Skip to main content
Erschienen in: Journal of Scientific Computing 1/2018

05.04.2018

The BR1 Scheme is Stable for the Compressible Navier–Stokes Equations

verfasst von: Gregor J. Gassner, Andrew R. Winters, Florian J. Hindenlang, David A. Kopriva

Erschienen in: Journal of Scientific Computing | Ausgabe 1/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this work we prove that the original (Bassi and Rebay in J Comput Phys 131:267–279, 1997) scheme (BR1) for the discretization of second order viscous terms within the discontinuous Galerkin collocation spectral element method (DGSEM) with Gauss Lobatto nodes is stable. More precisely, we prove in the first part that the BR1 scheme preserves energy stability of the skew-symmetric advection term DGSEM discretization for the linearized compressible Navier–Stokes equations (NSE). In the second part, we prove that the BR1 scheme preserves the entropy stability of the recently developed entropy stable compressible Euler DGSEM discretization of Carpenter et al. (SIAM J Sci Comput 36:B835–B867, 2014) for the non-linear compressible NSE, provided that the auxiliary gradient equations use the entropy variables. Both parts are presented for fully three-dimensional, unstructured curvilinear hexahedral grids. Although the focus of this work is on the BR1 scheme, we show that the proof naturally includes the Local DG scheme of Cockburn and Shu.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Abarbanel, S., Gottlieb, D.: Optimal time splitting for two-dimensional and 3-dimensional Navier–Stokes equations with mixed derivatives. J. Comput. Phys. 41(1), 1–33 (1981)MathSciNetCrossRefMATH Abarbanel, S., Gottlieb, D.: Optimal time splitting for two-dimensional and 3-dimensional Navier–Stokes equations with mixed derivatives. J. Comput. Phys. 41(1), 1–33 (1981)MathSciNetCrossRefMATH
2.
Zurück zum Zitat Arnold, D.N., Brezzi, F., Cockburn, B., Marini, L.D.: Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal. 39(5), 1749–1779 (2002)MathSciNetCrossRefMATH Arnold, D.N., Brezzi, F., Cockburn, B., Marini, L.D.: Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal. 39(5), 1749–1779 (2002)MathSciNetCrossRefMATH
3.
Zurück zum Zitat Arnold, D.N., Brezzi, F., Cockburn, B., Marini, D.: Discontinuous Galerkin methods for elliptic problems. In: Cockburn, B., Karniadakis, G.E., Shu, C.W. (eds.) Discontinuous Galerkin Methods. Lecture Notes in Computational Science and Engineering, vol. 11. Springer, Berlin, Heidelberg (2000) Arnold, D.N., Brezzi, F., Cockburn, B., Marini, D.: Discontinuous Galerkin methods for elliptic problems. In: Cockburn, B., Karniadakis, G.E., Shu, C.W. (eds.) Discontinuous Galerkin Methods. Lecture Notes in Computational Science and Engineering, vol. 11. Springer, Berlin, Heidelberg (2000)
4.
Zurück zum Zitat Bassi, F., Rebay, S.: A high order accurate discontinuous finite element method for the numerical solution of the compressible Navier–Stokes equations. J. Comput. Phys. 131, 267–279 (1997)MathSciNetCrossRefMATH Bassi, F., Rebay, S.: A high order accurate discontinuous finite element method for the numerical solution of the compressible Navier–Stokes equations. J. Comput. Phys. 131, 267–279 (1997)MathSciNetCrossRefMATH
5.
Zurück zum Zitat Beck, A.D., Bolemann, T., Flad, D., Frank, H., Gassner, Gregor J., Hindenlang, Florian, Munz, Claus-Dieter: High-order discontinuous galerkin spectral element methods for transitional and turbulent flow simulations. Int. J. Numer. Methods Fluids 76(8), 522–548 (2014)MathSciNetCrossRef Beck, A.D., Bolemann, T., Flad, D., Frank, H., Gassner, Gregor J., Hindenlang, Florian, Munz, Claus-Dieter: High-order discontinuous galerkin spectral element methods for transitional and turbulent flow simulations. Int. J. Numer. Methods Fluids 76(8), 522–548 (2014)MathSciNetCrossRef
6.
