Skip to main content
Erschienen in: Journal of Scientific Computing 3/2023

01.06.2023

Study on \(L_1\) over \(L_2\) Minimization for Nonnegative Signal Recovery

verfasst von: Min Tao, Xiao-Ping Zhang

Erschienen in: Journal of Scientific Computing | Ausgabe 3/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper, we carry out a comprehensive study for the unconstrained \(L_1\) over \(L_2\) sparsity promoting model, widely used in the regime of coherent dictionaries for recovering nonnegative sparse signals. First, we prove the existence of global solutions. Second, we analyze the sparse property of any local minimizer of the \(L_{1}/L_{2}\) model. This property serves as a certificate to rule out the nonlocal minimizers. Third, we focus on algorithmic development on the unconstrained model with nonnegative constraint. We derive an analytical solution for the proximal operator of the \(L_{1} / L_{2}\) with nonnegative constraint. Then, we apply the alternating direction method of multipliers in a particular splitting way, referred to as ADMM\(_p^+\). We establish its global convergence to a d-stationary solution (sharpest stationary) by verifying the Lyapunov function with the Kurdyka-Łojasiewicz property instead of imposing. Extensive numerical simulations confirm the superiority of ADMM\(_p^+\) over the existing state-of-the-art methods in nonnegative sparse recovery.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
The original SOOT algorithm proposed in [29] aims to solve blind deconvolution, i.e., finding the unknown signal and blur simultaneously.
 
