Skip to main content
Erschienen in: Journal of Scientific Computing 2/2017

16.11.2016

High-Order Numerical Algorithms for Riesz Derivatives via Constructing New Generating Functions

verfasst von: Hengfei Ding, Changpin Li

Erschienen in: Journal of Scientific Computing | Ausgabe 2/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A class of high-order numerical algorithms for Riesz derivatives are established through constructing new generating functions. Such new high-order formulas can be regarded as the modification of the classical (or shifted) Lubich’s difference ones, which greatly improve the convergence orders and stability for time-dependent problems with Riesz derivatives. In rapid sequence, we apply the 2nd-order formula to one-dimension Riesz spatial fractional partial differential equations to establish an unconditionally stable finite difference scheme with convergent order \({\mathcal {O}}(\tau ^2+h^2)\), where \(\tau \) and h are the temporal and spatial stepsizes, respectively. Finally, some numerical experiments are performed to confirm the theoretical results and testify the effectiveness of the derived numerical algorithms.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
2.
Zurück zum Zitat Bailey, W.N.: Generalized Hypergeometric Series. Stechert-Hafner Inc, New York (1964)MATH Bailey, W.N.: Generalized Hypergeometric Series. Stechert-Hafner Inc, New York (1964)MATH
3.
Zurück zum Zitat Çelik, C., Duman, M.: Crank-Nicolson method for the fractional diffusion equation with the Riesz fractional derivative. J. Comput. Phys. 231, 1743–1750 (2012)MathSciNetMATHCrossRef Çelik, C., Duman, M.: Crank-Nicolson method for the fractional diffusion equation with the Riesz fractional derivative. J. Comput. Phys. 231, 1743–1750 (2012)MathSciNetMATHCrossRef
4.
Zurück zum Zitat Chan, R.H.: Toeplitz preconditioners for Toeplitz systems with nonnegative generating functions. IMA J. Numer. Anal. 11, 333–345 (1991)MathSciNetMATHCrossRef Chan, R.H.: Toeplitz preconditioners for Toeplitz systems with nonnegative generating functions. IMA J. Numer. Anal. 11, 333–345 (1991)MathSciNetMATHCrossRef
5.
Zurück zum Zitat Chan, R.H., Jin, X.Q.: An Introduction to Iterative Toeplitz Solvers. SIAM, Philadelphia (2007)MATHCrossRef Chan, R.H., Jin, X.Q.: An Introduction to Iterative Toeplitz Solvers. SIAM, Philadelphia (2007)MATHCrossRef
6.
Zurück zum Zitat Chen, M.H., Deng, W.H.: WSLD operators: a class of fourth order difference approximations for space Riemann–Liouville derivative. SIAM J. Numer. Anal. 52, 1418–1438 (2014)MathSciNetCrossRef Chen, M.H., Deng, W.H.: WSLD operators: a class of fourth order difference approximations for space Riemann–Liouville derivative. SIAM J. Numer. Anal. 52, 1418–1438 (2014)MathSciNetCrossRef
7.
Zurück zum Zitat Chen, S., Shen, J., Wang, L.L.: Generalized Jacobi functions and their applications to fractional differential equations. Math. Comput. 79, 807–827 (2016) Chen, S., Shen, J., Wang, L.L.: Generalized Jacobi functions and their applications to fractional differential equations. Math. Comput. 79, 807–827 (2016)
8.
Zurück zum Zitat Chen, S., Jiang, X., Liu, F., Turner, I.: High order unconditionally stable difference schemes for the Riesz space-fractional telegraph equation. J. Comput. Appl. Math. 278, 119–129 (2015)MathSciNetMATHCrossRef Chen, S., Jiang, X., Liu, F., Turner, I.: High order unconditionally stable difference schemes for the Riesz space-fractional telegraph equation. J. Comput. Appl. Math. 278, 119–129 (2015)MathSciNetMATHCrossRef
9.
Zurück zum Zitat Ding, H.F., Li, C.P., Chen, Y.Q.: High-order algorithms for Riesz derivative and their applications (II). J. Comput. Phys. 293, 218–237 (2015)MathSciNetMATHCrossRef Ding, H.F., Li, C.P., Chen, Y.Q.: High-order algorithms for Riesz derivative and their applications (II). J. Comput. Phys. 293, 218–237 (2015)MathSciNetMATHCrossRef
10.
