Skip to main content
Erschienen in: Journal of Scientific Computing 2/2017

18.11.2016

Detecting Edges from Non-uniform Fourier Data Using Fourier Frames

verfasst von: Anne Gelb, Guohui Song

Erschienen in: Journal of Scientific Computing | Ausgabe 2/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Edge detection plays an important role in identifying regions of interest in an underlying signal or image. In some applications, such as magnetic resonance imaging (MRI) or synthetic aperture radar (SAR), data are sampled in the Fourier domain. Many algorithms have been developed to efficiently extract edges of images when uniform Fourier data are acquired. However, in cases where the data are sampled non-uniformly, such as in non-Cartesian MRI or SAR, standard inverse Fourier transformation techniques are no longer suitable. Methods exist for handling these types of sampling patterns, but are often ill-equipped for cases where data are highly non-uniform or when the data are corrupted or otherwise not usable in certain parts of the frequency domain. This investigation further develops an existing approach to discontinuity detection, and involves the use of concentration factors. Previous research shows that the concentration factor technique can successfully determine jump discontinuities in non-uniform data. However, as the distribution diverges further away from uniformity so does the efficacy of the identification. Thus we propose a method that employs the finite Fourier approximation to specifically tailor the design of concentration factors. We also adapt the algorithm to incorporate appropriate smoothness assumptions in the piecewise smooth regions of the function. Numerical results indicate that our new design method produces concentration factors which can more precisely identify jump locations than those previously developed in both one and two dimensions.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
This idea was first investigated in [23].
 
2
Recall that we assume that the discontinuities occur only on grid points \(x_j\). For convenience we choose \(x_j = \frac{j}{J}\), \(-J \le j \le J\) so that the value \(x = 0\) falls on the grid point \(x_0\). The system can be designed for any chosen gridpoints, however.
 
3
The numerical results using Algorithm 1 were first reported in [23].
 
4
Indeed, a related idea was examined in [30] for suppressing higher order terms in (36) given uniform samples, but in this case we design s(x) to more closely resemble the smooth part of the underlying function.
 
5
Algorithm 4 closely follows the one provided in [28] for non-uniform coefficients, although the values obtained in (46) and (47) are substantially refined by Algorithms 1 and 2.
 
