Skip to main content
Erschienen in: Journal of Polymer Research 5/2015

01.05.2015 | Original Paper

32.Sulfonic acid functionalization of 2-aminoterephthalate metal−organic framework and silica nanoparticles by surface initiated radical polymerization: as proton-conducting solid electrolytes

verfasst von: Hossein Mahdavi, Leila Ahmadian-Alam

Erschienen in: Journal of Polymer Research | Ausgabe 5/2015

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A post-polymerization method for metal–organic frameworks (MOFs) and silica nanoparticles have been developed to produce super-acidic solid nanoparticle. Thus, silica and amino-functionalized metal−organic framework [NH2-MIL-101(Al)] were functionalized with 4.4′-Azobis(4-cyanovaleric acid) (ACVA) from hydroxyl and amine groups to yield initiator anchored silica and MOF nanoparticles. Then, sulfonated polymer/MOF and sulfonated polymer/silica hybrid nanoparticles were prepared by free radical polymerization of 2-acrylamido-2-methyl-1-propane sulfonic acid [(MOF-g-PAMPS) and (Si-g-PAMPS)], initiated onto the surfaces of initiator functionalized nanoparticles. Synthesis and modification of nanoparticles were characterized by fourier transform infrared (FTIR), thermogravimetric analysis (TGA). Also, the attachment of ACVA modifier agent on the surface of silica nanoparticles was studied using X-ray photoelectron spectroscopy (XPS). FTIR and TGA results indicated that AMPS monomer was successfully grafted onto the MOF and silica nanoparticles. The grafting efficiency of PAMPS polymer onto the silica and MOF nanoparticles were estimated from TGA thermograms to be 17 and 35 % for silica and MOF nanoparticles, respectively. Morphology of MOF and silica nanoparticles before and after modification processes were studied by scanning electron microscopy (SEM) and transmission electron microscopy (TEM), respectively.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Laberty-Robert C, Valle K, Pereira F, Sanchez C (2011) Design and properties of functional hybrid organic–inorganic membranes for fuel cells. Chem Soc Rev 40:961–1005CrossRef Laberty-Robert C, Valle K, Pereira F, Sanchez C (2011) Design and properties of functional hybrid organic–inorganic membranes for fuel cells. Chem Soc Rev 40:961–1005CrossRef
2.
Zurück zum Zitat Nagarale RK, Shin W, Singh PK (2010) Progress in ionic organic–inorganic composite membranes for fuel cell applications. Polym Chem 1:388–408CrossRef Nagarale RK, Shin W, Singh PK (2010) Progress in ionic organic–inorganic composite membranes for fuel cell applications. Polym Chem 1:388–408CrossRef
3.
Zurück zum Zitat Peighambardoust SJ, Rowshanzamir S, Amjadi M (2010) Review of the proton exchange membranes for fuel cell applications. Int J Hydrog Energy 35:9349–9384CrossRef Peighambardoust SJ, Rowshanzamir S, Amjadi M (2010) Review of the proton exchange membranes for fuel cell applications. Int J Hydrog Energy 35:9349–9384CrossRef
4.
Zurück zum Zitat Smitha B, Sridhar S, Khan AA (2005) Solid polymer electrolyte membranes for fuel cell applications-a review. J Membr Sci 259:10–26CrossRef Smitha B, Sridhar S, Khan AA (2005) Solid polymer electrolyte membranes for fuel cell applications-a review. J Membr Sci 259:10–26CrossRef
5.
Zurück zum Zitat Kalappa P, Lee JH (2007) Proton conducting membranes based on sulfonated poly(ether ether ketone)/TiO2 nanocomposites for a direct methanol fuel cell. Polym Int 56:371–375CrossRef Kalappa P, Lee JH (2007) Proton conducting membranes based on sulfonated poly(ether ether ketone)/TiO2 nanocomposites for a direct methanol fuel cell. Polym Int 56:371–375CrossRef
6.
Zurück zum Zitat Suryani CCM, Liu YL, Lee YM (2011) Polybenzimidazole membranes modified with polyelectrolyte-functionalized multiwalled carbon nanotubes for proton exchange membrane fuel cells. J Mater Chem 21:7480–7486CrossRef Suryani CCM, Liu YL, Lee YM (2011) Polybenzimidazole membranes modified with polyelectrolyte-functionalized multiwalled carbon nanotubes for proton exchange membrane fuel cells. J Mater Chem 21:7480–7486CrossRef
7.