Literatur
1.
Zurück zum Zitat Attouch, H., Bolte, J., Svaiter, B.F.: Convergence of descent methods for semi-algebraic and tame problems: proximal algorithms, forward-backward splitting, and regularized Gauss-Seidel methods. Math. Program. 146, 459–494 (2014)MathSciNetMATH Attouch, H., Bolte, J., Svaiter, B.F.: Convergence of descent methods for semi-algebraic and tame problems: proximal algorithms, forward-backward splitting, and regularized Gauss-Seidel methods. Math. Program. 146, 459–494 (2014)MathSciNetMATH
2.
Zurück zum Zitat Bochnak, J., Coste, M., Roy, M.-F.: Real algebraic geometry, p. 36. Springer, Berlin (1998)CrossRefMATH Bochnak, J., Coste, M., Roy, M.-F.: Real algebraic geometry, p. 36. Springer, Berlin (1998)CrossRefMATH
3.
Zurück zum Zitat Bolte, J., Daniilidis, A., Lewis, A.: The Łojasiewicz inequality for nonsmooth subanalytic functions with applications to subgradient dynamical systems. SIAM J. Optim. 17, 1205–1223 (2007)CrossRefMATH Bolte, J., Daniilidis, A., Lewis, A.: The Łojasiewicz inequality for nonsmooth subanalytic functions with applications to subgradient dynamical systems. SIAM J. Optim. 17, 1205–1223 (2007)CrossRefMATH
4.
Zurück zum Zitat Bredies, K., Lorenz, D.A., Reiterer, S.: Minimization of non-smooth, non-convex functionals by iterative thresholding. J. Optim. Theory Appl. 165, 78–112 (2015)MathSciNetCrossRefMATH Bredies, K., Lorenz, D.A., Reiterer, S.: Minimization of non-smooth, non-convex functionals by iterative thresholding. J. Optim. Theory Appl. 165, 78–112 (2015)MathSciNetCrossRefMATH
6.
Zurück zum Zitat Chartrand, R.: Exact reconstruction of sparse signals via nonconvex minimization. IEEE Signal Process Lett. 14, 707–710 (2007)CrossRef Chartrand, R.: Exact reconstruction of sparse signals via nonconvex minimization. IEEE Signal Process Lett. 14, 707–710 (2007)CrossRef
7.
8.
Zurück zum Zitat Clarke, F.H.: Optimization and nonsmooth analysis, vol. 5. Classical Applied Mathematics Society for Industrial and Applied Mathematics, Philadelphia (1990)CrossRefMATH Clarke, F.H.: Optimization and nonsmooth analysis, vol. 5. Classical Applied Mathematics Society for Industrial and Applied Mathematics, Philadelphia (1990)CrossRefMATH
9.
Zurück zum Zitat Cohen, A., Dahmen, W., Devore, R.: Compressed sensing and best \(k\)-term approximation. J. Am. Math. Soc. 22, 211–231 (2009)MathSciNetCrossRefMATH Cohen, A., Dahmen, W., Devore, R.: Compressed sensing and best \(k\)-term approximation. J. Am. Math. Soc. 22, 211–231 (2009)MathSciNetCrossRefMATH
10.
Zurück zum Zitat Dong, H., Tao, M.: On the linear convergence to weak/standard D-stationary points of DCA-based algorithms for structured nonsmooth DC programming. J. Optim. Theory Appl. 189, 190–220 (2021)MathSciNetCrossRef Dong, H., Tao, M.: On the linear convergence to weak/standard D-stationary points of DCA-based algorithms for structured nonsmooth DC programming. J. Optim. Theory Appl. 189, 190–220 (2021)MathSciNetCrossRef
11.
Zurück zum Zitat Esser, E., Lou, Y., Xin, J.: A method for finding structured sparse solutions to nonnegative least squares problems with applications. SIAM J. Imag. Sci. 6, 2010–2046 (2013)MathSciNetCrossRefMATH Esser, E., Lou, Y., Xin, J.: A method for finding structured sparse solutions to nonnegative least squares problems with applications. SIAM J. Imag. Sci. 6, 2010–2046 (2013)MathSciNetCrossRefMATH
12.
Zurück zum Zitat Fannjiang, A., Liao, W.: Coherence-pattern-guided compressive sensing with unresolved grids. SIAM J. Imag. Sci. 5, 179–202 (2012)MathSciNetCrossRefMATH Fannjiang, A., Liao, W.: Coherence-pattern-guided compressive sensing with unresolved grids. SIAM J. Imag. Sci. 5, 179–202 (2012)MathSciNetCrossRefMATH
13.
Zurück zum Zitat Finlayson-Pitts, B.: Unpublished data. Provided by Wingen, L. M. (2000) Finlayson-Pitts, B.: Unpublished data. Provided by Wingen, L. M. (2000)
