Skip to main content
Erschienen in: Journal of Polymer Research 8/2013

01.08.2013 | Original Paper

Characterization of shape recovery via creeping and shape memory effect in ether-vinyl acetate copolymer (EVA)

Erschienen in: Journal of Polymer Research | Ausgabe 8/2013

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Shape recovery in a commercial ether–vinyl acetate copolymer (EVA) was systematically characterized by studying its creep and the thermoresponsive shape-memory effect (SME). The influences of the programming temperature and maximum uniaxial tension strain on the shape-fixity ratio and the shape-recovery ratio were investigated quantitatively. In addition to excellent SME, high elasticity and high creep were observed at around room temperature (with the EVA in the glassy state). The underlying mechanisms for the different shape-recovery phenomena (i.e., creep and the SME) are discussed. Two potential applications utilizing the shape-recovery property and high elasticity of this EVA are presented.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Otsuka K, Wayman CM (eds) (1998) Shape memory materials. Cambridge University Press, Cambridge Otsuka K, Wayman CM (eds) (1998) Shape memory materials. Cambridge University Press, Cambridge
2.
Zurück zum Zitat Huang WM, Ding Z, Wang CC, Wei J, Zhao Y, Purnawali H (2010) Shape memory materials. Mater Today 13:54–61CrossRef Huang WM, Ding Z, Wang CC, Wei J, Zhao Y, Purnawali H (2010) Shape memory materials. Mater Today 13:54–61CrossRef
3.
Zurück zum Zitat Sun L, Huang WM, Ding Z, Zhao Y, Wang CC, Purnawali H, Tang C (2012) Stimulus-responsive shape memory materials: a review. Mater Des 33:577–640CrossRef Sun L, Huang WM, Ding Z, Zhao Y, Wang CC, Purnawali H, Tang C (2012) Stimulus-responsive shape memory materials: a review. Mater Des 33:577–640CrossRef
4.
Zurück zum Zitat Huang WM, Zhao Y, Wang CC, Ding Z, Purnawali H, Tang C, Zhang JL (2012) Thermo/chemo-responsive shape memory effect in polymers: a sketch of working mechanisms, fundamentals and optimization. J Polym Res 19:9952CrossRef Huang WM, Zhao Y, Wang CC, Ding Z, Purnawali H, Tang C, Zhang JL (2012) Thermo/chemo-responsive shape memory effect in polymers: a sketch of working mechanisms, fundamentals and optimization. J Polym Res 19:9952CrossRef
5.
Zurück zum Zitat Huang W (2002) On the selection of shape memory alloys for actuators. Mater Des 23:11–19CrossRef Huang W (2002) On the selection of shape memory alloys for actuators. Mater Des 23:11–19CrossRef
7.
Zurück zum Zitat Ge YL, Heczko O, Soderberg O, Hannula SP (2006) Magnetic domain evolution with applied field in a Ni-Mn-Ga magnetic shape memory alloy. Scripta Mater 54:2155–2160CrossRef Ge YL, Heczko O, Soderberg O, Hannula SP (2006) Magnetic domain evolution with applied field in a Ni-Mn-Ga magnetic shape memory alloy. Scripta Mater 54:2155–2160CrossRef
8.
Zurück zum Zitat Funakubo H (ed) (1987) Shape memory alloys. Gordon and Breach, New York Funakubo H (ed) (1987) Shape memory alloys. Gordon and Breach, New York
9.
Zurück zum Zitat Miyazaki S, Fu YQ, Huang WM (2009) Thin film shape memory alloys: fundamentals and device applications. Cambridge University Press, New YorkCrossRef Miyazaki S, Fu YQ, Huang WM (2009) Thin film shape memory alloys: fundamentals and device applications. Cambridge University Press, New YorkCrossRef
10.
Zurück zum Zitat Wang CC, Huang WM, Ding Z, Zhao Y, Purnawali H (2012) Cooling-/water-responsive shape memory hybrids. Compos Sci Technol 72:1178–1182CrossRef Wang CC, Huang WM, Ding Z, Zhao Y, Purnawali H (2012) Cooling-/water-responsive shape memory hybrids. Compos Sci Technol 72:1178–1182CrossRef
11.
Zurück zum Zitat Huang WM, Yang B, An L, Li C, Chan YS (2005) Water-driven programmable polyurethane shape memory polymer: demonstration and mechanism. Appl Phys Lett 86:114105CrossRef Huang WM, Yang B, An L, Li C, Chan YS (2005) Water-driven programmable polyurethane shape memory polymer: demonstration and mechanism. Appl Phys Lett 86:114105CrossRef
12.