Zurück zum Zitat Chu F, Lin B, Qiu B, Si Z, Qiu L, Gu Z, Ding J, Yan F, Lu J (2012) Polybenzimidazole/zwitterion-coated silica nanoparticle hybrid proton conducting membranes for anhydrous proton exchange membrane application. J Mater Chem 22:18411–18417CrossRef Chu F, Lin B, Qiu B, Si Z, Qiu L, Gu Z, Ding J, Yan F, Lu J (2012) Polybenzimidazole/zwitterion-coated silica nanoparticle hybrid proton conducting membranes for anhydrous proton exchange membrane application. J Mater Chem 22:18411–18417CrossRef
8.
Zurück zum Zitat Gosalawit R, Chirachanchai S, Shishatskiy S, Nunesb SP (2008) Sulfonated montmorillonite/sulfonated poly(ether ether ketone) (SMMT/SPEEK) nanocomposite membrane for direct methanol fuel cells (DMFCs). J Membr Sci 323:337–346CrossRef Gosalawit R, Chirachanchai S, Shishatskiy S, Nunesb SP (2008) Sulfonated montmorillonite/sulfonated poly(ether ether ketone) (SMMT/SPEEK) nanocomposite membrane for direct methanol fuel cells (DMFCs). J Membr Sci 323:337–346CrossRef
9.
Zurück zum Zitat Cao YC, Xu C, Wu X, Wang X, Xing L, Scott K (2011) A poly (ethylene oxide)/graphene oxide electrolyte membrane for low temperature polymer fuel cells. J Power Sources 196:8377–8382CrossRef Cao YC, Xu C, Wu X, Wang X, Xing L, Scott K (2011) A poly (ethylene oxide)/graphene oxide electrolyte membrane for low temperature polymer fuel cells. J Power Sources 196:8377–8382CrossRef
10.
Zurück zum Zitat Kitagawa S, Kitaura R, Si N (2004) Functional porous coordination polymers. Angew Chem Int Ed 43:2334–2375CrossRef Kitagawa S, Kitaura R, Si N (2004) Functional porous coordination polymers. Angew Chem Int Ed 43:2334–2375CrossRef
11.
Zurück zum Zitat Chen G, Wu S, Liu H, Jiang H, Li Y (2013) Palladium supported on an acidic metal–organic framework as an efficient catalyst in selective aerobic oxidation of alcohols. Green Chem 15:230–235CrossRef Chen G, Wu S, Liu H, Jiang H, Li Y (2013) Palladium supported on an acidic metal–organic framework as an efficient catalyst in selective aerobic oxidation of alcohols. Green Chem 15:230–235CrossRef
12.
Zurück zum Zitat Xiao B, Yuan Q (2009) Nanoporous metal organic framework materials for hydrogen storage. Particuology 7:129–140CrossRef Xiao B, Yuan Q (2009) Nanoporous metal organic framework materials for hydrogen storage. Particuology 7:129–140CrossRef
13.
Zurück zum Zitat Tanh Jeazet HB, Staudt C, Janiak C (2012) Metal–organic frameworks in mixed-matrix membranes for gas separation. Dalton Trans 41:14003–14027CrossRef Tanh Jeazet HB, Staudt C, Janiak C (2012) Metal–organic frameworks in mixed-matrix membranes for gas separation. Dalton Trans 41:14003–14027CrossRef
14.
Zurück zum Zitat Hwa Jhung BS, Lee JH, Yoon JW, Serre C, Férey G, Chang JS (2007) Microwave synthesis of chromium terephthalate MIL-101 and its benzene sorption ability. Adv Mater 19:121–124CrossRef Hwa Jhung BS, Lee JH, Yoon JW, Serre C, Férey G, Chang JS (2007) Microwave synthesis of chromium terephthalate MIL-101 and its benzene sorption ability. Adv Mater 19:121–124CrossRef
15.
Zurück zum Zitat Hurd JA, Vaidhyanathan R, Thangadurai V, Ratcliffe CI, Moudrakovski GL, Shimizu George KH (2009) Anhydrous proton conduction at 150 °Cin a crystalline metal–organic framework. Nat Chem 1:705–710CrossRef Hurd JA, Vaidhyanathan R, Thangadurai V, Ratcliffe CI, Moudrakovski GL, Shimizu George KH (2009) Anhydrous proton conduction at 150 °Cin a crystalline metal–organic framework. Nat Chem 1:705–710CrossRef
16.
Zurück zum Zitat Kitagawa H (2009) Metal–organic frameworks transported into fuel cells. Nat Chem 1:689–690CrossRef Kitagawa H (2009) Metal–organic frameworks transported into fuel cells. Nat Chem 1:689–690CrossRef
17.