Zurück zum Zitat Canuto, C., Hussaini, M.Y., Quarteroni, A., Zang, T.A.: Spectral Methods: Fundamentals in Single Domains. Springer, Berlin (2006)MATH Canuto, C., Hussaini, M.Y., Quarteroni, A., Zang, T.A.: Spectral Methods: Fundamentals in Single Domains. Springer, Berlin (2006)MATH
7.
Zurück zum Zitat Carpenter, M., Fisher, T., Nielsen, E., Frankel, S.: Entropy stable spectral collocation schemes for the Navier–Stokes equations: discontinuous interfaces. SIAM J. Sci. Comput. 36(5), B835–B867 (2014)MathSciNetCrossRefMATH Carpenter, M., Fisher, T., Nielsen, E., Frankel, S.: Entropy stable spectral collocation schemes for the Navier–Stokes equations: discontinuous interfaces. SIAM J. Sci. Comput. 36(5), B835–B867 (2014)MathSciNetCrossRefMATH
8.
Zurück zum Zitat Chandrashekar, Praveen: Kinetic energy preserving and entropy stable finite volume schemes for compressible Euler and Navier–Stokes equations. Commun. Comput. Phys. 14, 1252–1286 (2013). 11MathSciNetCrossRefMATH Chandrashekar, Praveen: Kinetic energy preserving and entropy stable finite volume schemes for compressible Euler and Navier–Stokes equations. Commun. Comput. Phys. 14, 1252–1286 (2013). 11MathSciNetCrossRefMATH
9.
Zurück zum Zitat Cockburn, B., Shu, C.W.: The Runge–Kutta local projection \({P}^1\)-discontinuous Galerkin method for scalar conservation laws. Rairo Math. Model. Numer. Anal. Model. Math. et Anal. Numer. 25, 337–361 (1991)CrossRefMATH Cockburn, B., Shu, C.W.: The Runge–Kutta local projection \({P}^1\)-discontinuous Galerkin method for scalar conservation laws. Rairo Math. Model. Numer. Anal. Model. Math. et Anal. Numer. 25, 337–361 (1991)CrossRefMATH
10.
Zurück zum Zitat Cockburn, B., Shu, C.W.: Runge–kutta discontinuous Galerkin methods for convection-dominated problems. J. Sci. Comput. 16(3), 173–261 (2001)MathSciNetCrossRefMATH Cockburn, B., Shu, C.W.: Runge–kutta discontinuous Galerkin methods for convection-dominated problems. J. Sci. Comput. 16(3), 173–261 (2001)MathSciNetCrossRefMATH
11.
Zurück zum Zitat Cockburn, B., Shu, Chi-Wan: The local discontinuous Galerkin method for time-dependent convection diffusion systems. SIAM J. Numer. Anal. 35, 2440–2463 (1998)MathSciNetCrossRefMATH Cockburn, B., Shu, Chi-Wan: The local discontinuous Galerkin method for time-dependent convection diffusion systems. SIAM J. Numer. Anal. 35, 2440–2463 (1998)MathSciNetCrossRefMATH
12.
Zurück zum Zitat Cockburn, B., Hou, S., Shu, Chi-Wang: The runge-kutta local projection discontinuous Galerkin finite element method for conservation laws. IV: the multidimensional case. Math. Comput. 54(190), 545–581 (1990)MathSciNetMATH Cockburn, B., Hou, S., Shu, Chi-Wang: The runge-kutta local projection discontinuous Galerkin finite element method for conservation laws. IV: the multidimensional case. Math. Comput. 54(190), 545–581 (1990)MathSciNetMATH
13.
Zurück zum Zitat Cockburn, B., Shu, C.-W.: The Runge–Kutta discontinuous Galerkin method for conservation laws V: multidimensional systems. J. Comput. Phys. 141(2), 199–224 (1998)MathSciNetCrossRefMATH Cockburn, B., Shu, C.-W.: The Runge–Kutta discontinuous Galerkin method for conservation laws V: multidimensional systems. J. Comput. Phys. 141(2), 199–224 (1998)MathSciNetCrossRefMATH
14.
