Skip to main content
Erschienen in: Journal of Polymer Research 3/2018

01.03.2018 | ORIGINAL PAPER

Effect of multiwalled carbon nanotubes and phenethyl-bridged DOPO derivative on flame retardancy of epoxy resin

verfasst von: Wei Yan, Jie Yu, Mingqiu Zhang, Tao Wang, Chunzhi Wen, Shuhao Qin, Weijiang Huang

Erschienen in: Journal of Polymer Research | Ausgabe 3/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this study, a phenethyl-bridged DOPO derivative (DiDOPO) was combined with multi-walled carbon nanotubes (MWNT) in epoxy resin (EP) to improve its flame retardancy. The introduction of only 10 wt% DiDOPO/0.8 wt% MWNT into EP increased the limited oxygen index (LOI) from 21.8% to 38.6%, achieving the UL 94 V-0 rating. The thermogravimetric analyses demonstrated that the presence of MWNT raised the char yield and formed thermally stable carbonaceous char. The decomposition and pyrolysis products in the gas phase were characterized by thermogravimetry-Fourier transform infrared spectroscopy (TG-FTIR), and found large amounts of phosphorus released into the gas phase. The flame-retardant effect evaluation by cone calorimetry testified that the MWNT improved the protective-barrier effect of the fire residue of EP/DiDOPO/MWNT, as shown by digital photo and scanning electron microscopy (SEM). Raman showed that MWNT could enhance the graphitization degree of the resin during combustion. Overall, these findings indicated that combination of DiDOPO with MWNT is an effective way in developing high-performance resins with attractive flame retardancy.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Martins MSS, Schartel B, Magalhães FD, Pereira CMC (2016) The effect of traditional flame retardants, nanoclays and carbon nanotubes in the fire performance of epoxy resin composites. Fire Mater 301:9–35 Martins MSS, Schartel B, Magalhães FD, Pereira CMC (2016) The effect of traditional flame retardants, nanoclays and carbon nanotubes in the fire performance of epoxy resin composites. Fire Mater 301:9–35
2.
Zurück zum Zitat Zhang X, He Q, Gu H, Colorado HA, Wei S, Guo Z (2013) Flame-retardant electrical conductive nanopolymers based on bisphenol F epoxy resin reinforced with nano polyanilines. ACS Appl Mater Interfaces 5(3):898–910CrossRef Zhang X, He Q, Gu H, Colorado HA, Wei S, Guo Z (2013) Flame-retardant electrical conductive nanopolymers based on bisphenol F epoxy resin reinforced with nano polyanilines. ACS Appl Mater Interfaces 5(3):898–910CrossRef
3.
Zurück zum Zitat Rakotomalala M, Wagner S, Döring M (2010) Recent Developments in Halogen Free Flame Retardants for Epoxy Resins for Electrical and Electronic Applications. Materials 3(8):4300–4327CrossRef Rakotomalala M, Wagner S, Döring M (2010) Recent Developments in Halogen Free Flame Retardants for Epoxy Resins for Electrical and Electronic Applications. Materials 3(8):4300–4327CrossRef
4.
Zurück zum Zitat Zhuang R-C, Yang J, Wang D-Y, Huang Y-X (2015) Simultaneously enhancing the flame retardancy and toughness of epoxy by lamellar dodecyl-ammonium dihydrogen phosphate. RSC Adv 5(121):100049–100053CrossRef Zhuang R-C, Yang J, Wang D-Y, Huang Y-X (2015) Simultaneously enhancing the flame retardancy and toughness of epoxy by lamellar dodecyl-ammonium dihydrogen phosphate. RSC Adv 5(121):100049–100053CrossRef
5.
Zurück zum Zitat Wang X, Kalali EN, Wang D-Y (2015) Renewable Cardanol-Based Surfactant Modified Layered Double Hydroxide as a Flame Retardant for Epoxy Resin. ACS Sustain Chem Eng 3(12):3281–3290CrossRef Wang X, Kalali EN, Wang D-Y (2015) Renewable Cardanol-Based Surfactant Modified Layered Double Hydroxide as a Flame Retardant for Epoxy Resin. ACS Sustain Chem Eng 3(12):3281–3290CrossRef
6.
