Skip to main content
Erschienen in: Journal of Polymer Research 5/2018

01.05.2018 | Original Paper

Effects of amorphous silica nanoparticles and polymer blend compositions on the structural, thermal and dielectric properties of PEO–PMMA blend based polymer nanocomposites

verfasst von: Shobhna Choudhary

Erschienen in: Journal of Polymer Research | Ausgabe 5/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The polymer nanocomposite (PNC) films consisted of poly(ethylene oxide) (PEO) and poly(methyl methacrylate) (PMMA) blend matrices dispersed with nanoparticles of amorphous silica (SiO2) have been prepared by solution-cast method followed by melt-press technique. Effects of SiO2 concentration (x = 0, 1, 3 and 5 wt%) and PEO–PMMA blend compositional ratios (PEO:PMMA = 75:25, 50:50, and 25:75 wt%) on the surface morphology, crystalline phase, polymer-polymer and polymer-nanoparticle interactions, melting phase transition temperature, dielectric permittivity, electrical conductivity, electric modulus and the impedance properties of the PNC films have been investigated. The crystalline phase of the PNC films decreases with the increase of PMMA contents which also vary anomalously with the increase of SiO2 concentration in the films. The melting phase transition temperature and polymer-nanoparticle interactions significantly change with the variation in the compositional ratio of the blend polymers in the PNC films. It is observed that the effect of SiO2 on the dielectric and electrical properties of these PNCs vary greatly with change in the compositional ratio of PEO and PMMA in the blends. The dielectric relaxation process of these films confirm that the polymers cooperative chain segmental dynamics becomes significantly slow when merely 1 wt% SiO2 nanoparticles are dispersed in the polymer blend matrix.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Isayev AI (2013) Encyclopedia of polymer blends. Wiley-VCH, Weinheim, Germany Isayev AI (2013) Encyclopedia of polymer blends. Wiley-VCH, Weinheim, Germany
2.
Zurück zum Zitat Utracki LA, Wilkie C (2014) Polymer blend handbook. Springer Science+Business Media, Dordrecht, The NetherlandsCrossRef Utracki LA, Wilkie C (2014) Polymer blend handbook. Springer Science+Business Media, Dordrecht, The NetherlandsCrossRef
3.
Zurück zum Zitat Thomas S, Grohens Y, Jyotishkumar P (2015) Characterization of polymer blends: Miscibility, morphology and interfaces. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany Thomas S, Grohens Y, Jyotishkumar P (2015) Characterization of polymer blends: Miscibility, morphology and interfaces. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany
4.
Zurück zum Zitat Farago B, Chen C, Maranas JK, Kamath S, Colby RH, Pasquale AJ, Long TE (2005) Collective motion in poly(ethylene oxide)/poly(methylmethacrylate) blends. Phys Rev E 72:031809 (11pp)CrossRef Farago B, Chen C, Maranas JK, Kamath S, Colby RH, Pasquale AJ, Long TE (2005) Collective motion in poly(ethylene oxide)/poly(methylmethacrylate) blends. Phys Rev E 72:031809 (11pp)CrossRef
5.
Zurück zum Zitat Liau WB, Chang CF (2000) Casting solvent effect on crystallization behavior and morphology of poly(ethylene oxide)/poly(methyl methacrylate). J Appl Polym Sci 76:1627–1636CrossRef Liau WB, Chang CF (2000) Casting solvent effect on crystallization behavior and morphology of poly(ethylene oxide)/poly(methyl methacrylate). J Appl Polym Sci 76:1627–1636CrossRef
6.
Zurück zum Zitat Dionisio M, Fernandes AC, Mano JF, Correia NT, Sousa RC (2000) Relaxation studies in PEO/PMMA blends. Macromolecules 33:1002–1011CrossRef Dionisio M, Fernandes AC, Mano JF, Correia NT, Sousa RC (2000) Relaxation studies in PEO/PMMA blends. Macromolecules 33:1002–1011CrossRef
7.
Zurück zum Zitat Sakai VG, Chen C, Maranas JK, Chowdhuri Z (2004) Effect of blending with poly(ethylene oxide) on the dynamics of poly(methyl methacrylate): A quasi-elastic neutron scattering approach. Macromolecules 37:9975–9983CrossRef Sakai VG, Chen C, Maranas JK, Chowdhuri Z (2004) Effect of blending with poly(ethylene oxide) on the dynamics of poly(methyl methacrylate): A quasi-elastic neutron scattering approach. Macromolecules 37:9975–9983CrossRef
8.
Zurück zum Zitat Ghelichi M, Qazvini NT, Jafari SA, Khonakdar HA, Farajollahi Y, Scheffler C (2013) Conformational, thermal and ionic conductivity behavior of PEO in PEO/PMMA miscible blend: Investigating the effect of lithium salt. J Appl Polym Sci 129:1868–1874CrossRef Ghelichi M, Qazvini NT, Jafari SA, Khonakdar HA, Farajollahi Y, Scheffler C (2013) Conformational, thermal and ionic conductivity behavior of PEO in PEO/PMMA miscible blend: Investigating the effect of lithium salt. J Appl Polym Sci 129:1868–1874CrossRef
9.