Zurück zum Zitat Fisher, T., Carpenter, M.H., Nordström, J., Yamaleev, N.K., Swanson, C.: Discretely conservative finite-difference formulations for nonlinear conservation laws in split form: theory and boundary conditions. J. Comput. Phys. 234, 353–375 (2013)MathSciNetCrossRefMATH Fisher, T., Carpenter, M.H., Nordström, J., Yamaleev, N.K., Swanson, C.: Discretely conservative finite-difference formulations for nonlinear conservation laws in split form: theory and boundary conditions. J. Comput. Phys. 234, 353–375 (2013)MathSciNetCrossRefMATH
15.
Zurück zum Zitat Frank, Hannes M., Munz, Claus-Dieter: Direct aeroacoustic simulation of acoustic feedback phenomena on a side-view mirror. J. Sound Vib. 371, 132–149 (2016)CrossRef Frank, Hannes M., Munz, Claus-Dieter: Direct aeroacoustic simulation of acoustic feedback phenomena on a side-view mirror. J. Sound Vib. 371, 132–149 (2016)CrossRef
16.
Zurück zum Zitat Gassner, G.: A skew-symmetric discontinuous Galerkin spectral element discretization and its relation to SBP-SAT finite difference methods. SIAM J. Sci. Comput. 35(3), A1233–A1253 (2013)MathSciNetCrossRefMATH Gassner, G.: A skew-symmetric discontinuous Galerkin spectral element discretization and its relation to SBP-SAT finite difference methods. SIAM J. Sci. Comput. 35(3), A1233–A1253 (2013)MathSciNetCrossRefMATH
17.
Zurück zum Zitat Gassner, G., Kopriva, D.A.: A comparison of the dispersion and dissipation errors of Gauss and Gauss–Lobatto discontinuous Galerkin spectral element methods. SIAM J. Sci. Comput. 33, 2560–2579 (2011)MathSciNetCrossRefMATH Gassner, G., Kopriva, D.A.: A comparison of the dispersion and dissipation errors of Gauss and Gauss–Lobatto discontinuous Galerkin spectral element methods. SIAM J. Sci. Comput. 33, 2560–2579 (2011)MathSciNetCrossRefMATH
18.
Zurück zum Zitat Gassner, Gregor J.: A skew-symmetric discontinuous Galerkin spectral element discretization and its relation to SBP-SAT finite difference methods. SIAM J. Sci. Comput. 35(3), A1233–A1253 (2013)MathSciNetCrossRefMATH Gassner, Gregor J.: A skew-symmetric discontinuous Galerkin spectral element discretization and its relation to SBP-SAT finite difference methods. SIAM J. Sci. Comput. 35(3), A1233–A1253 (2013)MathSciNetCrossRefMATH
19.
Zurück zum Zitat Gassner, G.J., Beck, Andrea D.: On the accuracy of high-order discretizations for underresolved turbulence simulations. Theor. Comput. Fluid Dyn. 27(3–4), 221–237 (2013)CrossRef Gassner, G.J., Beck, Andrea D.: On the accuracy of high-order discretizations for underresolved turbulence simulations. Theor. Comput. Fluid Dyn. 27(3–4), 221–237 (2013)CrossRef
20.
Zurück zum Zitat Gassner, G.J., Winters, A.R., Kopriva, David A.: Split form nodal discontinuous Galerkin schemes with summation-by-parts property for the compressible Euler equations. J. Comput. Phys. 327, 39–66 (2016)MathSciNetCrossRefMATH Gassner, G.J., Winters, A.R., Kopriva, David A.: Split form nodal discontinuous Galerkin schemes with summation-by-parts property for the compressible Euler equations. J. Comput. Phys. 327, 39–66 (2016)MathSciNetCrossRefMATH
21.
Zurück zum Zitat Hindenlang, F., Gassner, G.J., Altmann, C., Beck, A., Staudenmaier, Marc, Munz, Claus-Dieter: Explicit discontinuous Galerkin methods for unsteady problems. Comput. Fluids 61, 86–93 (2012)MathSciNetCrossRefMATH Hindenlang, F., Gassner, G.J., Altmann, C., Beck, A., Staudenmaier, Marc, Munz, Claus-Dieter: Explicit discontinuous Galerkin methods for unsteady problems. Comput. Fluids 61, 86–93 (2012)MathSciNetCrossRefMATH
22.