Zurück zum Zitat Zheng GL, Yang GC, Song SY, Songa XZ, Zhang HJ (2014) Constructing porous MOF based on the assembly of layer framework and p-sulfonatocalix[4]arene nanocapsule with proton-conductive property. CrystEngComm 16:64–68CrossRef Zheng GL, Yang GC, Song SY, Songa XZ, Zhang HJ (2014) Constructing porous MOF based on the assembly of layer framework and p-sulfonatocalix[4]arene nanocapsule with proton-conductive property. CrystEngComm 16:64–68CrossRef
18.
Zurück zum Zitat Foo ML, Horike S, Fukushima T, Hijikata Y, Kubota Y, Takataf M, Kitagawa S (2012) Ligand-based solid solution approach to stabilisation of sulphonic acid groups in porous coordination polymer Zr6O4(OH)4(BDC)6 (UiO-66). Dalton Trans 41:13791–13794CrossRef Foo ML, Horike S, Fukushima T, Hijikata Y, Kubota Y, Takataf M, Kitagawa S (2012) Ligand-based solid solution approach to stabilisation of sulphonic acid groups in porous coordination polymer Zr6O4(OH)4(BDC)6 (UiO-66). Dalton Trans 41:13791–13794CrossRef
19.
Zurück zum Zitat Goesten MG, Juan-Alcañiz J, Ramos-Fernandez EV, Sankar Gupta KBS, Eli S, Bekkum H, Gascon J, Kapteijn F (2011) Sulfation of metal–organic frameworks: opportunities for acid catalysis and proton conductivity. J Catal 281:177–187CrossRef Goesten MG, Juan-Alcañiz J, Ramos-Fernandez EV, Sankar Gupta KBS, Eli S, Bekkum H, Gascon J, Kapteijn F (2011) Sulfation of metal–organic frameworks: opportunities for acid catalysis and proton conductivity. J Catal 281:177–187CrossRef
20.
Zurück zum Zitat Smith JJ, Zharov I (2009) Preparation and proton conductivity of sulfonated polymer-modified sintered and self-assembled silica colloidal crystals. Chem Mater 21:2013–2019CrossRef Smith JJ, Zharov I (2009) Preparation and proton conductivity of sulfonated polymer-modified sintered and self-assembled silica colloidal crystals. Chem Mater 21:2013–2019CrossRef
21.
Zurück zum Zitat Brozek EM, Mollard AH, Zharov I (2014) Silica nanoparticles carrying boron-containing polymer brushes. J Nanoparticle Res 16:2407–2418CrossRef Brozek EM, Mollard AH, Zharov I (2014) Silica nanoparticles carrying boron-containing polymer brushes. J Nanoparticle Res 16:2407–2418CrossRef
22.
Zurück zum Zitat Roghani-Mamaqani H, Haddadi-Asl V, Khezri K, Zeinali E, Salami-Kalajahi M (2014) In situ atom transfer radical polymerization of styrene to in-plane functionalize graphene nanolayers: grafting through hydroxyl groups. J Polym Res 21:333–343CrossRef Roghani-Mamaqani H, Haddadi-Asl V, Khezri K, Zeinali E, Salami-Kalajahi M (2014) In situ atom transfer radical polymerization of styrene to in-plane functionalize graphene nanolayers: grafting through hydroxyl groups. J Polym Res 21:333–343CrossRef
23.
Zurück zum Zitat Gao B, Li D, Lei Q (2011) Preparation of high PMMA grafted particle SiO2 using surface initiated free radical polymerization. J Polym Res 18:1519–1526CrossRef Gao B, Li D, Lei Q (2011) Preparation of high PMMA grafted particle SiO2 using surface initiated free radical polymerization. J Polym Res 18:1519–1526CrossRef
24.
Zurück zum Zitat Gao B, Fang L, Wang X, Men J (2012) Constituting redox initiation system of mercapto-cerium salt and realizing highly effective graft-polymerization of MAA on surfaces of silica gel particles. J Polym Res 19:4–13CrossRef Gao B, Fang L, Wang X, Men J (2012) Constituting redox initiation system of mercapto-cerium salt and realizing highly effective graft-polymerization of MAA on surfaces of silica gel particles. J Polym Res 19:4–13CrossRef
25.