Literatur
1.
Zurück zum Zitat Adcock, B., Gataric, M., Hansen, A.: On stable reconstructions from nonuniform Fourier measurements. SIAM J. Imaging Sci. 7(3), 1690–1723 (2014)MathSciNetCrossRefMATH Adcock, B., Gataric, M., Hansen, A.: On stable reconstructions from nonuniform Fourier measurements. SIAM J. Imaging Sci. 7(3), 1690–1723 (2014)MathSciNetCrossRefMATH
2.
Zurück zum Zitat Adcock, B., Gataric, M., Hansen, A.C. Stable nonuniform sampling with weighted Fourier frames and recovery in arbitrary spaces. In: 2015 International Conference on Sampling Theory and Applications (SampTA), pp. 105–109. IEEE (2015) Adcock, B., Gataric, M., Hansen, A.C. Stable nonuniform sampling with weighted Fourier frames and recovery in arbitrary spaces. In: 2015 International Conference on Sampling Theory and Applications (SampTA), pp. 105–109. IEEE (2015)
3.
Zurück zum Zitat Adcock, B., Gataric, M., Hansen, A.C.: Weighted frames of exponentials and stable recovery of multidimensional functions from nonuniform Fourier samples. Appl. Comput. Harmon. Anal. (2015). doi:10.1016/j.acha.2015.09.006 Adcock, B., Gataric, M., Hansen, A.C.: Weighted frames of exponentials and stable recovery of multidimensional functions from nonuniform Fourier samples. Appl. Comput. Harmon. Anal. (2015). doi:10.​1016/​j.​acha.​2015.​09.​006
4.
Zurück zum Zitat Adcock, B., Gataric, M., Romero, J.L.: Computing reconstructions from nonuniform Fourier samples: universality of stability barriers and stable sampling rates. arXiv preprint arXiv:1606.07698 (2016) Adcock, B., Gataric, M., Romero, J.L.: Computing reconstructions from nonuniform Fourier samples: universality of stability barriers and stable sampling rates. arXiv preprint arXiv:​1606.​07698 (2016)
5.
Zurück zum Zitat Aldroubi, A., Grochenig, K.: Nonuniform sampling and reconstruction in shift-invariant spaces. SIAM Rev. 43(4), 585–620 (2001)MathSciNetCrossRefMATH Aldroubi, A., Grochenig, K.: Nonuniform sampling and reconstruction in shift-invariant spaces. SIAM Rev. 43(4), 585–620 (2001)MathSciNetCrossRefMATH
6.
Zurück zum Zitat Archibald, R., Chen, K., Gelb, A., Renaut, R.: Improving tissue segmentation of human brain mri through preprocessing by the gegenbauer reconstruction method. NeuroImage 20(1), 489–502 (2003)CrossRef Archibald, R., Chen, K., Gelb, A., Renaut, R.: Improving tissue segmentation of human brain mri through preprocessing by the gegenbauer reconstruction method. NeuroImage 20(1), 489–502 (2003)CrossRef
7.
Zurück zum Zitat Archibald, R., Gelb, A.: A method to reduce the Gibbs ringing artifact in MRI scans while keeping tissue boundary integrity. Med. Imaging IEEE Trans. 21(4), 305–319 (2002)CrossRef Archibald, R., Gelb, A.: A method to reduce the Gibbs ringing artifact in MRI scans while keeping tissue boundary integrity. Med. Imaging IEEE Trans. 21(4), 305–319 (2002)CrossRef
8.
Zurück zum Zitat Benedetto, J.: Irregular sampling and frames. In: Chui, C. (ed.) Wavelets: A Tutorial in Theory and Applications, pp. 445–507. Academic Press, Cambridge (1992)CrossRef Benedetto, J.: Irregular sampling and frames. In: Chui, C. (ed.) Wavelets: A Tutorial in Theory and Applications, pp. 445–507. Academic Press, Cambridge (1992)CrossRef
9.
Zurück zum Zitat Canny, J.: A computational approach to edge detection. Pattern Anal. Mach. Intell. IEEE Trans. 6, 679–698 (1986)CrossRef Canny, J.: A computational approach to edge detection. Pattern Anal. Mach. Intell. IEEE Trans. 6, 679–698 (1986)CrossRef
10.
Zurück zum Zitat Chebira, A., Kovacevic, J.: Life beyond bases: the advent of frames (part I). IEEE Signal Process. Mag. 24(4), 86–104 (2007)CrossRef Chebira, A., Kovacevic, J.: Life beyond bases: the advent of frames (part I). IEEE Signal Process. Mag. 24(4), 86–104 (2007)CrossRef
11.
Zurück zum Zitat Engelberg, S., Tadmor, E.: Recovery of edges from spectral data with noise: a new perspective. SIAM J. Numer. Anal. 46(5), 2620–2635 (2008)MathSciNetCrossRefMATH Engelberg, S., Tadmor, E.: Recovery of edges from spectral data with noise: a new perspective. SIAM J. Numer. Anal. 46(5), 2620–2635 (2008)MathSciNetCrossRefMATH
12.
Zurück zum Zitat Fessler, J.A., Sutton, B.P.: Nonuniform fast Fourier transforms using min–max interpolation. IEEE Trans. Signal Process. 51(2), 560–574 (2003)MathSciNetCrossRef Fessler, J.A., Sutton, B.P.: Nonuniform fast Fourier transforms using min–max interpolation. IEEE Trans. Signal Process. 51(2), 560–574 (2003)MathSciNetCrossRef
13.
Zurück zum Zitat Gelb, A., Cates, D.: Segmentation of images from Fourier spectral data. Commun. Comput. Phys. 5(2–4), 326–349 (2009)MathSciNet Gelb, A., Cates, D.: Segmentation of images from Fourier spectral data. Commun. Comput. Phys. 5(2–4), 326–349 (2009)MathSciNet
14.
15.
Zurück zum Zitat Gelb, A., Song, G.: A frame theoretric approach to the non-uniform fast Fourier transform. SIAM J. Numer. Anal. 52(3), 1222–1242 (2014)MathSciNetCrossRefMATH Gelb, A., Song, G.: A frame theoretric approach to the non-uniform fast Fourier transform. SIAM J. Numer. Anal. 52(3), 1222–1242 (2014)MathSciNetCrossRefMATH
17.