Zurück zum Zitat Sakai VG, Maranas JK, Peral I, Copley JRD (2008) Dynamics of PEO in blends with PMMA: Study of the effects of blend composition via quasi-elastic neutron scattering. Macromolecules 41:3701–3710CrossRef Sakai VG, Maranas JK, Peral I, Copley JRD (2008) Dynamics of PEO in blends with PMMA: Study of the effects of blend composition via quasi-elastic neutron scattering. Macromolecules 41:3701–3710CrossRef
10.
Zurück zum Zitat Brodeck M, Alvarez F, Colmenero J, Richter D (2012) Single chain dynamic structure factor of poly(ethylene oxide) in dynamically asymmetric blends with poly(methyl methacrylate). Neutron scattering and molecular dynamics simulations Macromolecules 45:536–542 Brodeck M, Alvarez F, Colmenero J, Richter D (2012) Single chain dynamic structure factor of poly(ethylene oxide) in dynamically asymmetric blends with poly(methyl methacrylate). Neutron scattering and molecular dynamics simulations Macromolecules 45:536–542
11.
Zurück zum Zitat Luo C, Chen W, Gao Y (2015) Feather-like morphology of poly (methyl methacrylate)/poly (ethylene oxide) blends: The effect of cooling rate and poly (methyl methacrylate) content. J Appl Polym Sci 132:41705 Luo C, Chen W, Gao Y (2015) Feather-like morphology of poly (methyl methacrylate)/poly (ethylene oxide) blends: The effect of cooling rate and poly (methyl methacrylate) content. J Appl Polym Sci 132:41705
12.
Zurück zum Zitat Xue Z, He D, Xie X (2015) Poly(ethylene oxide)-based electrolytes for lithium polymer batteries. J Mater Chem A 3:19218–19253CrossRef Xue Z, He D, Xie X (2015) Poly(ethylene oxide)-based electrolytes for lithium polymer batteries. J Mater Chem A 3:19218–19253CrossRef
13.
Zurück zum Zitat Ngai KS, Ramesh S, Ramesh K, Juan JC (2016) A review of polymer electrolytes: fundamental, approaches and applications. Ionics 22:1259–1279CrossRef Ngai KS, Ramesh S, Ramesh K, Juan JC (2016) A review of polymer electrolytes: fundamental, approaches and applications. Ionics 22:1259–1279CrossRef
14.
Zurück zum Zitat Lee L, Kim IJ, Yang S, Kim S (2013) Electrochemical properties of PEO/PMMA blend based polymer electrolytes using imidazolium salt-supported silica as a filler. Res Chem Intermed 39:3279–3290CrossRef Lee L, Kim IJ, Yang S, Kim S (2013) Electrochemical properties of PEO/PMMA blend based polymer electrolytes using imidazolium salt-supported silica as a filler. Res Chem Intermed 39:3279–3290CrossRef
15.
Zurück zum Zitat Liang B, Tang S, Jiang Q, Chen C, Chen X, Li S, Yan X (2015) Preparation and characterization of PEO–PMMA polymer composite electrolytes doped with nano–Al2O3. Electrochim Acta 169:334–341CrossRef Liang B, Tang S, Jiang Q, Chen C, Chen X, Li S, Yan X (2015) Preparation and characterization of PEO–PMMA polymer composite electrolytes doped with nano–Al2O3. Electrochim Acta 169:334–341CrossRef
16.
Zurück zum Zitat Sengwa RJ, Choudhary S, Dhatarwal P (2015) Influence of ultrasonic- and microwave-irradiated preparation methods on the structural and dielectric properties of (PEO–PMMA)–LiCF3SO3–x wt% MMT nanocomposite electrolytes. Ionics 21:95–109CrossRef Sengwa RJ, Choudhary S, Dhatarwal P (2015) Influence of ultrasonic- and microwave-irradiated preparation methods on the structural and dielectric properties of (PEO–PMMA)–LiCF3SO3x wt% MMT nanocomposite electrolytes. Ionics 21:95–109CrossRef
17.
Zurück zum Zitat Sengwa RJ, Dhatarwal P, Choudhary S (2014) Role of preparation methods on the structural and dielectric properties of plasticized polymer blend electrolytes: Correlation between ionic conductivity and dielectric parameters. Electrochim Acta 142:359–370CrossRef Sengwa RJ, Dhatarwal P, Choudhary S (2014) Role of preparation methods on the structural and dielectric properties of plasticized polymer blend electrolytes: Correlation between ionic conductivity and dielectric parameters. Electrochim Acta 142:359–370CrossRef
18.
Zurück zum Zitat Choudhary S, Sengwa RJ (2017) Effects of different inorganic nanoparticles on the structural, dielectric and ion transportation properties of polymers blend based nanocomposite solid polymer electrolytes. Electrochim Acta 247:924–941CrossRef Choudhary S, Sengwa RJ (2017) Effects of different inorganic nanoparticles on the structural, dielectric and ion transportation properties of polymers blend based nanocomposite solid polymer electrolytes. Electrochim Acta 247:924–941CrossRef
19.