Zurück zum Zitat Ervin, V.J., Roop, J.P.: Variational formulation for the stationary fractional advection dispersion equation. Numer. Methods Partial Differ. Equ. 22, 558–576 (2006)MathSciNetMATHCrossRef Ervin, V.J., Roop, J.P.: Variational formulation for the stationary fractional advection dispersion equation. Numer. Methods Partial Differ. Equ. 22, 558–576 (2006)MathSciNetMATHCrossRef
11.
Zurück zum Zitat Feller, W.: On a generalization of Marcel Riesz’ potentials and the semi-groups generated by them. Commun. Sém. Math. Univ. Lund. 1, 73–81 (1952) Feller, W.: On a generalization of Marcel Riesz’ potentials and the semi-groups generated by them. Commun. Sém. Math. Univ. Lund. 1, 73–81 (1952)
12.
Zurück zum Zitat Garrappaa, R., Moretb, I., Popolizioc, M.: Solving the time-fractional Schrödinger equation by Krylov projection methods. J. Comput. Phys. 293, 115–134 (2015)MathSciNetCrossRef Garrappaa, R., Moretb, I., Popolizioc, M.: Solving the time-fractional Schrödinger equation by Krylov projection methods. J. Comput. Phys. 293, 115–134 (2015)MathSciNetCrossRef
13.
Zurück zum Zitat Huang, J., Tang, Y., Vázquez, L., Yang, J.: Two finite difference schemes for time fractional diffusion-wave equation. Numer. Algorithms 64, 707–720 (2013)MathSciNetMATHCrossRef Huang, J., Tang, Y., Vázquez, L., Yang, J.: Two finite difference schemes for time fractional diffusion-wave equation. Numer. Algorithms 64, 707–720 (2013)MathSciNetMATHCrossRef
14.
Zurück zum Zitat Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006)MATH Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006)MATH
16.
Zurück zum Zitat Li, C.P., Ding, H.F.: Higher order finite difference method for the reaction and anomalous-diffusion equation. Appl. Math. Model. 38, 3802–3821 (2014)MathSciNetCrossRef Li, C.P., Ding, H.F.: Higher order finite difference method for the reaction and anomalous-diffusion equation. Appl. Math. Model. 38, 3802–3821 (2014)MathSciNetCrossRef
17.
Zurück zum Zitat Miller, K.S., Ross, B.: An Introduction to the Fractional Calculus and Fractional Differential Equations. Wiley, New York (1993)MATH Miller, K.S., Ross, B.: An Introduction to the Fractional Calculus and Fractional Differential Equations. Wiley, New York (1993)MATH
18.
Zurück zum Zitat Meerschaert, M.M., Tadjeran, C.: Finite difference approximations for fractional advection–dispersion flow equations. J. Comput. Appl. Math. 172, 65–77 (2004)MathSciNetMATHCrossRef Meerschaert, M.M., Tadjeran, C.: Finite difference approximations for fractional advection–dispersion flow equations. J. Comput. Appl. Math. 172, 65–77 (2004)MathSciNetMATHCrossRef
19.
Zurück zum Zitat Metzler, R., Klafter, J.: The random walks guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339, 1–77 (2000)MathSciNetMATHCrossRef Metzler, R., Klafter, J.: The random walks guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339, 1–77 (2000)MathSciNetMATHCrossRef
20.
21.
Zurück zum Zitat Ortigueira, M.D.: Riesz potential operators and inverses via fractional centred derivatives. Int. J. Math. Math. Sci. 2006, Article ID 48391, 1–2 (2006) Ortigueira, M.D.: Riesz potential operators and inverses via fractional centred derivatives. Int. J. Math. Math. Sci. 2006, Article ID 48391, 1–2 (2006)
22.
Zurück zum Zitat Oldham, K.B., Spanier, J.: The Fractional Calculus. Academic Press, New York (1974)MATH Oldham, K.B., Spanier, J.: The Fractional Calculus. Academic Press, New York (1974)MATH
23.
Zurück zum Zitat Podlubny, I.: Fractional Differential Equations. Academin Press, San Diego (1999)MATH Podlubny, I.: Fractional Differential Equations. Academin Press, San Diego (1999)MATH
24.
Zurück zum Zitat Quarteroni, A., Sacco, R., Saleri, F.: Numerical Mathematics, 2nd edn. Springer, New York (2007)MATHCrossRef Quarteroni, A., Sacco, R., Saleri, F.: Numerical Mathematics, 2nd edn. Springer, New York (2007)MATHCrossRef
25.
Zurück zum Zitat Rall, L.B.: Perspectives on Automatic Differentiation: Past, Present, and Future? Automatic Differentiation: Applications, Theory, and Implementations. Springer, Berlin (2006)MATH Rall, L.B.: Perspectives on Automatic Differentiation: Past, Present, and Future? Automatic Differentiation: Applications, Theory, and Implementations. Springer, Berlin (2006)MATH
