z. Yang, S.P. Huang, Room temperature H2S micro-sensors with anti-humidity properties fabricated from NiO–In2O3 composite nanofibers. Chin. Sci. Bull. 58, 821–826 (2013)CrossRef X.J. Yue, T.S. Hong, Z. Yang, S.P. Huang, Room temperature H2S micro-sensors with anti-humidity properties fabricated from NiO–In2O3 composite nanofibers. Chin. Sci. Bull. 58, 821–826 (2013)CrossRef
18.
Zurück zum Zitat X. Liang, T.-H. Kim, J.-W. Yoon, C.-H. Kwak, J.-H. Lee, Ultrasensitive and ultraselective detection of H2S using electrospun CuO-loaded In2O3 nanofiber sensors assisted by pulse heating. Sens. Actuators B 209, 934–942 (2015)CrossRef X. Liang, T.-H. Kim, J.-W. Yoon, C.-H. Kwak, J.-H. Lee, Ultrasensitive and ultraselective detection of H2S using electrospun CuO-loaded In2O3 nanofiber sensors assisted by pulse heating. Sens. Actuators B 209, 934–942 (2015)CrossRef
19.
Zurück zum Zitat S. Park, S. Kim, G.-J. Sun, C. Lee, Synthesis, structure, and ethanol gas sensing properties of In2O3 nanorods decorated with Bi2O3 nanoparticles. ACS Appl. Mater. Interfaces 7, 8138–8146 (2015)CrossRef S. Park, S. Kim, G.-J. Sun, C. Lee, Synthesis, structure, and ethanol gas sensing properties of In2O3 nanorods decorated with Bi2O3 nanoparticles. ACS Appl. Mater. Interfaces 7, 8138–8146 (2015)CrossRef
20.
Zurück zum Zitat H.-R. Kim, A. Haensch, I.-D. Kim, N. Barsan, U. Weimar, J.-H. Lee, The role of NiO doping in reducing the impact of humidity on the performance of SnO2-based gas sensors: synthesis strategies, and phenomenological and spectroscopic studies. Adv. Funct. Mater. 21, 4456–4463 (2011)CrossRef H.-R. Kim, A. Haensch, I.-D. Kim, N. Barsan, U. Weimar, J.-H. Lee, The role of NiO doping in reducing the impact of humidity on the performance of SnO2-based gas sensors: synthesis strategies, and phenomenological and spectroscopic studies. Adv. Funct. Mater. 21, 4456–4463 (2011)CrossRef
21.
Zurück zum Zitat N. Du, H. Zhang, B. Chen, X. Ma, Z. Liu, J. Wu, D. Yang, Porous indium oxide nanotubes: layer-by-layer assembly on carbon-nanotube templates and application for room-temperature NH3 gas sensors. Adv. Mater. 19, 1641–1645 (2007)CrossRef N. Du, H. Zhang, B. Chen, X. Ma, Z. Liu, J. Wu, D. Yang, Porous indium oxide nanotubes: layer-by-layer assembly on carbon-nanotube templates and application for room-temperature NH3 gas sensors. Adv. Mater. 19, 1641–1645 (2007)CrossRef
22.
Zurück zum Zitat X. Mu, C. Chen, L. Han, B. Shao, Y. Wei, Q. Liu, P. Zhu, Indium oxide octahedrons based on sol–gel process enhance room temperature gas sensing performance. J. Alloy. Compd. 637, 55–61 (2015)CrossRef X. Mu, C. Chen, L. Han, B. Shao, Y. Wei, Q. Liu, P. Zhu, Indium oxide octahedrons based on sol–gel process enhance room temperature gas sensing performance. J. Alloy. Compd. 637, 55–61 (2015)CrossRef
23.