Zurück zum Zitat Ramesh S, Wen LC (2010) Investigation on the effects of addition of SiO2 nanoparticles on ionic conductivity, FTIR, and thermal properties of nanocomposite PMMA–LiCF3SO3–SiO2. Ionics 16:255–262CrossRef Ramesh S, Wen LC (2010) Investigation on the effects of addition of SiO2 nanoparticles on ionic conductivity, FTIR, and thermal properties of nanocomposite PMMA–LiCF3SO3–SiO2. Ionics 16:255–262CrossRef
20.
Zurück zum Zitat Ray SR, Bousmina M (2006) Polymer nanocomposites and their applications. American Scientific Publishers, California, USA Ray SR, Bousmina M (2006) Polymer nanocomposites and their applications. American Scientific Publishers, California, USA
21.
Zurück zum Zitat Reddy BSR (2011) Advances in nanocomposites - Synthesis, characterization and industrial applications. InTech, CroatiaCrossRef Reddy BSR (2011) Advances in nanocomposites - Synthesis, characterization and industrial applications. InTech, CroatiaCrossRef
22.
Zurück zum Zitat Leng J, Lau AK (2011) Multifunctional polymer nanocomposites; Technology & engineering. CRC Press, Boca Raton FL, USA Leng J, Lau AK (2011) Multifunctional polymer nanocomposites; Technology & engineering. CRC Press, Boca Raton FL, USA
23.
Zurück zum Zitat Tanaka T, Imai T (2013) Advances in nanodielectric materials over the past 50 years. IEEE Electrical Insul Magazn 29:10–23CrossRef Tanaka T, Imai T (2013) Advances in nanodielectric materials over the past 50 years. IEEE Electrical Insul Magazn 29:10–23CrossRef
24.
Zurück zum Zitat Tan D, Irwin P (2013) Polymer based nanodielectric composites in. Advances in Ceramics ed. by Sikalidis C, Crotia Tan D, Irwin P (2013) Polymer based nanodielectric composites in. Advances in Ceramics ed. by Sikalidis C, Crotia
25.
Zurück zum Zitat Daily CS, Sun W, Kessler MR, Tan X, Bowler N (2014) Modeling the interphase of a polymer-based nanodielectric. IEEE Trans Dielectric Electrical Insul 21:488–496CrossRef Daily CS, Sun W, Kessler MR, Tan X, Bowler N (2014) Modeling the interphase of a polymer-based nanodielectric. IEEE Trans Dielectric Electrical Insul 21:488–496CrossRef
26.
Zurück zum Zitat Zeraati AS, Arjmand M, Sundararaj U (2017) Silver nanowire/MnO2 nanowire hybrid polymer nanocomposites: materials with high dielectric permittivity and low dielectric loss. ACS Appl Mater Interfaces 9:14328–14336CrossRefPubMed Zeraati AS, Arjmand M, Sundararaj U (2017) Silver nanowire/MnO2 nanowire hybrid polymer nanocomposites: materials with high dielectric permittivity and low dielectric loss. ACS Appl Mater Interfaces 9:14328–14336CrossRefPubMed
27.
Zurück zum Zitat Mathioudakis GN, Patsidis A, Psarras G (2014) Dynamic electrical thermal analysis on zinc oxide/epoxy resin nanodielectrics. J Therm Anal Calorim 116:27–33CrossRef Mathioudakis GN, Patsidis A, Psarras G (2014) Dynamic electrical thermal analysis on zinc oxide/epoxy resin nanodielectrics. J Therm Anal Calorim 116:27–33CrossRef
28.
Zurück zum Zitat Sengwa RJ, Choudhary S, Sankhla S (2010) Dielectric properties of montmorillonite clay filled poly(vinyl alcohol)/poly(ethylene oxide) blend nanocomposites. Compos Sci Technol 70:1621–1627CrossRef Sengwa RJ, Choudhary S, Sankhla S (2010) Dielectric properties of montmorillonite clay filled poly(vinyl alcohol)/poly(ethylene oxide) blend nanocomposites. Compos Sci Technol 70:1621–1627CrossRef
29.
Zurück zum Zitat Choudhary S, Sengwa RJ (2012) Dielectric properties and structures of melt-compounded poly(ethylene oxide)–montmorillonite nanocomposites. J Appl Polym Sci 124:4847–4853 Choudhary S, Sengwa RJ (2012) Dielectric properties and structures of melt-compounded poly(ethylene oxide)–montmorillonite nanocomposites. J Appl Polym Sci 124:4847–4853
30.
Zurück zum Zitat Choudhary S, Sengwa RJ (2015) Dielectric dispersion and relaxation studies of melt compounded poly(ethylene oxide)/silicon dioxide nanocomposites. Polym Bull 72:2591–2604CrossRef Choudhary S, Sengwa RJ (2015) Dielectric dispersion and relaxation studies of melt compounded poly(ethylene oxide)/silicon dioxide nanocomposites. Polym Bull 72:2591–2604CrossRef
31.
Zurück zum Zitat Choudhary S, Sengwa RJ (2017) Morphological, structural, dielectric and electrical properties of PEO–ZnO nanodielectric films. J Polym Res 24:54CrossRef Choudhary S, Sengwa RJ (2017) Morphological, structural, dielectric and electrical properties of PEO–ZnO nanodielectric films. J Polym Res 24:54CrossRef
32.