26.
27.
Zurück zum Zitat Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives, Theory and Applications. Gordon and Breach, London (1993)MATH Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives, Theory and Applications. Gordon and Breach, London (1993)MATH
28.
29.
30.
Zurück zum Zitat Tian, W.Y., Zhou, H., Deng, W.H.: A class of second order difference approximations for solving space fractional diffusion equations. Math. Comput. 84, 1703–1727 (2015)MathSciNetMATHCrossRef Tian, W.Y., Zhou, H., Deng, W.H.: A class of second order difference approximations for solving space fractional diffusion equations. Math. Comput. 84, 1703–1727 (2015)MathSciNetMATHCrossRef
31.
Zurück zum Zitat Wang, H., Du, N.: Fast alternating-direction finite difference methods for three-dimensional space-fractional diffusion equations. J. Comput. Phys. 258, 305–318 (2014)MathSciNetMATHCrossRef Wang, H., Du, N.: Fast alternating-direction finite difference methods for three-dimensional space-fractional diffusion equations. J. Comput. Phys. 258, 305–318 (2014)MathSciNetMATHCrossRef
32.
Zurück zum Zitat Wang, Z., Vong, S.: Compact difference schemes for the modified anomalous fractional sub-diffusion equation and the fractional diffusion-wave equation. J. Comput. Phys. 277, 1–15 (2014)MathSciNetMATHCrossRef Wang, Z., Vong, S.: Compact difference schemes for the modified anomalous fractional sub-diffusion equation and the fractional diffusion-wave equation. J. Comput. Phys. 277, 1–15 (2014)MathSciNetMATHCrossRef
33.
Zurück zum Zitat Xu, Q., Hesthaven, J.S., Chen, F.: A parareal method for time-fractional differential equations. J. Comput. Phys. 293, 173–183 (2015)MathSciNetMATHCrossRef Xu, Q., Hesthaven, J.S., Chen, F.: A parareal method for time-fractional differential equations. J. Comput. Phys. 293, 173–183 (2015)MathSciNetMATHCrossRef
34.
Zurück zum Zitat Yuste, S.B., Acedo, L.: An explicit finite difference method and a new von Neumann-type stability analysis for fractional diffusion equations. SIAM J. Numer. Anal. 42, 1862–1874 (2005)MathSciNetMATHCrossRef Yuste, S.B., Acedo, L.: An explicit finite difference method and a new von Neumann-type stability analysis for fractional diffusion equations. SIAM J. Numer. Anal. 42, 1862–1874 (2005)MathSciNetMATHCrossRef
35.
36.
Zurück zum Zitat Zeng, F.H., Li, C.P., Liu, F.W., Turner, I.: The use of finite difference/element approaches for solving the time-fractional subdiffusion equation. SIAM J. Sci. Comput. 35, A2976–A3000 (2013)MathSciNetMATHCrossRef Zeng, F.H., Li, C.P., Liu, F.W., Turner, I.: The use of finite difference/element approaches for solving the time-fractional subdiffusion equation. SIAM J. Sci. Comput. 35, A2976–A3000 (2013)MathSciNetMATHCrossRef
37.
Zurück zum Zitat Zhao, X., Sun, Z.Z.: Compact Crank–Nicolson schemes for a class of fractional Cattaneo equation in inhomogeneous medium. J. Sci. Comput. 62, 747–771 (2015)MathSciNetMATHCrossRef Zhao, X., Sun, Z.Z.: Compact Crank–Nicolson schemes for a class of fractional Cattaneo equation in inhomogeneous medium. J. Sci. Comput. 62, 747–771 (2015)MathSciNetMATHCrossRef
38.
Zurück zum Zitat Zhao, X., Sun, Z.Z., Hao, Z.P.: A fourth-order compact ADI scheme for two-dimensional nonlinear space fractional Schrodinger equation. SIAM J. Sci. Comput. 36, A2865–A2886 (2014)MathSciNetMATHCrossRef Zhao, X., Sun, Z.Z., Hao, Z.P.: A fourth-order compact ADI scheme for two-dimensional nonlinear space fractional Schrodinger equation. SIAM J. Sci. Comput. 36, A2865–A2886 (2014)MathSciNetMATHCrossRef
Metadaten
Titel
High-Order Numerical Algorithms for Riesz Derivatives via Constructing New Generating Functions
verfasst von
Hengfei Ding
Changpin Li
Publikationsdatum
16.11.2016
Verlag
Springer US
Erschienen in
Journal of Scientific Computing / Ausgabe 2/2017
Print ISSN: 0885-7474
Elektronische ISSN: 1573-7691
DOI
https://doi.org/10.1007/s10915-016-0317-3

Weitere Artikel der Ausgabe 2/2017

Journal of Scientific Computing 2/2017 Zur Ausgabe

Premium Partner