Zurück zum Zitat Gelb, A., Tadmor, E.: Detection of edges in spectral data. II. Nonlinear enhancement. SIAM J. Numer. Anal. 38(4), 1389–1408 (2000)MathSciNetCrossRefMATH Gelb, A., Tadmor, E.: Detection of edges in spectral data. II. Nonlinear enhancement. SIAM J. Numer. Anal. 38(4), 1389–1408 (2000)MathSciNetCrossRefMATH
18.
Zurück zum Zitat Gelb, A., Tadmor, E.: Adaptive edge detectors for piecewise smooth data based on the minmod limiter. J. Sci. Comput. 28(2–3), 279–306 (2006)MathSciNetCrossRefMATH Gelb, A., Tadmor, E.: Adaptive edge detectors for piecewise smooth data based on the minmod limiter. J. Sci. Comput. 28(2–3), 279–306 (2006)MathSciNetCrossRefMATH
19.
Zurück zum Zitat Han, D., Kornelson, K., Larson, D., Weber, E.: Frames for Undergraduates. In: Student Mathematical Library 40. American Mathematical Society (2007) Han, D., Kornelson, K., Larson, D., Weber, E.: Frames for Undergraduates. In: Student Mathematical Library 40. American Mathematical Society (2007)
20.
Zurück zum Zitat Jimenez, J., Medina, V., Yanez, O.: Data-driven brain MRI segmentation supported on edge confidence and a priori tissue information. IEEE Trans. Med. Imaging 25(1), 74–83 (2006)CrossRef Jimenez, J., Medina, V., Yanez, O.: Data-driven brain MRI segmentation supported on edge confidence and a priori tissue information. IEEE Trans. Med. Imaging 25(1), 74–83 (2006)CrossRef
21.
Zurück zum Zitat Kovacevic, J., Chebira, A.: Life beyond bases: the advent of frames (part II). IEEE Signal Process. Mag. 24, 115–125 (2007)CrossRef Kovacevic, J., Chebira, A.: Life beyond bases: the advent of frames (part II). IEEE Signal Process. Mag. 24, 115–125 (2007)CrossRef
22.
Zurück zum Zitat Martinez, A., Gelb, A., Gutierrez, A.: Edge detection from non-uniform Fourier data using the convolutional gridding algorithm. J. Sci. Comput. 61(3), 490–512 (2014)MathSciNetCrossRefMATH Martinez, A., Gelb, A., Gutierrez, A.: Edge detection from non-uniform Fourier data using the convolutional gridding algorithm. J. Sci. Comput. 61(3), 490–512 (2014)MathSciNetCrossRefMATH
23.
Zurück zum Zitat Moore, R.: Designing concentration factors to detect edges from non-uniform Fourier data. Arizona State University Undergraduate Honors Thesis (2015) Moore, R.: Designing concentration factors to detect edges from non-uniform Fourier data. Arizona State University Undergraduate Honors Thesis (2015)
24.
Zurück zum Zitat Petersen, A., Gelb, A., Eubank, R.: Hypothesis testing for Fourier based edge detection methods. J. Sci. Comput. 51, 608–630 (2012)MathSciNetCrossRefMATH Petersen, A., Gelb, A., Eubank, R.: Hypothesis testing for Fourier based edge detection methods. J. Sci. Comput. 51, 608–630 (2012)MathSciNetCrossRefMATH
25.
Zurück zum Zitat Shattuck, D.W., Sandor-Leahy, S.R., Schaper, K.A., Rottenberg, D.A., Leahya, R.M.: Magnetic resonance image tissue classification using a partial volume model. Neuroimage 13(5), 856–876 (2001)CrossRef Shattuck, D.W., Sandor-Leahy, S.R., Schaper, K.A., Rottenberg, D.A., Leahya, R.M.: Magnetic resonance image tissue classification using a partial volume model. Neuroimage 13(5), 856–876 (2001)CrossRef
26.
Zurück zum Zitat Song, G., Davis, J., Gelb, A.: A high-dimensional inverse frame operator approximation technique. SIAM J. Numer. Anal. 54(4), 2282–2301 (2016). doi:10.1137/15M1047593 Song, G., Davis, J., Gelb, A.: A high-dimensional inverse frame operator approximation technique. SIAM J. Numer. Anal. 54(4), 2282–2301 (2016). doi:10.​1137/​15M1047593
27.
Zurück zum Zitat Song, G., Gelb, A.: Approximating the inverse frame operator from localized frames. Appl. Comput. Harmon. Anal. 35(1), 94–110 (2013)MathSciNetCrossRefMATH Song, G., Gelb, A.: Approximating the inverse frame operator from localized frames. Appl. Comput. Harmon. Anal. 35(1), 94–110 (2013)MathSciNetCrossRefMATH
28.
Zurück zum Zitat Stefan, W., Viswanathan, A., Gelb, A., Renaut, R.: Sparsity enforcing edge detection method for blurred and noisy Fourier data. J. Sci. Comput. 50(3), 536–556 (2012)MathSciNetCrossRefMATH Stefan, W., Viswanathan, A., Gelb, A., Renaut, R.: Sparsity enforcing edge detection method for blurred and noisy Fourier data. J. Sci. Comput. 50(3), 536–556 (2012)MathSciNetCrossRefMATH
29.
30.
Zurück zum Zitat Viswanathan, A., Gelb, A., Cochran, D.: Iterative design of concentration factors for jump dection. J. Sci. Comput. 51, 631–649 (2012)MathSciNetCrossRefMATH Viswanathan, A., Gelb, A., Cochran, D.: Iterative design of concentration factors for jump dection. J. Sci. Comput. 51, 631–649 (2012)MathSciNetCrossRefMATH
31.
Zurück zum Zitat Viswanathan, A., Gelb, A., Cochran, D., Renaut, R.: On reconstruction from non-uniform spectral data. J. Sci. Comput. 45, 487–513 (2010)MathSciNetCrossRefMATH Viswanathan, A., Gelb, A., Cochran, D., Renaut, R.: On reconstruction from non-uniform spectral data. J. Sci. Comput. 45, 487–513 (2010)MathSciNetCrossRefMATH
Metadaten
Titel
Detecting Edges from Non-uniform Fourier Data Using Fourier Frames
verfasst von
Anne Gelb
Guohui Song
Publikationsdatum
18.11.2016
Verlag
Springer US
Erschienen in
Journal of Scientific Computing / Ausgabe 2/2017
Print ISSN: 0885-7474
Elektronische ISSN: 1573-7691
DOI
https://doi.org/10.1007/s10915-016-0320-8

Weitere Artikel der Ausgabe 2/2017

Journal of Scientific Computing 2/2017 Zur Ausgabe

Premium Partner