Zurück zum Zitat Sengwa RJ, Choudhary S (2017) Dielectric and electrical properties of PEO–Al2O3 nanocomposites. J Alloys Compd 701:652–659CrossRef Sengwa RJ, Choudhary S (2017) Dielectric and electrical properties of PEO–Al2O3 nanocomposites. J Alloys Compd 701:652–659CrossRef
33.
Zurück zum Zitat Choudhary S (2017) Dielectric dispersion and relaxations in (PVA–PEO)–ZnO polymer nanocomposites. Physica B 522:48–56CrossRef Choudhary S (2017) Dielectric dispersion and relaxations in (PVA–PEO)–ZnO polymer nanocomposites. Physica B 522:48–56CrossRef
34.
Zurück zum Zitat Choudhary S (2017) Structural and dielectric properties of (PEO–PMMA)–SnO2 nanocomposites. CompComm 5:54–63 Choudhary S (2017) Structural and dielectric properties of (PEO–PMMA)–SnO2 nanocomposites. CompComm 5:54–63
35.
Zurück zum Zitat Choudhary S, Sengwa RJ (2017) Role of doped ZnO nanoparticles as polymer chain segmental motion exciter in PVA-ZnO nanocomposites. Adv Mater Process 2:315–324CrossRef Choudhary S, Sengwa RJ (2017) Role of doped ZnO nanoparticles as polymer chain segmental motion exciter in PVA-ZnO nanocomposites. Adv Mater Process 2:315–324CrossRef
36.
Zurück zum Zitat Sengwa RJ, Choudhary S (2016) Dielectric dispersion and relaxation in polymer blend based nanodielectric film. Macromol Symp 362:132–138CrossRef Sengwa RJ, Choudhary S (2016) Dielectric dispersion and relaxation in polymer blend based nanodielectric film. Macromol Symp 362:132–138CrossRef
37.
Zurück zum Zitat Choudhary S (2016) Characterization of SiO2 nanoparticles dispersed (PVA–PEO) blend based nanocomposites as the polymeric nanodielectric materials. Indian J Eng Mater Sci 23:399–410 Choudhary S (2016) Characterization of SiO2 nanoparticles dispersed (PVA–PEO) blend based nanocomposites as the polymeric nanodielectric materials. Indian J Eng Mater Sci 23:399–410
38.
Zurück zum Zitat Zou H, Wu S, Shen J (2008) Polymer/silica nanocomposites: Preparation, characterization, properties, and applications. Chem Rev 108:3893–3957CrossRefPubMed Zou H, Wu S, Shen J (2008) Polymer/silica nanocomposites: Preparation, characterization, properties, and applications. Chem Rev 108:3893–3957CrossRefPubMed
39.
Zurück zum Zitat Ju S, Chen M, Zhang H, Zhang Z (2014) Dielectric properties of nanosilica/low-density polyethylene composites: The surface chemistry of nanoparticles and deep traps induced by nanoparticles. Express Polym Lett 8:682–691CrossRef Ju S, Chen M, Zhang H, Zhang Z (2014) Dielectric properties of nanosilica/low-density polyethylene composites: The surface chemistry of nanoparticles and deep traps induced by nanoparticles. Express Polym Lett 8:682–691CrossRef
40.
Zurück zum Zitat Lau KY, Piah MAM, Ching KY (2017) Correlating the breakdown strength with electric field analysis for polyethylene/silica nanocomposites. J Electrost 86:1–11CrossRef Lau KY, Piah MAM, Ching KY (2017) Correlating the breakdown strength with electric field analysis for polyethylene/silica nanocomposites. J Electrost 86:1–11CrossRef
41.
Zurück zum Zitat Lee E, Hong JY, Ungar G, Jang J (2013) Crystallization of poly(ethylene oxide) embedded with surface-modified SiO2 nanoparticles. Polym Int 62:1112–1122CrossRef Lee E, Hong JY, Ungar G, Jang J (2013) Crystallization of poly(ethylene oxide) embedded with surface-modified SiO2 nanoparticles. Polym Int 62:1112–1122CrossRef
42.
Zurück zum Zitat Madathingal RR, Wunder SL (2011) Confinement effects of silica nanoparticles with radii smaller and larger than R g of adsorbed poly(ethylene oxide). Macromolecules 44:2873–2882CrossRef Madathingal RR, Wunder SL (2011) Confinement effects of silica nanoparticles with radii smaller and larger than R g of adsorbed poly(ethylene oxide). Macromolecules 44:2873–2882CrossRef
43.
Zurück zum Zitat Hong B, Panagiotopoulos AZ (2012) Molecular dynamics simulations of silica nanoparticles grafted with poly(ethylene oxide) oligomer chains. J Phys Chem B 116:2385–2395CrossRefPubMed Hong B, Panagiotopoulos AZ (2012) Molecular dynamics simulations of silica nanoparticles grafted with poly(ethylene oxide) oligomer chains. J Phys Chem B 116:2385–2395CrossRefPubMed
44.