Zurück zum Zitat Ismail, F., Roe, P.L.: Affordable, entropy-consistent Euler flux functions II: entropy production at shocks. J. Comput. Phys. 228(15), 5410–5436 (2009)MathSciNetCrossRefMATH Ismail, F., Roe, P.L.: Affordable, entropy-consistent Euler flux functions II: entropy production at shocks. J. Comput. Phys. 228(15), 5410–5436 (2009)MathSciNetCrossRefMATH
23.
Zurück zum Zitat Kirby, R.M., Karniadakis, G.E.: De-aliasing on non-uniform grids: algorithms and applications. J. Comput. Phys. 191, 249–264 (2003)CrossRefMATH Kirby, R.M., Karniadakis, G.E.: De-aliasing on non-uniform grids: algorithms and applications. J. Comput. Phys. 191, 249–264 (2003)CrossRefMATH
24.
Zurück zum Zitat Kirby, R.M., Karniadakis, G.E.: Selecting the numerical flux in discontinuous galerkin methods for diffusion problems. J. Sci. Comput. 22(1), 385–411 (2005)MathSciNetCrossRefMATH Kirby, R.M., Karniadakis, G.E.: Selecting the numerical flux in discontinuous galerkin methods for diffusion problems. J. Sci. Comput. 22(1), 385–411 (2005)MathSciNetCrossRefMATH
25.
Zurück zum Zitat Kopriva, D.A.: Metric identities and the discontinuous spectral element method on curvilinear meshes. J. Sci. Comput. 26(3), 301–327 (2006)MathSciNetCrossRefMATH Kopriva, D.A.: Metric identities and the discontinuous spectral element method on curvilinear meshes. J. Sci. Comput. 26(3), 301–327 (2006)MathSciNetCrossRefMATH
26.
Zurück zum Zitat Kopriva, D.A., Gassner, G.: On the quadrature and weak form choices in collocation type discontinuous Galerkin spectral element methods. J. Sci. Comput. 44(2), 136–155 (2010)MathSciNetCrossRefMATH Kopriva, D.A., Gassner, G.: On the quadrature and weak form choices in collocation type discontinuous Galerkin spectral element methods. J. Sci. Comput. 44(2), 136–155 (2010)MathSciNetCrossRefMATH
27.
Zurück zum Zitat Kopriva, D.A., Gassner, G.J.: An energy stable discontinuous Galerkin spectral element discretization for variable coefficient advection problems. SIAM J. Sci. Comput. 36(4), A2076–A2099 (2014)MathSciNetCrossRefMATH Kopriva, D.A., Gassner, G.J.: An energy stable discontinuous Galerkin spectral element discretization for variable coefficient advection problems. SIAM J. Sci. Comput. 36(4), A2076–A2099 (2014)MathSciNetCrossRefMATH
28.
Zurück zum Zitat Kopriva, David A.: Implementing Spectral Methods for Partial Differential Equations. Scientific Computation. Springer, Berlin (2009)CrossRefMATH Kopriva, David A.: Implementing Spectral Methods for Partial Differential Equations. Scientific Computation. Springer, Berlin (2009)CrossRefMATH
30.
Zurück zum Zitat Kopriva, D.A., Gassner, G.J.: An energy stable discontinuous Galerkin spectral element discretization for variable coefficient advection problems. SIAM J. Sci. Comput. 34(4), A2076–A2099 (2014)MathSciNetCrossRefMATH Kopriva, D.A., Gassner, G.J.: An energy stable discontinuous Galerkin spectral element discretization for variable coefficient advection problems. SIAM J. Sci. Comput. 34(4), A2076–A2099 (2014)MathSciNetCrossRefMATH
31.
Zurück zum Zitat Kopriva, D.A., Gassner, G.J.: Geometry effects in nodal discontinuous Galerkin methods on curved elements that are provably stable. Appl. Math. Comput. 272(Part 2), 274–290 (2016)MathSciNet Kopriva, D.A., Gassner, G.J.: Geometry effects in nodal discontinuous Galerkin methods on curved elements that are provably stable. Appl. Math. Comput. 272(Part 2), 274–290 (2016)MathSciNet
32.