Zurück zum Zitat Zotti A, Borriello A, Ricciardi M, Antonucci V, Giordano M, Zarrelli M (2015) Effects of sepiolite clay on degradation and fire behaviour of a bisphenol A-based epoxy. Compos Part B 73:139–148CrossRef Zotti A, Borriello A, Ricciardi M, Antonucci V, Giordano M, Zarrelli M (2015) Effects of sepiolite clay on degradation and fire behaviour of a bisphenol A-based epoxy. Compos Part B 73:139–148CrossRef
7.
Zurück zum Zitat Deng L, Shen M, Yu J, Wu K, Ha C (2012) Preparation, Characterization, and Flame Retardancy of Novel Rosin-Based Siloxane Epoxy Resins. Ind Eng Chem Res 51(24):8178–8184CrossRef Deng L, Shen M, Yu J, Wu K, Ha C (2012) Preparation, Characterization, and Flame Retardancy of Novel Rosin-Based Siloxane Epoxy Resins. Ind Eng Chem Res 51(24):8178–8184CrossRef
8.
Zurück zum Zitat Liu S, Fang Z, Yan H, Chevali VS, Wang H (2016) Synergistic flame retardancy effect of graphene nanosheets and traditional retardants on epoxy resin. Compos A: Appl Sci Manuf 89:26–32CrossRef Liu S, Fang Z, Yan H, Chevali VS, Wang H (2016) Synergistic flame retardancy effect of graphene nanosheets and traditional retardants on epoxy resin. Compos A: Appl Sci Manuf 89:26–32CrossRef
9.
Zurück zum Zitat Zang L, Wagner S, Ciesielski M, Müller P, Döring M (2011) Novel star-shaped and hyperbranched phosphorus-containing flame retardants in epoxy resins. Polym Adv Technol 22(7):1182–1191CrossRef Zang L, Wagner S, Ciesielski M, Müller P, Döring M (2011) Novel star-shaped and hyperbranched phosphorus-containing flame retardants in epoxy resins. Polym Adv Technol 22(7):1182–1191CrossRef
10.
Zurück zum Zitat Long L, Yin J, He W, Qin S, Yu J (2016) Influence of a Phenethyl-Bridged DOPO Derivative on the Flame Retardancy, Thermal Properties, and Mechanical Properties of Poly(lactic acid). Ind Eng Chem Res 55(40):10803–10812CrossRef Long L, Yin J, He W, Qin S, Yu J (2016) Influence of a Phenethyl-Bridged DOPO Derivative on the Flame Retardancy, Thermal Properties, and Mechanical Properties of Poly(lactic acid). Ind Eng Chem Res 55(40):10803–10812CrossRef
11.
Zurück zum Zitat Chang Q, Long L, He W, Qin S, Yu J (2016) Thermal degradation behavior of PLA composites containing bis DOPO phosphonates. Thermochim Acta 639:84–90CrossRef Chang Q, Long L, He W, Qin S, Yu J (2016) Thermal degradation behavior of PLA composites containing bis DOPO phosphonates. Thermochim Acta 639:84–90CrossRef
12.
Zurück zum Zitat Shree Meenakshi K, Pradeep Jaya Sudhan E, Ananda Kumar S, Umapathy MJ (2011) Development and characterization of novel DOPO based phosphorus tetraglycidyl epoxy nanocomposites for aerospace applications. Prog Org Coat 72(3):402–409CrossRef Shree Meenakshi K, Pradeep Jaya Sudhan E, Ananda Kumar S, Umapathy MJ (2011) Development and characterization of novel DOPO based phosphorus tetraglycidyl epoxy nanocomposites for aerospace applications. Prog Org Coat 72(3):402–409CrossRef
13.
Zurück zum Zitat Zhang W, Li X, Yang R (2012) Blowing-out effect in epoxy composites flame retarded by DOPO-POSS and its correlation with amide curing agents. Polym Degrad Stab 97(8):1314–1324CrossRef Zhang W, Li X, Yang R (2012) Blowing-out effect in epoxy composites flame retarded by DOPO-POSS and its correlation with amide curing agents. Polym Degrad Stab 97(8):1314–1324CrossRef
14.
Zurück zum Zitat Wang T, Wang J, Huo S, Zhang B, Yang S (2016) Preparation and flame retardancy of DOPO–based epoxy resin containing bismaleimide. High Perform Polym 28(9):1090–1095CrossRef Wang T, Wang J, Huo S, Zhang B, Yang S (2016) Preparation and flame retardancy of DOPO–based epoxy resin containing bismaleimide. High Perform Polym 28(9):1090–1095CrossRef
15.