Zurück zum Zitat Yeh JM, Chang KC, Peng CW, Chand BG, Chiou SC, Huang HH, Lin CY, Yang JC, Lin HR, Chen CL (2009) Preparation and insulation property studies of thermoplastic PMMA-silica nanocomposite foams. Polym Compos 30:715–722CrossRef Yeh JM, Chang KC, Peng CW, Chand BG, Chiou SC, Huang HH, Lin CY, Yang JC, Lin HR, Chen CL (2009) Preparation and insulation property studies of thermoplastic PMMA-silica nanocomposite foams. Polym Compos 30:715–722CrossRef
45.
Zurück zum Zitat Schoth A, Wagner C, Hecht LL, Winzen S, Muñoz-Espí R, Schuchmann HP, Landfester K (2014) Structure control in PMMA/silica hybrid nanoparticles by surface functionalization. Colloid Polym Sci 292:2427–2437CrossRef Schoth A, Wagner C, Hecht LL, Winzen S, Muñoz-Espí R, Schuchmann HP, Landfester K (2014) Structure control in PMMA/silica hybrid nanoparticles by surface functionalization. Colloid Polym Sci 292:2427–2437CrossRef
46.
Zurück zum Zitat Tuncer E, Rondinone AJ, Woodward J, Sauers I, James DR, Ellis AR (2009) Cobalt iron-oxide nanoparticle modified poly(methyl methacrylate) nanodielectrics: Dielectric and electrical insulation properties. Appl Phys A Mater Sci Process 94:843–852CrossRef Tuncer E, Rondinone AJ, Woodward J, Sauers I, James DR, Ellis AR (2009) Cobalt iron-oxide nanoparticle modified poly(methyl methacrylate) nanodielectrics: Dielectric and electrical insulation properties. Appl Phys A Mater Sci Process 94:843–852CrossRef
47.
Zurück zum Zitat Dang ZM, Yuan JK, Yao SH, Liao RJ (2013) Flexible nanodielectric materials with high permittivity for power energy storage. Adv Mater 25:6334–6365CrossRefPubMed Dang ZM, Yuan JK, Yao SH, Liao RJ (2013) Flexible nanodielectric materials with high permittivity for power energy storage. Adv Mater 25:6334–6365CrossRefPubMed
48.
Zurück zum Zitat Xu F, Zhang H, Jin L, Li Y, Li J, Gan G, Wei M, Li M, Liao Y (2018) Controllably degradable transient electronic antennas based on water-soluble PVA/TiO2 films. J Mater Sci 53:2638–2647CrossRef Xu F, Zhang H, Jin L, Li Y, Li J, Gan G, Wei M, Li M, Liao Y (2018) Controllably degradable transient electronic antennas based on water-soluble PVA/TiO2 films. J Mater Sci 53:2638–2647CrossRef
49.
Zurück zum Zitat Senanayak SP, Sangwan VK, McMorrow JJ, Everaerts K, Chen Z, Facchetti A, Hersam MC, Marks TJ, Narayan KS (2015) Self-assembled nanodielectrics for high-speed, low-voltage solution-processed polymer logic circuits. Adv Electron Mater 1:1500226 (8 pp)CrossRef Senanayak SP, Sangwan VK, McMorrow JJ, Everaerts K, Chen Z, Facchetti A, Hersam MC, Marks TJ, Narayan KS (2015) Self-assembled nanodielectrics for high-speed, low-voltage solution-processed polymer logic circuits. Adv Electron Mater 1:1500226 (8 pp)CrossRef
50.
Zurück zum Zitat Mansour SA, Elsad RA, Izzularab MA (2016) Dielectric properties enhancement of PVC nanodielectrics based on synthesized ZnO nanoparticles. J Polym Res 23:85 (8 pp)CrossRef Mansour SA, Elsad RA, Izzularab MA (2016) Dielectric properties enhancement of PVC nanodielectrics based on synthesized ZnO nanoparticles. J Polym Res 23:85 (8 pp)CrossRef
51.
Zurück zum Zitat Sharif F, Arjmand M, Moud AA, Sundararaj U, Roberts EPL (2017) Segregated hybrid poly(methyl methacrylate)/graphene/magnetite nanocomposites for electromagnetic interference shielding. ACS Appl Mater Interfaces 9:14171–14179CrossRefPubMed Sharif F, Arjmand M, Moud AA, Sundararaj U, Roberts EPL (2017) Segregated hybrid poly(methyl methacrylate)/graphene/magnetite nanocomposites for electromagnetic interference shielding. ACS Appl Mater Interfaces 9:14171–14179CrossRefPubMed
52.
Zurück zum Zitat Deshmukh K, Ahamed MB, Sadasivuni KK, Ponnamma D, Deshmukh RR, Pasha SKK, AlMaadeed MAA, Chidambaram K (2016) Graphene oxide reinforced polyvinyl alcohol/polyethylene glycol blend composites as high-performance dielectric material. J Polym Res 23:159 (13 pp)CrossRef Deshmukh K, Ahamed MB, Sadasivuni KK, Ponnamma D, Deshmukh RR, Pasha SKK, AlMaadeed MAA, Chidambaram K (2016) Graphene oxide reinforced polyvinyl alcohol/polyethylene glycol blend composites as high-performance dielectric material. J Polym Res 23:159 (13 pp)CrossRef
53.