Zurück zum Zitat S. Roso, C. Bittencourt, P. Umek, O. González, F. Güell, A. Urakawa, E. Llobet, Synthesis of single crystalline In2O3 octahedra for the selective detection of NO2 and H2 at trace levels. J. Mater. Chem. C 4, 9418–9427 (2016)CrossRef S. Roso, C. Bittencourt, P. Umek, O. González, F. Güell, A. Urakawa, E. Llobet, Synthesis of single crystalline In2O3 octahedra for the selective detection of NO2 and H2 at trace levels. J. Mater. Chem. C 4, 9418–9427 (2016)CrossRef
24.
Zurück zum Zitat Z.Q. Zheng, L.F. Zhu, B. Wang, In2O3 nanotower hydrogen gas sensors based on both Schottky junction and thermoelectronic emission. Nanoscale Res. Lett. 10, 293 (2015)CrossRef Z.Q. Zheng, L.F. Zhu, B. Wang, In2O3 nanotower hydrogen gas sensors based on both Schottky junction and thermoelectronic emission. Nanoscale Res. Lett. 10, 293 (2015)CrossRef
25.
Zurück zum Zitat S.-T. Jean, Y.-C. Her, Growth mechanism and photoluminescence properties of In2O3 nanotowers. Cryst. Growth Des. 10, 2104–2110 (2010)CrossRef S.-T. Jean, Y.-C. Her, Growth mechanism and photoluminescence properties of In2O3 nanotowers. Cryst. Growth Des. 10, 2104–2110 (2010)CrossRef
26.
Zurück zum Zitat J. Liu, S. Li, B. Zhang, Y. Wang, Y. Gao, X. Liang, Y. Wang, G. Lu, Flower-like In2O3 modified by reduced graphene oxide sheets serving as a highly sensitive gas sensor for trace NO2 detection. J. Colloid Interface Sci. 504, 206–213 (2017)CrossRef J. Liu, S. Li, B. Zhang, Y. Wang, Y. Gao, X. Liang, Y. Wang, G. Lu, Flower-like In2O3 modified by reduced graphene oxide sheets serving as a highly sensitive gas sensor for trace NO2 detection. J. Colloid Interface Sci. 504, 206–213 (2017)CrossRef
27.
Zurück zum Zitat T.-T. Tseng, W.J. Tseng, Effect of polyvinylpyrrolidone on morphology and structure of In2O3 nanorods by hydrothermal synthesis. Ceram. Int. 35, 2837–2844 (2009)CrossRef T.-T. Tseng, W.J. Tseng, Effect of polyvinylpyrrolidone on morphology and structure of In2O3 nanorods by hydrothermal synthesis. Ceram. Int. 35, 2837–2844 (2009)CrossRef
28.
Zurück zum Zitat H.-Y. Lai, T.-H. Chen, C.-H. Chen, Architecture controlled synthesis of flower-like In2O3 nanobundles with significantly enhanced ultraviolet scattering and ethanol sensing. CrystEngComm 14, 5589–5595 (2012)CrossRef H.-Y. Lai, T.-H. Chen, C.-H. Chen, Architecture controlled synthesis of flower-like In2O3 nanobundles with significantly enhanced ultraviolet scattering and ethanol sensing. CrystEngComm 14, 5589–5595 (2012)CrossRef
29.
Zurück zum Zitat Q. Tang, W. Zhou, W. Zhang, S. Ou, K. Jiang, W. Yu, Y. Qian, Size-controllable growth of single crystal In(OH)3 and In2O3 nanocubes. Cryst. Growth Des. 5, 147–150 (2005)CrossRef Q. Tang, W. Zhou, W. Zhang, S. Ou, K. Jiang, W. Yu, Y. Qian, Size-controllable growth of single crystal In(OH)3 and In2O3 nanocubes. Cryst. Growth Des. 5, 147–150 (2005)CrossRef
30.