14.
Zurück zum Zitat Gong, P., Zhang, C., Lu, Z., Huang, J.Z., Ye, J.: A general iterative shrinkage and thresholding algorithm for non-convex regularized optimization problems. JMLR Worksh. Conf. Proceed. 28, 37–45 (2013) Gong, P., Zhang, C., Lu, Z., Huang, J.Z., Ye, J.: A general iterative shrinkage and thresholding algorithm for non-convex regularized optimization problems. JMLR Worksh. Conf. Proceed. 28, 37–45 (2013)
15.
Zurück zum Zitat Hoffman, A.J.: On approximate solutions of systems of linear inequalities. J. Res. Nat. Bur. Stand. 49, 263–265 (1952)MathSciNetCrossRef Hoffman, A.J.: On approximate solutions of systems of linear inequalities. J. Res. Nat. Bur. Stand. 49, 263–265 (1952)MathSciNetCrossRef
16.
Zurück zum Zitat Hong, M.Y., Luo, Z.Q., Razaviyayn, M.: Convergence analysis of alternating direction method of multipliers for a family of nonconvex problems. SIAM J. Optim. 26, 337–364 (2016)MathSciNetCrossRefMATH Hong, M.Y., Luo, Z.Q., Razaviyayn, M.: Convergence analysis of alternating direction method of multipliers for a family of nonconvex problems. SIAM J. Optim. 26, 337–364 (2016)MathSciNetCrossRefMATH
17.
Zurück zum Zitat Hoyer, P. O.: Non-negative sparse coding, In: Proceedings of IEEE Workshop on Neural Networks for Signal Processing, pp. 557–565 (2002) Hoyer, P. O.: Non-negative sparse coding, In: Proceedings of IEEE Workshop on Neural Networks for Signal Processing, pp. 557–565 (2002)
19.
Zurück zum Zitat Ji, H., Li, J., Shen, Z., Wang, K.: Image deconvolution using a characterization of sharp images in wavelet domain. Appl. Comput. Harmon. Anal. 32, 295–304 (2012)MathSciNetCrossRefMATH Ji, H., Li, J., Shen, Z., Wang, K.: Image deconvolution using a characterization of sharp images in wavelet domain. Appl. Comput. Harmon. Anal. 32, 295–304 (2012)MathSciNetCrossRefMATH
20.
Zurück zum Zitat Li, G.Y., Pong, T.K.: Global convergence of splitting methods for nonconvex composite optimization. SIAM J. Optim. 25, 2434–2460 (2015)MathSciNetCrossRefMATH Li, G.Y., Pong, T.K.: Global convergence of splitting methods for nonconvex composite optimization. SIAM J. Optim. 25, 2434–2460 (2015)MathSciNetCrossRefMATH
21.
Zurück zum Zitat Li, H., Lin, Z.: Accelerated proximal gradient methods for nonconvex programming. Adv. Neural. Inf. Process. Syst. 1, 379–387 (2015) Li, H., Lin, Z.: Accelerated proximal gradient methods for nonconvex programming. Adv. Neural. Inf. Process. Syst. 1, 379–387 (2015)
22.
Zurück zum Zitat Li, J., So, A.M.-C., Ma, W.-K.: Understanding notions of stationarity in nonsmooth optimization: a guided tour of various constructions of subdifferential for nonsmooth functions. IEEE Signal Proc. Mag. 37, 18–31 (2020)CrossRef Li, J., So, A.M.-C., Ma, W.-K.: Understanding notions of stationarity in nonsmooth optimization: a guided tour of various constructions of subdifferential for nonsmooth functions. IEEE Signal Proc. Mag. 37, 18–31 (2020)CrossRef
23.
Zurück zum Zitat Morup, M., Madsen, K. H., Hansen, L. K.: Approximate\(l_0\)constrained non-negative matrix and tensor factorization, In: ISCAS, pp. 1328–1331 (2008) Morup, M., Madsen, K. H., Hansen, L. K.: Approximate\(l_0\)constrained non-negative matrix and tensor factorization, In: ISCAS, pp. 1328–1331 (2008)
24.
Zurück zum Zitat Nakayama, S., Gotoh, J.Y.: On the superiority of PGMs to PDCAs in nonsmooth nonconvex sparse regression. Optim. Lett. 15, 2831–2860 (2021)MathSciNetCrossRefMATH Nakayama, S., Gotoh, J.Y.: On the superiority of PGMs to PDCAs in nonsmooth nonconvex sparse regression. Optim. Lett. 15, 2831–2860 (2021)MathSciNetCrossRefMATH
27.
Zurück zum Zitat Pang, J.S., Razaviyayn, M., Alvarado, A.: Computing B-stationary points of nonsmooth DC programs. Math. Oper. Res. 42, 95–118 (2017)MathSciNetCrossRefMATH Pang, J.S., Razaviyayn, M., Alvarado, A.: Computing B-stationary points of nonsmooth DC programs. Math. Oper. Res. 42, 95–118 (2017)MathSciNetCrossRefMATH