Zurück zum Zitat Huang TS, Su YK, Wang PC (2008) Poly(methyl methacrylate) dielectric material applied in organic thin film transistors. Japanese J Appl Phys 47:3185–3188CrossRef Huang TS, Su YK, Wang PC (2008) Poly(methyl methacrylate) dielectric material applied in organic thin film transistors. Japanese J Appl Phys 47:3185–3188CrossRef
54.
Zurück zum Zitat Deshmukh K, Ahamed MB, Sadasivuni KK, Ponnamma D, Deshmukh RR, Trimukhe AM, Pasha SKK, Polu AR, AlMaadeed MAA, Chidambaram K (2017) Solution-processed white graphene-reinforced ferroelectric polymer nanocomposites with improved thermal conductivity and dielectric properties for electronic encapsulation. J Polym Res 24:27 (14 pp)CrossRef Deshmukh K, Ahamed MB, Sadasivuni KK, Ponnamma D, Deshmukh RR, Trimukhe AM, Pasha SKK, Polu AR, AlMaadeed MAA, Chidambaram K (2017) Solution-processed white graphene-reinforced ferroelectric polymer nanocomposites with improved thermal conductivity and dielectric properties for electronic encapsulation. J Polym Res 24:27 (14 pp)CrossRef
55.
Zurück zum Zitat Gaur MS, Singh PK, Indolia AP, Yadav PK, Rogachev AA, Rogachev AV (2017) Improvement of dielectric properties of spin coated PMMA-ZnO nano hybrid thin film. Ferroelectrics 510:56–70CrossRef Gaur MS, Singh PK, Indolia AP, Yadav PK, Rogachev AA, Rogachev AV (2017) Improvement of dielectric properties of spin coated PMMA-ZnO nano hybrid thin film. Ferroelectrics 510:56–70CrossRef
56.
Zurück zum Zitat Anandraj J, Joshi GM (2018) Fabrication, performance and applications of integrated nanodielectric properties of materials – a review. Compos Interfaces 25:455–489CrossRef Anandraj J, Joshi GM (2018) Fabrication, performance and applications of integrated nanodielectric properties of materials – a review. Compos Interfaces 25:455–489CrossRef
57.
Zurück zum Zitat Stefanescu EA, Tan X, Lin Z, Bowler N, Kessler MR (2010) Multifunctional PMMA-Ceramic composites as structural dielectrics. Polymer 51:5823–5832CrossRef Stefanescu EA, Tan X, Lin Z, Bowler N, Kessler MR (2010) Multifunctional PMMA-Ceramic composites as structural dielectrics. Polymer 51:5823–5832CrossRef
58.
Zurück zum Zitat Deshmukh K, Ahamed MB, Deshmukh RR, Pasha SKK, Sadasivuni KK, Polu AR, Ponnamma D, AlMaadeed MAA, Chidambaram K (2017) Newly developed biodegradable polymer nanocomposites of cellulose acetate and Al2O3 nanoparticles with enhanced dielectric performance for embedded passive applications. J Mater Sci Mater Electron 28:973–986CrossRef Deshmukh K, Ahamed MB, Deshmukh RR, Pasha SKK, Sadasivuni KK, Polu AR, Ponnamma D, AlMaadeed MAA, Chidambaram K (2017) Newly developed biodegradable polymer nanocomposites of cellulose acetate and Al2O3 nanoparticles with enhanced dielectric performance for embedded passive applications. J Mater Sci Mater Electron 28:973–986CrossRef
59.
Zurück zum Zitat Jin Y, Xia N, Gerhardt RA (2016) Enhanced dielectric properties of polymer matrix composites with BaTiO3 and MWCNT hybrid fillers using simple phase separation. Nano Energy 30:407–416CrossRef Jin Y, Xia N, Gerhardt RA (2016) Enhanced dielectric properties of polymer matrix composites with BaTiO3 and MWCNT hybrid fillers using simple phase separation. Nano Energy 30:407–416CrossRef
60.
Zurück zum Zitat Zhou Y, Liu F, Wang H (2017) Novel organic–inorganic composites with high thermal conductivity for electronic packaging applications: A key issue review. Polym Compos 38:803–813CrossRef Zhou Y, Liu F, Wang H (2017) Novel organic–inorganic composites with high thermal conductivity for electronic packaging applications: A key issue review. Polym Compos 38:803–813CrossRef
61.
Zurück zum Zitat Khan M, Khan AN, Saboor A, Gul IF (2017) Investigating mechanical, dielectric, and electromagnetic interference shielding properties of polymer blends and three component hybrid composites based on polyvinyl alcohol, polyaniline, and few layer grapheme. Polym Compos. https://doi.org/10.1002/pc.24398 Khan M, Khan AN, Saboor A, Gul IF (2017) Investigating mechanical, dielectric, and electromagnetic interference shielding properties of polymer blends and three component hybrid composites based on polyvinyl alcohol, polyaniline, and few layer grapheme. Polym Compos. https://​doi.​org/​10.​1002/​pc.​24398
62.