Zurück zum Zitat W.J. Tseng, T.-T. Tseng, H.-M. Wu, Y.-C. Her, T.-J. Yang, Facile synthesis of monodispersed In2O3 hollow spheres and application in photocatalysis and gas sensing. J. Am. Ceram. Soc. 96, 719–725 (2013)CrossRef W.J. Tseng, T.-T. Tseng, H.-M. Wu, Y.-C. Her, T.-J. Yang, Facile synthesis of monodispersed In2O3 hollow spheres and application in photocatalysis and gas sensing. J. Am. Ceram. Soc. 96, 719–725 (2013)CrossRef
31.
Zurück zum Zitat H. Zhang, X. Xu, Y. Zhu, K. Bao, Z. Lu, P. Sun, Y. Sun, G. Lu, Synthesis and NO2 gas-sensing properties of coral-like indium oxide via a facile solvothermal method. RSC Adv. 7, 49273–49278 (2017)CrossRef H. Zhang, X. Xu, Y. Zhu, K. Bao, Z. Lu, P. Sun, Y. Sun, G. Lu, Synthesis and NO2 gas-sensing properties of coral-like indium oxide via a facile solvothermal method. RSC Adv. 7, 49273–49278 (2017)CrossRef
32.
Zurück zum Zitat J.S. Jeong, J.Y. Lee, C.J. Lee, S.J. An, G.-C. Yi, Synthesis and characterization of high-quality In2O3 nanobelts via catalyst-free growth using a simple physical vapor deposition at low temperature. Chem. Phys. Lett. 384, 246–250 (2004)CrossRef J.S. Jeong, J.Y. Lee, C.J. Lee, S.J. An, G.-C. Yi, Synthesis and characterization of high-quality In2O3 nanobelts via catalyst-free growth using a simple physical vapor deposition at low temperature. Chem. Phys. Lett. 384, 246–250 (2004)CrossRef
33.
Zurück zum Zitat A. Qurashi, E.M. El-Maghraby, T. Yamazaki, T. Kikuta, Catalyst supported growth of In2O3 nanostructures and their hydrogen gas sensing properties. Sens. Actuators B 147, 48–54 (2010)CrossRef A. Qurashi, E.M. El-Maghraby, T. Yamazaki, T. Kikuta, Catalyst supported growth of In2O3 nanostructures and their hydrogen gas sensing properties. Sens. Actuators B 147, 48–54 (2010)CrossRef
34.
Zurück zum Zitat B.-Y. Yeh, P.-F. Huang, W.J. Tseng, Enhanced room-temperature NO2 gas sensing with TeO2/SnO2 brush- and bead-like nanowire hybrid structures. Nanotechnology 28, 045501 (2017)CrossRef B.-Y. Yeh, P.-F. Huang, W.J. Tseng, Enhanced room-temperature NO2 gas sensing with TeO2/SnO2 brush- and bead-like nanowire hybrid structures. Nanotechnology 28, 045501 (2017)CrossRef
35.
Zurück zum Zitat B.-Y. Yeh, B.-S. Jian, G.-J. Wang, W.J. Tseng, CuO/V2O5 hybrid nanowires for highly sensitive and selective H2S gas sensor. RSC Adv. 7, 49605–49612 (2017)CrossRef B.-Y. Yeh, B.-S. Jian, G.-J. Wang, W.J. Tseng, CuO/V2O5 hybrid nanowires for highly sensitive and selective H2S gas sensor. RSC Adv. 7, 49605–49612 (2017)CrossRef
36.
Zurück zum Zitat Y.-G. Yan, Y. Zhang, H.-B. Zeng, L.-D. Zhang, In2O3 nanotowers: controlled synthesis and mechanism analysis. Cryst. Growth Des. 7, 940–943 (2007)CrossRef Y.-G. Yan, Y. Zhang, H.-B. Zeng, L.-D. Zhang, In2O3 nanotowers: controlled synthesis and mechanism analysis. Cryst. Growth Des. 7, 940–943 (2007)CrossRef
37.