Zurück zum Zitat Jung YC, So HH, Cho JW (2006) Water-responsive shape memory polyurethane block copolymer modified with polyhedral oligometric silsesquioxane. J Macromol Sci B 45:1189–1189CrossRef Jung YC, So HH, Cho JW (2006) Water-responsive shape memory polyurethane block copolymer modified with polyhedral oligometric silsesquioxane. J Macromol Sci B 45:1189–1189CrossRef
13.
Zurück zum Zitat Zhao Y, Wang CC, Huang WM, Purnawali H (2011) Buckling of poly(methyl methacrylate) in stimulus-responsive shape recovery. Appl Phys Lett 99:131911CrossRef Zhao Y, Wang CC, Huang WM, Purnawali H (2011) Buckling of poly(methyl methacrylate) in stimulus-responsive shape recovery. Appl Phys Lett 99:131911CrossRef
14.
Zurück zum Zitat Zhao CS, Nie SQ, Tang M, Sun SD (2011) Polymeric pH-sensitive membranes—a review. Prog Polym Sci 36:1499–1520CrossRef Zhao CS, Nie SQ, Tang M, Sun SD (2011) Polymeric pH-sensitive membranes—a review. Prog Polym Sci 36:1499–1520CrossRef
15.
Zurück zum Zitat Wang CC, Zhao Y, Purnawali H, Huang WM, Sun L (2012) Chemically induced morphing in polyurethane shape memory polymer micro fibers/springs. React Funct Polym 72:757–764CrossRef Wang CC, Zhao Y, Purnawali H, Huang WM, Sun L (2012) Chemically induced morphing in polyurethane shape memory polymer micro fibers/springs. React Funct Polym 72:757–764CrossRef
16.
Zurück zum Zitat Willett JL (2008) Humidity-responsive starch-poly(methyl acrylate) films. Macromol Chem Physic 209:764–772CrossRef Willett JL (2008) Humidity-responsive starch-poly(methyl acrylate) films. Macromol Chem Physic 209:764–772CrossRef
17.
Zurück zum Zitat Lendlein A, Jiang HY, Junger O, Langer R (2005) Light-induced shape-memory polymers. Nature 434:879–882CrossRef Lendlein A, Jiang HY, Junger O, Langer R (2005) Light-induced shape-memory polymers. Nature 434:879–882CrossRef
18.
Zurück zum Zitat Kumpfer JR, Rowan SJ (2011) Thermo-, photo-, and chemo-responsive shape-memory properties from photo-cross-linked metallo-supramolecular polymers. J Am Chem Soc 133:12866–12874CrossRef Kumpfer JR, Rowan SJ (2011) Thermo-, photo-, and chemo-responsive shape-memory properties from photo-cross-linked metallo-supramolecular polymers. J Am Chem Soc 133:12866–12874CrossRef
19.
Zurück zum Zitat Hussein H, Harrison D (2008) New technologies for active disassembly: using the shape memory effect in engineering polymers. Int J Prod Dev 6:431–439CrossRef Hussein H, Harrison D (2008) New technologies for active disassembly: using the shape memory effect in engineering polymers. Int J Prod Dev 6:431–439CrossRef
20.
Zurück zum Zitat Purnawali H, Xu WW, Zhao Y, Ding Z, Wang CC, Huang WM, Fan H (2012) Poly(methyl methacrylate) for active disassembly. Smart Mater Struct 21:075006CrossRef Purnawali H, Xu WW, Zhao Y, Ding Z, Wang CC, Huang WM, Fan H (2012) Poly(methyl methacrylate) for active disassembly. Smart Mater Struct 21:075006CrossRef
21.
Zurück zum Zitat Yang FQ, Zhang SL, Li JCM (1997) Impression recovery of amorphous polymers. J Electron Mater 26:859–862CrossRef Yang FQ, Zhang SL, Li JCM (1997) Impression recovery of amorphous polymers. J Electron Mater 26:859–862CrossRef
22.
Zurück zum Zitat Bianchi O, Oliveira RVB, Fiorio R, Martins JDN, Zattera AJ, Canto LB (2008) Assessment of Avrami, Ozawa and Avrami–Ozawa equations for determination of EVA crosslinking kinetics from DSC measurements. Polym Test 27:722–729 Bianchi O, Oliveira RVB, Fiorio R, Martins JDN, Zattera AJ, Canto LB (2008) Assessment of Avrami, Ozawa and Avrami–Ozawa equations for determination of EVA crosslinking kinetics from DSC measurements. Polym Test 27:722–729
23.
Zurück zum Zitat Stelescu MD, Manaila E, Craciun G, Zuga N (2012) Crosslinking and grafting ethylene vinyl acetate copolymer with accelerated electrons in the presence of polyfunctional monomers. Polym Bull 68:263–285CrossRef Stelescu MD, Manaila E, Craciun G, Zuga N (2012) Crosslinking and grafting ethylene vinyl acetate copolymer with accelerated electrons in the presence of polyfunctional monomers. Polym Bull 68:263–285CrossRef
24.