Zurück zum Zitat Luo Y, Wu G, Liu J, Peng J, Zhu G, Gao G (2014) Investigation of temperature effects on voltage endurance for polyimide/Al2O3 nanodielectrics. IEEE Trans Dielectric Electrical Insul 21:1824–1834CrossRef Luo Y, Wu G, Liu J, Peng J, Zhu G, Gao G (2014) Investigation of temperature effects on voltage endurance for polyimide/Al2O3 nanodielectrics. IEEE Trans Dielectric Electrical Insul 21:1824–1834CrossRef
63.
Zurück zum Zitat Gross S, Camozzo D, Noto VD, Armelao L, Tondello E (2007) PMMA: A key macromolecular component for dielectric low-κ hybrid inorganic–organic polymer films. Eur Polym J 43:673–696CrossRef Gross S, Camozzo D, Noto VD, Armelao L, Tondello E (2007) PMMA: A key macromolecular component for dielectric low-κ hybrid inorganic–organic polymer films. Eur Polym J 43:673–696CrossRef
64.
Zurück zum Zitat Ketabi S, Lian K (2013) Effect of SiO2 on conductivity and structural properties of PEO–EMIHSO4 polymer electrolyte and enabled solid electrochemical capacitors. Electrochim Acta 103:174–178CrossRef Ketabi S, Lian K (2013) Effect of SiO2 on conductivity and structural properties of PEO–EMIHSO4 polymer electrolyte and enabled solid electrochemical capacitors. Electrochim Acta 103:174–178CrossRef
65.
Zurück zum Zitat Kremer F, Schönhals A (2003) Broadband Dielectric Spectroscopy. Springer-Verlag, Berlin, GermanyCrossRef Kremer F, Schönhals A (2003) Broadband Dielectric Spectroscopy. Springer-Verlag, Berlin, GermanyCrossRef
66.
Zurück zum Zitat Choudhary S, Sengwa RJ (2014) Intercalated clay structures and amorphous behavior of solution cast and melt pressed poly(ethylene oxide)–clay nanocomposites. J Appl Polym Sci 131:39898 (9 pp)CrossRef Choudhary S, Sengwa RJ (2014) Intercalated clay structures and amorphous behavior of solution cast and melt pressed poly(ethylene oxide)–clay nanocomposites. J Appl Polym Sci 131:39898 (9 pp)CrossRef
67.
Zurück zum Zitat Sengwa RJ, Choudhary S (2014) Dielectric properties and fluctuating relaxation processes of poly(methyl methacrylate) based polymeric nanocomposite electrolytes. J Phys Chem Solids 75:765–774CrossRef Sengwa RJ, Choudhary S (2014) Dielectric properties and fluctuating relaxation processes of poly(methyl methacrylate) based polymeric nanocomposite electrolytes. J Phys Chem Solids 75:765–774CrossRef
68.
Zurück zum Zitat Karim SRA, Sim LH, Chan CH, Ramli H (2015) On thermal and spectroscopic studies of poly(ethylene oxide)/poly(methyl methacrylate) blends with lithium perchlorate. Macromol Symp 354:374–383CrossRef Karim SRA, Sim LH, Chan CH, Ramli H (2015) On thermal and spectroscopic studies of poly(ethylene oxide)/poly(methyl methacrylate) blends with lithium perchlorate. Macromol Symp 354:374–383CrossRef
69.
Zurück zum Zitat Jinisha B, Anilkumar KM, Manoj M, Pradeep VS, Jayalekshmi S (2017) Development of a novel type of solid polymer electrolyte for solid state lithium battery applications based on lithium enriched poly (ethylene oxide) (PEO)/poly (vinyl pyrrolidone) (PVP) blend polymer. Electrochim Acta 235:210–222CrossRef Jinisha B, Anilkumar KM, Manoj M, Pradeep VS, Jayalekshmi S (2017) Development of a novel type of solid polymer electrolyte for solid state lithium battery applications based on lithium enriched poly (ethylene oxide) (PEO)/poly (vinyl pyrrolidone) (PVP) blend polymer. Electrochim Acta 235:210–222CrossRef
70.
Zurück zum Zitat Kiran Kumar K, Ravi M, Pavani Y, Bhavani S, Sharma AK, Narasimha Rao VVR (2012) Electrical conduction mechanism in NaCl complexed PEO/PVP polymer blend electrolytes. J Non-Cryst Solids 358:3205–3211CrossRef Kiran Kumar K, Ravi M, Pavani Y, Bhavani S, Sharma AK, Narasimha Rao VVR (2012) Electrical conduction mechanism in NaCl complexed PEO/PVP polymer blend electrolytes. J Non-Cryst Solids 358:3205–3211CrossRef
71.
Zurück zum Zitat Karmakar A, Ghosh A (2014) Structure and ionic conductivity of ionic liquid embedded PEO-LiCF3SO3 polymer electrolyte. AIP Adv 4:087112CrossRef Karmakar A, Ghosh A (2014) Structure and ionic conductivity of ionic liquid embedded PEO-LiCF3SO3 polymer electrolyte. AIP Adv 4:087112CrossRef
72.