Zurück zum Zitat Kiliaris P, Papaspyrides CD (2010) Polymer/layered silicate (clay) nanocomposites: An overview of flame retardancy. Prog Polym Sci 35(7):902–958CrossRef Kiliaris P, Papaspyrides CD (2010) Polymer/layered silicate (clay) nanocomposites: An overview of flame retardancy. Prog Polym Sci 35(7):902–958CrossRef
16.
Zurück zum Zitat Martino L, Guigo N, van Berkel JG, Sbirrazzuoli N (2017) Influence of organically modified montmorillonite and sepiolite clays on the physical properties of bio-based poly(ethylene 2,5-furandicarboxylate). Compos Part B 110:96–105CrossRef Martino L, Guigo N, van Berkel JG, Sbirrazzuoli N (2017) Influence of organically modified montmorillonite and sepiolite clays on the physical properties of bio-based poly(ethylene 2,5-furandicarboxylate). Compos Part B 110:96–105CrossRef
17.
Zurück zum Zitat Yang S, Wang J, Huo S, Wang M, Wang J, Zhang B (2016) Synergistic flame-retardant effect of expandable graphite and phosphorus-containing compounds for epoxy resin: Strong bonding of different carbon residues. Polym Degrad Stab 128:89–98CrossRef Yang S, Wang J, Huo S, Wang M, Wang J, Zhang B (2016) Synergistic flame-retardant effect of expandable graphite and phosphorus-containing compounds for epoxy resin: Strong bonding of different carbon residues. Polym Degrad Stab 128:89–98CrossRef
18.
Zurück zum Zitat Liu S, Chevali VS, Xu Z, Hui D, Wang H (2018) A review of extending performance of epoxy resins using carbon nanomaterials. Compos Part B 136:197–214CrossRef Liu S, Chevali VS, Xu Z, Hui D, Wang H (2018) A review of extending performance of epoxy resins using carbon nanomaterials. Compos Part B 136:197–214CrossRef
19.
Zurück zum Zitat Du B, Fang Z (2010) The preparation of layered double hydroxide wrapped carbon nanotubes and their application as a flame retardant for polypropylene. Nanotechnology 21(31):315603–315609CrossRef Du B, Fang Z (2010) The preparation of layered double hydroxide wrapped carbon nanotubes and their application as a flame retardant for polypropylene. Nanotechnology 21(31):315603–315609CrossRef
20.
Zurück zum Zitat Song PA, Xu L, Guo Z, Zhang Y, Fang Z (2008) Flame-retardant-wrapped carbon nanotubes for simultaneously improving the flame retardancy and mechanical properties of polypropylene. J Mater Chem 18(42):5083–5091CrossRef Song PA, Xu L, Guo Z, Zhang Y, Fang Z (2008) Flame-retardant-wrapped carbon nanotubes for simultaneously improving the flame retardancy and mechanical properties of polypropylene. J Mater Chem 18(42):5083–5091CrossRef
21.
Zurück zum Zitat Ma H-Y, Tong L-F, Xu Z-B, Fang Z-P (2008) Functionalizing Carbon Nanotubes by Grafting on Intumescent Flame Retardant: Nanocomposite Synthesis, Morphology, Rheology, and Flammability. Adv Funct Mater 18(3):414–421CrossRef Ma H-Y, Tong L-F, Xu Z-B, Fang Z-P (2008) Functionalizing Carbon Nanotubes by Grafting on Intumescent Flame Retardant: Nanocomposite Synthesis, Morphology, Rheology, and Flammability. Adv Funct Mater 18(3):414–421CrossRef
22.
Zurück zum Zitat Ma Y-Y, Ma P-F, Ma Y-J, Xu D, Wang P, Yang R (2017) Synergistic effect of multiwalled carbon nanotubes and an intumescent flame retardant: Toward an ideal electromagnetic interference shielding material with excellent flame retardancy. J Appl Polym Sci 134:45088–45094CrossRef Ma Y-Y, Ma P-F, Ma Y-J, Xu D, Wang P, Yang R (2017) Synergistic effect of multiwalled carbon nanotubes and an intumescent flame retardant: Toward an ideal electromagnetic interference shielding material with excellent flame retardancy. J Appl Polym Sci 134:45088–45094CrossRef
23.