Zurück zum Zitat Matsumura K, Hyon SH, Nakajima N, Peng C, Tsutsumi S (2000) Surface modification of poly(ethylene-co-vinyl alcohol) (EVA). Part I. Introduction of carboxyl groups and immobilization of collagen. J Biomed Mater Res 50:512–517CrossRef Matsumura K, Hyon SH, Nakajima N, Peng C, Tsutsumi S (2000) Surface modification of poly(ethylene-co-vinyl alcohol) (EVA). Part I. Introduction of carboxyl groups and immobilization of collagen. J Biomed Mater Res 50:512–517CrossRef
25.
Zurück zum Zitat Arun M, Silja PK, Mohanan PV (2011) Evaluation of hydroxyapatite-bioglass and hydroxyapatite-ethyl vinyl acetate composite extracts on antioxidant defense mechanism and genotoxicity: an in vitro study. Toxicol Mech Methods 21:561–566CrossRef Arun M, Silja PK, Mohanan PV (2011) Evaluation of hydroxyapatite-bioglass and hydroxyapatite-ethyl vinyl acetate composite extracts on antioxidant defense mechanism and genotoxicity: an in vitro study. Toxicol Mech Methods 21:561–566CrossRef
26.
Zurück zum Zitat Tanrattanakul V, Kaewprakob T (2011) Effect of different curing systems on heat shrinkability and mechanical properties of ethylene vinyl acetate/epoxidized natural rubber blends. J Appl Polym Sci 119:38–46CrossRef Tanrattanakul V, Kaewprakob T (2011) Effect of different curing systems on heat shrinkability and mechanical properties of ethylene vinyl acetate/epoxidized natural rubber blends. J Appl Polym Sci 119:38–46CrossRef
27.
Zurück zum Zitat Li FK, Zhu W, Zhang X, Zhao CT, Xu M (1999) Shape memory effect of ethylene-vinyl acetate copolymers. J Appl Polym Sci 71:1063–1070CrossRef Li FK, Zhu W, Zhang X, Zhao CT, Xu M (1999) Shape memory effect of ethylene-vinyl acetate copolymers. J Appl Polym Sci 71:1063–1070CrossRef
28.
Zurück zum Zitat Tanrattanakul V, Kaewprakob T (2009) Effect of rubber content on mechanical properties and heat shrinkage of ethylene vinyl acetate copolymer blended with epoxidized natural rubber. J Appl Polym Sci 112:1817–1825CrossRef Tanrattanakul V, Kaewprakob T (2009) Effect of rubber content on mechanical properties and heat shrinkage of ethylene vinyl acetate copolymer blended with epoxidized natural rubber. J Appl Polym Sci 112:1817–1825CrossRef
29.
Zurück zum Zitat Mishra JK, Das CK (2001) Effect of interchain crosslinking on the shrinkability of the blends consisting of grafted poly (ethylene vinyl acetate) and polyurethane elastomer. J Mater Sci Lett 20:1877–1879CrossRef Mishra JK, Das CK (2001) Effect of interchain crosslinking on the shrinkability of the blends consisting of grafted poly (ethylene vinyl acetate) and polyurethane elastomer. J Mater Sci Lett 20:1877–1879CrossRef
30.
Zurück zum Zitat Huang WM, Yang B, Zhao Y, Ding Z (2010) Thermo-moisture responsive polyurethane shape-memory polymer and composites: a review. J Mater Chem 20:3367–3381CrossRef Huang WM, Yang B, Zhao Y, Ding Z (2010) Thermo-moisture responsive polyurethane shape-memory polymer and composites: a review. J Mater Chem 20:3367–3381CrossRef
31.
Zurück zum Zitat Huang W, Toh W (2000) Training two-way shape memory alloy by reheat treatment. J Mater Sci Lett 19:1549–1550CrossRef Huang W, Toh W (2000) Training two-way shape memory alloy by reheat treatment. J Mater Sci Lett 19:1549–1550CrossRef
32.
Zurück zum Zitat Liu N, Huang WM, Phee SJ (2007) A secret garden of micro butterflies: phenomenon and mechanism. Surf Rev Lett 14:1187–1190CrossRef Liu N, Huang WM, Phee SJ (2007) A secret garden of micro butterflies: phenomenon and mechanism. Surf Rev Lett 14:1187–1190CrossRef
33.