Zurück zum Zitat Ahmadian-Alam L, Haddadi-Asl V, Roghani-Mamaqani H, Hatami L, Salami-Kalajahi M (2012) Use of clay-anchored reactive modifier for the synthesis of poly (styrene-co-butyl acrylate)/clay nanocomposite via in situ AGET ATRP. J Polym Res 19:9773–9784CrossRef Ahmadian-Alam L, Haddadi-Asl V, Roghani-Mamaqani H, Hatami L, Salami-Kalajahi M (2012) Use of clay-anchored reactive modifier for the synthesis of poly (styrene-co-butyl acrylate)/clay nanocomposite via in situ AGET ATRP. J Polym Res 19:9773–9784CrossRef
26.
Zurück zum Zitat Deng Y, Li Y, Dai J, Lang M, Huang X (2011) An efficient way to functionalize graphene sheets with presynthesized polymer via ATNRC chemistry. J Polym Sci A Polym Chem 49:1582–1590CrossRef Deng Y, Li Y, Dai J, Lang M, Huang X (2011) An efficient way to functionalize graphene sheets with presynthesized polymer via ATNRC chemistry. J Polym Sci A Polym Chem 49:1582–1590CrossRef
27.
Zurück zum Zitat Lei Z, Li Y, Wei X (2008) A facile two-step modifying process for preparation of poly(SStNa)-grafted Fe3O4/SiO2 particles. J Solid State Chem 181:480–486CrossRef Lei Z, Li Y, Wei X (2008) A facile two-step modifying process for preparation of poly(SStNa)-grafted Fe3O4/SiO2 particles. J Solid State Chem 181:480–486CrossRef
28.
Zurück zum Zitat Perruchot C, Khan MA, Kamitsi A, Armes SP (2001) Synthesis of well-defined, polymer-grafted silica particles by aqueous ATRP. Langmuir 17:4479–4481CrossRef Perruchot C, Khan MA, Kamitsi A, Armes SP (2001) Synthesis of well-defined, polymer-grafted silica particles by aqueous ATRP. Langmuir 17:4479–4481CrossRef
29.
Zurück zum Zitat Bromberg L, Su X, Hatton TA (2013) Heteropolyacid-functionalized aluminum 2‑aminoterephthalate metal-organic frameworks as reactive aldehyde sorbents and catalysts. ACS Appl Mater Interfaces 5:5468–5477CrossRef Bromberg L, Su X, Hatton TA (2013) Heteropolyacid-functionalized aluminum 2‑aminoterephthalate metal-organic frameworks as reactive aldehyde sorbents and catalysts. ACS Appl Mater Interfaces 5:5468–5477CrossRef
30.
Zurück zum Zitat Feng L, Ye J, Qiang X, Zhang H (2011) Syntheses of an Azo-group-bound silica initiator and silica–polystyrene composites. J Appl Polym Sci 121:454–461CrossRef Feng L, Ye J, Qiang X, Zhang H (2011) Syntheses of an Azo-group-bound silica initiator and silica–polystyrene composites. J Appl Polym Sci 121:454–461CrossRef
31.
Zurück zum Zitat Salarizadeh P, Abdollahi M, Javanbakht M (2012) Modification of silica nanoparticles with hydrophilic sulfonated polymers by using surface-initiated redox polymerization. Iran Polym J 21:661–668CrossRef Salarizadeh P, Abdollahi M, Javanbakht M (2012) Modification of silica nanoparticles with hydrophilic sulfonated polymers by using surface-initiated redox polymerization. Iran Polym J 21:661–668CrossRef
32.
Zurück zum Zitat Park J, Seo J, Ahn S, Kim J, Kang S (2010) Surface modification of silica nanoparticles with hydrophilic polymers. J Ind Eng Chem 16:517–522CrossRef Park J, Seo J, Ahn S, Kim J, Kang S (2010) Surface modification of silica nanoparticles with hydrophilic polymers. J Ind Eng Chem 16:517–522CrossRef
33.
Zurück zum Zitat Laruelle G, Parvole J, Francois J, Billon L (2004) Block copolymer grafted-silica particles: a core/double shell hybrid inorganic/organic material. Polymer 45:5013–5020CrossRef Laruelle G, Parvole J, Francois J, Billon L (2004) Block copolymer grafted-silica particles: a core/double shell hybrid inorganic/organic material. Polymer 45:5013–5020CrossRef
34.
Zurück zum Zitat Le Normand F, Hommet J, Szörényi T, Fuchs C, Fogarassy E (2001) XPS study of pulsed laser deposited CNx films. Phys Rev B 64:235416–235427CrossRef Le Normand F, Hommet J, Szörényi T, Fuchs C, Fogarassy E (2001) XPS study of pulsed laser deposited CNx films. Phys Rev B 64:235416–235427CrossRef
35.