Zurück zum Zitat Rahatekar SS, Zammarano M, Matko S, Koziol KK, Windle AH, Nyden M, Kashiwagi T, Gilman JW (2010) Effect of carbon nanotubes and montmorillonite on the flammability of epoxy nanocomposites. Polym Degrad Stab 95(5):870–879CrossRef Rahatekar SS, Zammarano M, Matko S, Koziol KK, Windle AH, Nyden M, Kashiwagi T, Gilman JW (2010) Effect of carbon nanotubes and montmorillonite on the flammability of epoxy nanocomposites. Polym Degrad Stab 95(5):870–879CrossRef
24.
Zurück zum Zitat Kuan C-F, Chen W-J, Li Y-L, Chen C-H, Kuan H-C, Chiang C-L (2010) Flame retardance and thermal stability of carbon nanotube epoxy composite prepared from sol–gel method. J Phys Chem Solids 71(4):539–543CrossRef Kuan C-F, Chen W-J, Li Y-L, Chen C-H, Kuan H-C, Chiang C-L (2010) Flame retardance and thermal stability of carbon nanotube epoxy composite prepared from sol–gel method. J Phys Chem Solids 71(4):539–543CrossRef
25.
Zurück zum Zitat Hesamir M, Bagheri R, Masoomi M (2014) Combination effects of carbon nanotubes, MMT and phosphorus flame retardant on fire and thermal resistance of fiber-reinforced epoxy composites. Iran Polym J 23(6):469–476CrossRef Hesamir M, Bagheri R, Masoomi M (2014) Combination effects of carbon nanotubes, MMT and phosphorus flame retardant on fire and thermal resistance of fiber-reinforced epoxy composites. Iran Polym J 23(6):469–476CrossRef
26.
Zurück zum Zitat Yao Q, Wang J, Mack AG. (2015) Process for the preparation of DOPO-derived compounds and compositions thereof. U.S. Patent 9,012,546, Yao Q, Wang J, Mack AG. (2015) Process for the preparation of DOPO-derived compounds and compositions thereof. U.S. Patent 9,012,546,
27.
Zurück zum Zitat Wang X, Hu Y, Song L, Xing W, Lu H, Lv P, Jie G (2010) Flame retardancy and thermal degradation mechanism of epoxy resin composites based on a DOPO substituted organophosphorus oligomer. Polymer 51(11):2435–2445CrossRef Wang X, Hu Y, Song L, Xing W, Lu H, Lv P, Jie G (2010) Flame retardancy and thermal degradation mechanism of epoxy resin composites based on a DOPO substituted organophosphorus oligomer. Polymer 51(11):2435–2445CrossRef
28.
Zurück zum Zitat Kashiwagi T, Du F, Douglas JF, Winey KI, Harris Jr RH, Shields JR (2005) Nanoparticle networks reduce the flammability of polymer nanocomposites. Nat Mater 4(12):928–933CrossRef Kashiwagi T, Du F, Douglas JF, Winey KI, Harris Jr RH, Shields JR (2005) Nanoparticle networks reduce the flammability of polymer nanocomposites. Nat Mater 4(12):928–933CrossRef
29.
Zurück zum Zitat Qiu Y, Qian L, Xi W (2016) Flame-retardant effect of a novel phosphaphenanthrene/triazine-trione bi-group compound on an epoxy thermoset and its pyrolysis behaviour. RSC Adv 6(61):56018–56027CrossRef Qiu Y, Qian L, Xi W (2016) Flame-retardant effect of a novel phosphaphenanthrene/triazine-trione bi-group compound on an epoxy thermoset and its pyrolysis behaviour. RSC Adv 6(61):56018–56027CrossRef
30.
Zurück zum Zitat Buczko A, Stelzig T, Bommer L, Rentsch D, Heneczkowski M, Gaan S (2014) Bridged DOPO derivatives as flame retardants for PA6. Polym Degrad Stab 107:158–165CrossRef Buczko A, Stelzig T, Bommer L, Rentsch D, Heneczkowski M, Gaan S (2014) Bridged DOPO derivatives as flame retardants for PA6. Polym Degrad Stab 107:158–165CrossRef
31.