28.
Zurück zum Zitat Rahimi, Y., Wang, C., Dong, H., Lou, Y.: A scale-invariant approach for sparse signal recovery. SIAM J. Sci. Comp. 41, A3649–A3672 (2019)MathSciNetCrossRefMATH Rahimi, Y., Wang, C., Dong, H., Lou, Y.: A scale-invariant approach for sparse signal recovery. SIAM J. Sci. Comp. 41, A3649–A3672 (2019)MathSciNetCrossRefMATH
29.
Zurück zum Zitat Repetti, A., Pham, M.Q., Duval, L., Chouzenoux, E., Pesquet, J.C.: Euclid in a taxicab: sparse blind deconvolution with smoothed \({\ell _1}/{\ell _2}\) regularization. IEEE Signal Process Lett. 22, 539–543 (2015)CrossRef Repetti, A., Pham, M.Q., Duval, L., Chouzenoux, E., Pesquet, J.C.: Euclid in a taxicab: sparse blind deconvolution with smoothed \({\ell _1}/{\ell _2}\) regularization. IEEE Signal Process Lett. 22, 539–543 (2015)CrossRef
30.
31.
Zurück zum Zitat Tao, M.: Minimization of L\(_1\) over L\(_2\) for sparse signal recovery with convergence guarantee. SIAM J. Sci. Comp. 44, A770–A797 (2022)MathSciNetCrossRefMATH Tao, M.: Minimization of L\(_1\) over L\(_2\) for sparse signal recovery with convergence guarantee. SIAM J. Sci. Comp. 44, A770–A797 (2022)MathSciNetCrossRefMATH
32.
Zurück zum Zitat Tao, M., Li, J.N.: Error bound and isocost imply linear convergence of DCA-based algorithms to D-stationarity. J. Optim. Theory Appl. 197, 205–232 (2023)MathSciNetCrossRefMATH Tao, M., Li, J.N.: Error bound and isocost imply linear convergence of DCA-based algorithms to D-stationarity. J. Optim. Theory Appl. 197, 205–232 (2023)MathSciNetCrossRefMATH
33.
Zurück zum Zitat Vavasis, S. A.: Derivation of compressive sensing theorems from the spherical section property, University of Waterloo, (2009) Vavasis, S. A.: Derivation of compressive sensing theorems from the spherical section property, University of Waterloo, (2009)
34.
Zurück zum Zitat Wang, C., Yan, M., Rahimi, Y., Lou, Y.: Accelerated schemes for the L\(_1\)/L\(_2\) minimization. IEEE Trans. Signal Process. 68, 2660–2669 (2020)MathSciNetCrossRefMATH Wang, C., Yan, M., Rahimi, Y., Lou, Y.: Accelerated schemes for the L\(_1\)/L\(_2\) minimization. IEEE Trans. Signal Process. 68, 2660–2669 (2020)MathSciNetCrossRefMATH
35.
36.
Zurück zum Zitat Yin, P., Esser, E., Xin, J.: Ratio and difference of \( \ell _{1} \) and \( \ell _{2} \) norms and sparse representation with coherent dictionaries. Comm. Info. Systems 14, 87–109 (2014)MathSciNetCrossRef Yin, P., Esser, E., Xin, J.: Ratio and difference of \( \ell _{1} \) and \( \ell _{2} \) norms and sparse representation with coherent dictionaries. Comm. Info. Systems 14, 87–109 (2014)MathSciNetCrossRef
37.
Zurück zum Zitat Zeng, L.Y., Yu, P.R., Pong, T.K.: Analysis and algorithms for some compressed sensing models based on L1/L2 minimization. SIAM J. Optim. 31, 1576–1603 (2021)MathSciNetCrossRefMATH Zeng, L.Y., Yu, P.R., Pong, T.K.: Analysis and algorithms for some compressed sensing models based on L1/L2 minimization. SIAM J. Optim. 31, 1576–1603 (2021)MathSciNetCrossRefMATH
38.
Zurück zum Zitat Zeng, J.S., Yin, W.T., Zhou, D.X.: Moreau envelope augmented Lagrangian method for nonconvex optimization with linear constraints. J. Sci. Comp. 91, 61 (2022)MathSciNetCrossRefMATH Zeng, J.S., Yin, W.T., Zhou, D.X.: Moreau envelope augmented Lagrangian method for nonconvex optimization with linear constraints. J. Sci. Comp. 91, 61 (2022)MathSciNetCrossRefMATH
Metadaten
Titel
Study on over Minimization for Nonnegative Signal Recovery
verfasst von
Min Tao
Xiao-Ping Zhang
Publikationsdatum
01.06.2023
Verlag
Springer US
Erschienen in
Journal of Scientific Computing / Ausgabe 3/2023
Print ISSN: 0885-7474
Elektronische ISSN: 1573-7691
DOI
https://doi.org/10.1007/s10915-023-02225-2

Weitere Artikel der Ausgabe 3/2023

Journal of Scientific Computing 3/2023 Zur Ausgabe

Premium Partner