Zurück zum Zitat Sun L, Huang WM, Wang CC, Zhao Y, Ding Z, Purnawali H (2011) Optimization of the shape memory effect in shape memory polymers. J Polym Sci A Polym Chem 49:3574–3581CrossRef Sun L, Huang WM, Wang CC, Zhao Y, Ding Z, Purnawali H (2011) Optimization of the shape memory effect in shape memory polymers. J Polym Sci A Polym Chem 49:3574–3581CrossRef
34.
Zurück zum Zitat Wang CC, Huang WM, Ding Z, Zhao Y, Purnawali H, Zheng LX, Fan H, He CB (2012) Rubber-like shape memory polymeric materials with repeatable thermal-assisted healing function. Smart Mater Struct 21:115010CrossRef Wang CC, Huang WM, Ding Z, Zhao Y, Purnawali H, Zheng LX, Fan H, He CB (2012) Rubber-like shape memory polymeric materials with repeatable thermal-assisted healing function. Smart Mater Struct 21:115010CrossRef
35.
Zurück zum Zitat Xie T, Xiao XC, Li JJ, Wang RM (2010) Encoding localized strain history through wrinkle based structural colors. Adv Mater 22:4390–4394CrossRef Xie T, Xiao XC, Li JJ, Wang RM (2010) Encoding localized strain history through wrinkle based structural colors. Adv Mater 22:4390–4394CrossRef
36.
Zurück zum Zitat Li J, Shim JM, Deng J, Overvelde JTB, Zhu XL, Bertoldi K, Yang S (2012) Switching periodic membranes via pattern transformation and shape memory effect. Soft Matter 8:10322–10328CrossRef Li J, Shim JM, Deng J, Overvelde JTB, Zhu XL, Bertoldi K, Yang S (2012) Switching periodic membranes via pattern transformation and shape memory effect. Soft Matter 8:10322–10328CrossRef
37.
Zurück zum Zitat Li JJ, An YH, Huang R, Jiang HQ, Xie T (2012) Unique aspects of a shape memory polymer as the substrate for surface wrinkling. ACS Appl Mater Interfaces 4:598–603CrossRef Li JJ, An YH, Huang R, Jiang HQ, Xie T (2012) Unique aspects of a shape memory polymer as the substrate for surface wrinkling. ACS Appl Mater Interfaces 4:598–603CrossRef
38.
Zurück zum Zitat Zhao Y, Huang WM, Wang CC (2012) Thermo/chemo-responsive shape memory effect for micro/nano surface patterning atop polymers. Nanosci Nanotechnol Lett 4:862–878CrossRef Zhao Y, Huang WM, Wang CC (2012) Thermo/chemo-responsive shape memory effect for micro/nano surface patterning atop polymers. Nanosci Nanotechnol Lett 4:862–878CrossRef
39.
Zurück zum Zitat Liu N, Xie Q, Huang WM, Phee SJ, Guo NQ (2008) Formation of micro protrusion arrays atop shape memory polymer. J Micromech Microeng 18:027001CrossRef Liu N, Xie Q, Huang WM, Phee SJ, Guo NQ (2008) Formation of micro protrusion arrays atop shape memory polymer. J Micromech Microeng 18:027001CrossRef
40.
Zurück zum Zitat Sun L, Huang WM (2010) Mechanisms of the multi-shape memory effect and temperature memory effect in shape memory polymers. Soft Matter 6:4403–4406CrossRef Sun L, Huang WM (2010) Mechanisms of the multi-shape memory effect and temperature memory effect in shape memory polymers. Soft Matter 6:4403–4406CrossRef
41.
Zurück zum Zitat Xie T (2010) Tunable polymer multi-shape memory effect. Nature 464:267–270CrossRef Xie T (2010) Tunable polymer multi-shape memory effect. Nature 464:267–270CrossRef
42.
Zurück zum Zitat PR China patent application No. 201210480325.5 PR China patent application No. 201210480325.5
43.
Zurück zum Zitat PR China patent application No. 201210206952.X PR China patent application No. 201210206952.X
44.
Zurück zum Zitat Sun L, Huang WM (2010) Thermo/moisture responsive shape-memory polymer for possible surgery/operation inside living cells in future. Mater Des 31:2684–2689CrossRef Sun L, Huang WM (2010) Thermo/moisture responsive shape-memory polymer for possible surgery/operation inside living cells in future. Mater Des 31:2684–2689CrossRef
Metadaten
Titel
Characterization of shape recovery via creeping and shape memory effect in ether-vinyl acetate copolymer (EVA)
Publikationsdatum
01.08.2013
Erschienen in
Journal of Polymer Research / Ausgabe 8/2013
Print ISSN: 1022-9760
Elektronische ISSN: 1572-8935
DOI
https://doi.org/10.1007/s10965-013-0150-4

Weitere Artikel der Ausgabe 8/2013

Journal of Polymer Research 8/2013 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.