Zurück zum Zitat Wang J, Qian L, Huang Z, Fang Y, Qiu Y (2016) Synergistic flame-retardant behavior and mechanisms of aluminum poly-hexamethylenephosphinate and phosphaphenanthrene in epoxy resin. Polym Degrad Stab 130:173–181CrossRef Wang J, Qian L, Huang Z, Fang Y, Qiu Y (2016) Synergistic flame-retardant behavior and mechanisms of aluminum poly-hexamethylenephosphinate and phosphaphenanthrene in epoxy resin. Polym Degrad Stab 130:173–181CrossRef
32.
Zurück zum Zitat Brehme S, Schartel B, Goebbels J, Fischer O, Pospiech D, Bykov Y, Döring M (2011) Phosphorus polyester versus aluminium phosphinate in poly(butylene terephthalate) (PBT): Flame retardancy performance and mechanisms. Polym Degrad Stab 96(5):875–884CrossRef Brehme S, Schartel B, Goebbels J, Fischer O, Pospiech D, Bykov Y, Döring M (2011) Phosphorus polyester versus aluminium phosphinate in poly(butylene terephthalate) (PBT): Flame retardancy performance and mechanisms. Polym Degrad Stab 96(5):875–884CrossRef
33.
Zurück zum Zitat Tang S, Wachtendorf V, Klack P, Qian L, Dong Y, Schartel B (2017) Enhanced flame-retardant effect of a montmorillonite/phosphaphenanthrene compound in an epoxy thermoset. RSC Adv 7(2):720–728CrossRef Tang S, Wachtendorf V, Klack P, Qian L, Dong Y, Schartel B (2017) Enhanced flame-retardant effect of a montmorillonite/phosphaphenanthrene compound in an epoxy thermoset. RSC Adv 7(2):720–728CrossRef
34.
Zurück zum Zitat Brehme S, Köppl T, Schartel B, Altstädt V (2014) Competition in aluminium phosphinate-based halogen-free flame retardancy of poly(butylene terephthalate) and its glass-fibre composites. e-Polymers 14(3):193–208 Brehme S, Köppl T, Schartel B, Altstädt V (2014) Competition in aluminium phosphinate-based halogen-free flame retardancy of poly(butylene terephthalate) and its glass-fibre composites. e-Polymers 14(3):193–208
35.
Zurück zum Zitat Wu GM, Schartel B, Bahr H, Kleemeier M, Yu D, Hartwig A (2012) Experimental and quantitative assessment of flame retardancy by the shielding effect in layered silicate epoxy nanocomposites. Combust Flame 159(12):3616–3623CrossRef Wu GM, Schartel B, Bahr H, Kleemeier M, Yu D, Hartwig A (2012) Experimental and quantitative assessment of flame retardancy by the shielding effect in layered silicate epoxy nanocomposites. Combust Flame 159(12):3616–3623CrossRef
36.
Zurück zum Zitat Chen X, Liu L, Zhuo J, Jiao C, Qian Y (2014) Influence of organic-modified iron–montmorillonite on smoke-suppression properties and combustion behavior of intumescent flame-retardant epoxy composites. High Perform Polym 27(2):233–246CrossRef Chen X, Liu L, Zhuo J, Jiao C, Qian Y (2014) Influence of organic-modified iron–montmorillonite on smoke-suppression properties and combustion behavior of intumescent flame-retardant epoxy composites. High Perform Polym 27(2):233–246CrossRef
37.
Zurück zum Zitat Schartel B, Weiß A, Sturm H, Kleemeier M, Hartwig A, Vogt C, Fischer RX (2011) Layered silicate epoxy nanocomposites: formation of the inorganic-carbonaceous fire protection layer. Polym Adv Technol 22(12):1581–1592CrossRef Schartel B, Weiß A, Sturm H, Kleemeier M, Hartwig A, Vogt C, Fischer RX (2011) Layered silicate epoxy nanocomposites: formation of the inorganic-carbonaceous fire protection layer. Polym Adv Technol 22(12):1581–1592CrossRef
38.