Zurück zum Zitat G. Jo, W.-K. Hong, J. Maeng, T.-W. Kim, G. Wang, A. Yoon, S.-S. Kwon, S. Song, T. Lee, Structural and electrical characterization of intrinsic n-type In2O3 nanowires. Colloid. Surf. A 313–314, 308–311 (2008)CrossRef G. Jo, W.-K. Hong, J. Maeng, T.-W. Kim, G. Wang, A. Yoon, S.-S. Kwon, S. Song, T. Lee, Structural and electrical characterization of intrinsic n-type In2O3 nanowires. Colloid. Surf. A 313–314, 308–311 (2008)CrossRef
38.
Zurück zum Zitat N. Hernández, R. Moreno, A.J. Sánchez-Herencia, J.L.G. Fierro, Surface behavior of nickel powders in aqueous suspensions. J. Phys. Chem. B 109, 4470–4474 (2005)CrossRef N. Hernández, R. Moreno, A.J. Sánchez-Herencia, J.L.G. Fierro, Surface behavior of nickel powders in aqueous suspensions. J. Phys. Chem. B 109, 4470–4474 (2005)CrossRef
39.
Zurück zum Zitat J.-W. Yoon, J.-S. Kim, T.-H. Kim, Y.J. Hong, Y.C. Kang, J.-H. Lee, A new strategy for humidity independent oxide chemiresistors: dynamic self-refreshing of In2O3 sensing surface assisted by layer-by-layer coated CeO2 nanoclusters. Small 12, 4229–4240 (2016)CrossRef J.-W. Yoon, J.-S. Kim, T.-H. Kim, Y.J. Hong, Y.C. Kang, J.-H. Lee, A new strategy for humidity independent oxide chemiresistors: dynamic self-refreshing of In2O3 sensing surface assisted by layer-by-layer coated CeO2 nanoclusters. Small 12, 4229–4240 (2016)CrossRef
40.
Zurück zum Zitat K. Suematsu, M. Sasaki, N. Ma, M. Yuasa, K. Shimanoe, Antimony-doped tin dioxide gas sensors exhibiting high stability in the sensitivity to humidity changes. ACS Sensors 1, 913–920 (2016)CrossRef K. Suematsu, M. Sasaki, N. Ma, M. Yuasa, K. Shimanoe, Antimony-doped tin dioxide gas sensors exhibiting high stability in the sensitivity to humidity changes. ACS Sensors 1, 913–920 (2016)CrossRef
41.
Zurück zum Zitat H. Zhu, Q. Li, Y. Ren, Q. Gao, J. Chen, N. Wang, J. Deng, X. Xing, A new insight into cross-sensitivity to humidity of SnO2 sensor. Small 14, 1703974 (2018)CrossRef H. Zhu, Q. Li, Y. Ren, Q. Gao, J. Chen, N. Wang, J. Deng, X. Xing, A new insight into cross-sensitivity to humidity of SnO2 sensor. Small 14, 1703974 (2018)CrossRef
42.
Zurück zum Zitat J. Wang, P. Yang, X. Wei, The high-performance, room-temperature and no-humidity-impact ammonia sensor based on heterogeneous nickel oxide and zinc oxide nanocrystals. ACS Appl. Mater. Interf. 7, 3816–3824 (2015)CrossRef J. Wang, P. Yang, X. Wei, The high-performance, room-temperature and no-humidity-impact ammonia sensor based on heterogeneous nickel oxide and zinc oxide nanocrystals. ACS Appl. Mater. Interf. 7, 3816–3824 (2015)CrossRef
Metadaten
Titel
Synthesis, structure, and gas sensing of icicle-like NiO/In2O3 nanocomposites
verfasst von
Ou-Hsiang Lee
Wenjea J. Tseng
Publikationsdatum
20.07.2019
Verlag
Springer US
Erschienen in
Journal of Materials Science: Materials in Electronics / Ausgabe 16/2019
Print ISSN: 0957-4522
Elektronische ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-019-01888-8

Weitere Artikel der Ausgabe 16/2019

Journal of Materials Science: Materials in Electronics 16/2019 Zur Ausgabe

Neuer Inhalt