Zurück zum Zitat Sun W, Chen Y, Zhou L, He X (2006) Preparing polymer brushes on poly(vinylidene fluoride) films by free radical polymerization. J Appl Polym Sci 101:857–862CrossRef Sun W, Chen Y, Zhou L, He X (2006) Preparing polymer brushes on poly(vinylidene fluoride) films by free radical polymerization. J Appl Polym Sci 101:857–862CrossRef
36.
Zurück zum Zitat Tang E, Fu C, Wang S, Dong S, Zhao F, Zhao D (2012) Graft polymerization of styrene monomer initiated by azobis(4-cyanovaleric acid) anchored on the surface of ZnO nanoparticles and its PVC composite film. Powder Technol 218:5–10CrossRef Tang E, Fu C, Wang S, Dong S, Zhao F, Zhao D (2012) Graft polymerization of styrene monomer initiated by azobis(4-cyanovaleric acid) anchored on the surface of ZnO nanoparticles and its PVC composite film. Powder Technol 218:5–10CrossRef
37.
Zurück zum Zitat Haque E, Lo V, Minett AI, Harris AT, Church TL (2014) Dichotomous adsorption behavior of dyes on an amino-functionalised metal–organic framework, amino-MIL-101(Al). J Mater Chem A 2:193–203CrossRef Haque E, Lo V, Minett AI, Harris AT, Church TL (2014) Dichotomous adsorption behavior of dyes on an amino-functionalised metal–organic framework, amino-MIL-101(Al). J Mater Chem A 2:193–203CrossRef
38.
Zurück zum Zitat Seoane B, Téllez C, Coronas J, Staudt C (2013) NH2-MIL-53(Al) andNH2-MIL-101(Al) in sulfur-containing copolyimide mixed matrix membranes for gas separation. Sep Purif Technol 111:72–81CrossRef Seoane B, Téllez C, Coronas J, Staudt C (2013) NH2-MIL-53(Al) andNH2-MIL-101(Al) in sulfur-containing copolyimide mixed matrix membranes for gas separation. Sep Purif Technol 111:72–81CrossRef
39.
Zurück zum Zitat Chen X, Vinh-Thang H, Rodrigue D, Kaliaguine S (2012) Amine-functionalized MIL-53 metal − organic framework in polyimide mixed matrix membranes for CO2/CH4 separation. Ind Eng Chem Res 51:6895–6906CrossRef Chen X, Vinh-Thang H, Rodrigue D, Kaliaguine S (2012) Amine-functionalized MIL-53 metal − organic framework in polyimide mixed matrix membranes for CO2/CH4 separation. Ind Eng Chem Res 51:6895–6906CrossRef
40.
Zurück zum Zitat Bao Y, Ma J, Li N (2011) Synthesis and swelling behaviors of sodium carboxymethyl cellulose-g-poly(AA-co-AM-co-AMPS)/MMT superabsorbent hydrogel. Carbohydr Polym 84:76–82CrossRef Bao Y, Ma J, Li N (2011) Synthesis and swelling behaviors of sodium carboxymethyl cellulose-g-poly(AA-co-AM-co-AMPS)/MMT superabsorbent hydrogel. Carbohydr Polym 84:76–82CrossRef
41.
42.
Zurück zum Zitat Bombalski L, Min K, Dong H, Tang C, Matyjaszewski K (2007) Preparation of well-defined hybrid materials by ATRP in mini-emulsion. Macromolecules 40:7429–7432CrossRef Bombalski L, Min K, Dong H, Tang C, Matyjaszewski K (2007) Preparation of well-defined hybrid materials by ATRP in mini-emulsion. Macromolecules 40:7429–7432CrossRef
Metadaten
Titel
32.Sulfonic acid functionalization of 2-aminoterephthalate metal−organic framework and silica nanoparticles by surface initiated radical polymerization: as proton-conducting solid electrolytes
verfasst von
Hossein Mahdavi
Leila Ahmadian-Alam
Publikationsdatum
01.05.2015
Verlag
Springer Netherlands
Erschienen in
Journal of Polymer Research / Ausgabe 5/2015
Print ISSN: 1022-9760
Elektronische ISSN: 1572-8935
DOI
https://doi.org/10.1007/s10965-015-0708-4

Weitere Artikel der Ausgabe 5/2015

Journal of Polymer Research 5/2015 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.