Zurück zum Zitat Xu W, Wirasaputra A, Liu S, Yuan Y, Zhao J (2015) Highly effective flame retarded epoxy resin cured by DOPO-based co-curing agent. Polym Degrad Stab 122:44–51CrossRef Xu W, Wirasaputra A, Liu S, Yuan Y, Zhao J (2015) Highly effective flame retarded epoxy resin cured by DOPO-based co-curing agent. Polym Degrad Stab 122:44–51CrossRef
39.
Zurück zum Zitat Wang Z, Wu W, Zhang X, Wang J, Liu B (2015) Effects of silane-modified multiwalled carbon nanotubes and 9,10-dihydro-9-oxa-10 phosphaphenanthrene-10-oxide on the flame retardancy and mechanical properties of bismaleimide resin. High Perform Polym 28(7):831–841CrossRef Wang Z, Wu W, Zhang X, Wang J, Liu B (2015) Effects of silane-modified multiwalled carbon nanotubes and 9,10-dihydro-9-oxa-10 phosphaphenanthrene-10-oxide on the flame retardancy and mechanical properties of bismaleimide resin. High Perform Polym 28(7):831–841CrossRef
40.
Zurück zum Zitat Schartel B, Perret B, Dittrich B, Ciesielski M, Krämer J, Müller P, Altstädt V, Zang L, Döring M (2016) Flame Retardancy of Polymers: The Role of Specific Reactions in the Condensed Phase. Macromol Mater Eng 301(1):9–35CrossRef Schartel B, Perret B, Dittrich B, Ciesielski M, Krämer J, Müller P, Altstädt V, Zang L, Döring M (2016) Flame Retardancy of Polymers: The Role of Specific Reactions in the Condensed Phase. Macromol Mater Eng 301(1):9–35CrossRef
41.
Zurück zum Zitat Brehme S, Köppl T, Schartel B, Fischer O, Altstädt V, Pospiech D, Döring M (2012) Phosphorus Polyester - an Alternative to Low-Molecular-Weight Flame Retardants in Poly(Butylene Terephthalate)? Macromol Chem Phys 213(22):2386–2397CrossRef Brehme S, Köppl T, Schartel B, Fischer O, Altstädt V, Pospiech D, Döring M (2012) Phosphorus Polyester - an Alternative to Low-Molecular-Weight Flame Retardants in Poly(Butylene Terephthalate)? Macromol Chem Phys 213(22):2386–2397CrossRef
42.
Zurück zum Zitat Perret B, Schartel B, Stöß K, Ciesielski M, Diederichs J, Döring M, Krämer J, Altstädt V (2011) A New Halogen-Free Flame Retardant Based on 9,10-Dihydro-9-oxa-10-phosphaphenanthrene-10-oxide for Epoxy Resins and their Carbon Fiber Composites for the Automotive and Aviation Industries. Macromol Mater Eng 296(1):14–30CrossRef Perret B, Schartel B, Stöß K, Ciesielski M, Diederichs J, Döring M, Krämer J, Altstädt V (2011) A New Halogen-Free Flame Retardant Based on 9,10-Dihydro-9-oxa-10-phosphaphenanthrene-10-oxide for Epoxy Resins and their Carbon Fiber Composites for the Automotive and Aviation Industries. Macromol Mater Eng 296(1):14–30CrossRef
43.
Zurück zum Zitat Qian X, Song L, Yu B, Wang B, Yuan B, Shi Y, Hu Y, Yuen RKK (2013) Novel organic–inorganic flame retardants containing exfoliated graphene: preparation and their performance on the flame retardancy of epoxy resins. J Mater Chem A 1(23):6822–6830CrossRef Qian X, Song L, Yu B, Wang B, Yuan B, Shi Y, Hu Y, Yuen RKK (2013) Novel organic–inorganic flame retardants containing exfoliated graphene: preparation and their performance on the flame retardancy of epoxy resins. J Mater Chem A 1(23):6822–6830CrossRef
44.
Zurück zum Zitat Wang X, Hu Y, Song L, Xing W, Lu H (2011) Thermal degradation mechanism of flame retarded epoxy resins with a DOPO-substitued organophosphorus oligomer by TG-FTIR and DP-MS. J Anal Appl Pyrolysis 92(1):164–170CrossRef Wang X, Hu Y, Song L, Xing W, Lu H (2011) Thermal degradation mechanism of flame retarded epoxy resins with a DOPO-substitued organophosphorus oligomer by TG-FTIR and DP-MS. J Anal Appl Pyrolysis 92(1):164–170CrossRef
45.