Zurück zum Zitat Mengaldo, G., De Grazia, D., Moxey, D., Vincent, P.E., Sherwin, S.J.: Dealiasing techniques for high-order spectral element methods on regular and irregular grids. J. Comput. Phys. 299, 56–81 (2015)MathSciNetCrossRefMATH Mengaldo, G., De Grazia, D., Moxey, D., Vincent, P.E., Sherwin, S.J.: Dealiasing techniques for high-order spectral element methods on regular and irregular grids. J. Comput. Phys. 299, 56–81 (2015)MathSciNetCrossRefMATH
33.
Zurück zum Zitat Merriam, Marshal L.: An entropy-based approach to nonlinear stability. NASA Tech. Memo. 101086(64), 1–154 (1989)MathSciNet Merriam, Marshal L.: An entropy-based approach to nonlinear stability. NASA Tech. Memo. 101086(64), 1–154 (1989)MathSciNet
34.
Zurück zum Zitat Nelson, D.A., Kopriva, D.A., Jacobs, G.B.: High-order curved boundary representation with discontinuous-Galerkin methods. Theor. Comput. Fluid Dyn. 30(4), 363–385 (2016)CrossRef Nelson, D.A., Kopriva, D.A., Jacobs, G.B.: High-order curved boundary representation with discontinuous-Galerkin methods. Theor. Comput. Fluid Dyn. 30(4), 363–385 (2016)CrossRef
35.
Zurück zum Zitat Nordström, J.: A roadmap to well posed and stable problems in computational physics. J. Sci. Comput. 71(1), 365–385 (2016)MathSciNetCrossRefMATH Nordström, J.: A roadmap to well posed and stable problems in computational physics. J. Sci. Comput. 71(1), 365–385 (2016)MathSciNetCrossRefMATH
36.
Zurück zum Zitat Nordström, J., Svard, M.: Well-posed boundary conditions for the Navier–Stokes equations. SIAM J. Numer. Anal. 43(3), 1231–1255 (2005)MathSciNetCrossRefMATH Nordström, J., Svard, M.: Well-posed boundary conditions for the Navier–Stokes equations. SIAM J. Numer. Anal. 43(3), 1231–1255 (2005)MathSciNetCrossRefMATH
37.
Zurück zum Zitat Reed, W.H., Hill, T.R.: Triangular mesh methods for the neutron transport equation. Technical Report LA-UR-73-479, Los Alamos National Laboratory (1973) Reed, W.H., Hill, T.R.: Triangular mesh methods for the neutron transport equation. Technical Report LA-UR-73-479, Los Alamos National Laboratory (1973)
38.
Zurück zum Zitat Tadmor, Eitan: Entropy stability theory for difference approximations of nonlinear conservation laws and related time-dependent problems. Acta Numer. 12, 451–512 (2003). 5MathSciNetCrossRefMATH Tadmor, Eitan: Entropy stability theory for difference approximations of nonlinear conservation laws and related time-dependent problems. Acta Numer. 12, 451–512 (2003). 5MathSciNetCrossRefMATH
39.
Zurück zum Zitat Tadmor, E., Zhong, W.: Entropy stable approximations of Navier–Stokes equations with no artificial numerical viscosity. J. Hyperb. Differ. Equ. 3(3), 529–559 (2006)MathSciNetCrossRefMATH Tadmor, E., Zhong, W.: Entropy stable approximations of Navier–Stokes equations with no artificial numerical viscosity. J. Hyperb. Differ. Equ. 3(3), 529–559 (2006)MathSciNetCrossRefMATH
Metadaten
Titel
The BR1 Scheme is Stable for the Compressible Navier–Stokes Equations
verfasst von
Gregor J. Gassner
Andrew R. Winters
Florian J. Hindenlang
David A. Kopriva
Publikationsdatum
05.04.2018
Verlag
Springer US
Erschienen in
Journal of Scientific Computing / Ausgabe 1/2018
Print ISSN: 0885-7474
Elektronische ISSN: 1573-7691
DOI
https://doi.org/10.1007/s10915-018-0702-1

Weitere Artikel der Ausgabe 1/2018

Journal of Scientific Computing 1/2018 Zur Ausgabe

Premium Partner