Zurück zum Zitat Zhang W, Li X, Li L, Yang R (2012) Study of the synergistic effect of silicon and phosphorus on the blowing-out effect of epoxy resin composites. Polym Degrad Stab 97(6):1041–1048CrossRef Zhang W, Li X, Li L, Yang R (2012) Study of the synergistic effect of silicon and phosphorus on the blowing-out effect of epoxy resin composites. Polym Degrad Stab 97(6):1041–1048CrossRef
46.
Zurück zum Zitat Li Z, Yang R (2014) Study of the synergistic effect of polyhedral oligomeric octadiphenylsulfonylsilsesquioxane and 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide on flame-retarded epoxy resins. Polym Degrad Stab 109:233–239CrossRef Li Z, Yang R (2014) Study of the synergistic effect of polyhedral oligomeric octadiphenylsulfonylsilsesquioxane and 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide on flame-retarded epoxy resins. Polym Degrad Stab 109:233–239CrossRef
47.
Zurück zum Zitat Wawrzyn E, Schartel B, Seefeldt H, Karrasch A, Jäger C (2012) What Reacts with What in Bisphenol A Polycarbonate/Silicon Rubber/Bisphenol A Bis(diphenyl phosphate) during Pyrolysis and Fire Behavior? Ind Eng Chem Res 51(3):1244–1255CrossRef Wawrzyn E, Schartel B, Seefeldt H, Karrasch A, Jäger C (2012) What Reacts with What in Bisphenol A Polycarbonate/Silicon Rubber/Bisphenol A Bis(diphenyl phosphate) during Pyrolysis and Fire Behavior? Ind Eng Chem Res 51(3):1244–1255CrossRef
48.
Zurück zum Zitat Schartel B, Balabanovich AI, Braun U, Knoll U, Artner J, Ciesielski M, Döring M, Perez R, Sandler JKW, Altstädt V, Hoffmann T, Pospiech D (2007) Pyrolysis of epoxy resins and fire behavior of epoxy resin composites flame-retarded with 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide additives. J Appl Polym Sci 104(4):2260–2269CrossRef Schartel B, Balabanovich AI, Braun U, Knoll U, Artner J, Ciesielski M, Döring M, Perez R, Sandler JKW, Altstädt V, Hoffmann T, Pospiech D (2007) Pyrolysis of epoxy resins and fire behavior of epoxy resin composites flame-retarded with 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide additives. J Appl Polym Sci 104(4):2260–2269CrossRef
49.
Zurück zum Zitat Tuinstra F, Koenig JL (1970) Raman Spectrum of Graphite. J Chem Phys 53(3):1126–1130CrossRef Tuinstra F, Koenig JL (1970) Raman Spectrum of Graphite. J Chem Phys 53(3):1126–1130CrossRef
50.
Zurück zum Zitat Tuinstra F, Koenig JL (1970) Characterization of Graphite Fiber Surfaces with Raman Spectroscopy. J Compos Mater 4(4):492–499CrossRef Tuinstra F, Koenig JL (1970) Characterization of Graphite Fiber Surfaces with Raman Spectroscopy. J Compos Mater 4(4):492–499CrossRef
51.
Zurück zum Zitat Wang X, Kalali EN, Wan J-T, Wang D-Y (2017) Carbon-family materials for flame retardant polymeric materials. Prog Polym Sci 69:22–46CrossRef Wang X, Kalali EN, Wan J-T, Wang D-Y (2017) Carbon-family materials for flame retardant polymeric materials. Prog Polym Sci 69:22–46CrossRef
Metadaten
Titel
Effect of multiwalled carbon nanotubes and phenethyl-bridged DOPO derivative on flame retardancy of epoxy resin
verfasst von
Wei Yan
Jie Yu
Mingqiu Zhang
Tao Wang
Chunzhi Wen
Shuhao Qin
Weijiang Huang
Publikationsdatum
01.03.2018
Verlag
Springer Netherlands
Erschienen in
Journal of Polymer Research / Ausgabe 3/2018
Print ISSN: 1022-9760
Elektronische ISSN: 1572-8935
DOI
https://doi.org/10.1007/s10965-018-1472-z

Weitere Artikel der Ausgabe 3/2018

Journal of Polymer Research 3/2018 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.