Zurück zum Zitat Pal P, Ghosh A (2018) Influence of TiO2 nano-particles on charge carrier transport and cell performance of PMMA–LiClO4 based nano-composite electrolytes. Electrochim Acta 260:157–167CrossRef Pal P, Ghosh A (2018) Influence of TiO2 nano-particles on charge carrier transport and cell performance of PMMA–LiClO4 based nano-composite electrolytes. Electrochim Acta 260:157–167CrossRef
73.
Zurück zum Zitat Murashkevich AN, Lavitskaya AS, Barannikova TI, Zharskii IM (2008) Infrared absorption spectra and structure of TiO2–SiO2 composites. J Appl Spectrosc 75:730–734CrossRef Murashkevich AN, Lavitskaya AS, Barannikova TI, Zharskii IM (2008) Infrared absorption spectra and structure of TiO2–SiO2 composites. J Appl Spectrosc 75:730–734CrossRef
74.
Zurück zum Zitat Heng C, Liu M, Wang K, Deng F, Huang H, Wan Q, Hui J, Zhang X, Wei Y (2015) Biomimic preparation of highly dispersible silica nanoparticles based polymer nanocomposites. Ceram Int 41:15075–15082CrossRef Heng C, Liu M, Wang K, Deng F, Huang H, Wan Q, Hui J, Zhang X, Wei Y (2015) Biomimic preparation of highly dispersible silica nanoparticles based polymer nanocomposites. Ceram Int 41:15075–15082CrossRef
75.
Zurück zum Zitat Javadi S, Razzaghi-Kashani M, Reis PNB, Balado AA (2017) Interfacial effects on dielectric properties of polymethylmethacrylate-titania microcomposites and nanocomposites. Polym Compos 38:1158–1166CrossRef Javadi S, Razzaghi-Kashani M, Reis PNB, Balado AA (2017) Interfacial effects on dielectric properties of polymethylmethacrylate-titania microcomposites and nanocomposites. Polym Compos 38:1158–1166CrossRef
76.
Zurück zum Zitat Jiao J, Zhao L, Wang L, Lv P, Cui Y, Wu G (2016) A novel hybrid functional nanoparticle and its effects on the dielectric, mechanical, and thermal properties of cyanate ester. Polym Compos 37:2142–2151CrossRef Jiao J, Zhao L, Wang L, Lv P, Cui Y, Wu G (2016) A novel hybrid functional nanoparticle and its effects on the dielectric, mechanical, and thermal properties of cyanate ester. Polym Compos 37:2142–2151CrossRef
77.
Zurück zum Zitat Indolia AP, Gaur MS (2013) Optical properties of solution grown PVDF-ZnO nanocomposite thin films. J Polym Res 20:43 (8 pp)CrossRef Indolia AP, Gaur MS (2013) Optical properties of solution grown PVDF-ZnO nanocomposite thin films. J Polym Res 20:43 (8 pp)CrossRef
78.
Zurück zum Zitat Sinha S, Chatterjee SK, Ghosh J, Meikap AK (2017) Analysis of the dielectric relaxation and ac conductivity behavior of polyvinyl alcohol-cadmium selenide nanocomposite films. Polym Compos 38:287–298CrossRef Sinha S, Chatterjee SK, Ghosh J, Meikap AK (2017) Analysis of the dielectric relaxation and ac conductivity behavior of polyvinyl alcohol-cadmium selenide nanocomposite films. Polym Compos 38:287–298CrossRef
79.
Zurück zum Zitat Singh PK, Gaur MS, Chauhan RS (2015) Dielectric properties of sol-gel synthesized polysulfone-ZnO nanocomposites. J Therm Anal Calorim 122:725–740CrossRef Singh PK, Gaur MS, Chauhan RS (2015) Dielectric properties of sol-gel synthesized polysulfone-ZnO nanocomposites. J Therm Anal Calorim 122:725–740CrossRef
80.
Zurück zum Zitat Mukherjee PS, Das AK, Dutta B, Meikap AK (2017) Role of silver nanotube on conductivity, dielectric permittivity and current voltage characteristics of polyvinyl alcohol-silver nanocomposite film. J Phys Chem Solids 111:266–273CrossRef Mukherjee PS, Das AK, Dutta B, Meikap AK (2017) Role of silver nanotube on conductivity, dielectric permittivity and current voltage characteristics of polyvinyl alcohol-silver nanocomposite film. J Phys Chem Solids 111:266–273CrossRef
81.
Zurück zum Zitat Fuqiang T, Lin Z, Junliang Z, Xiao P (2017) Space charge and dielectric behavior of epoxy composite with SiO2-Al2O3 nano-micro fillers at varied temperatures. Composites Part B 114:93–100CrossRef Fuqiang T, Lin Z, Junliang Z, Xiao P (2017) Space charge and dielectric behavior of epoxy composite with SiO2-Al2O3 nano-micro fillers at varied temperatures. Composites Part B 114:93–100CrossRef
82.
Zurück zum Zitat Choudhary S (2018) Influence of Al2O3 nanoparticles on the dielectric properties and structural dynamics of PVA–PEO blend based nanocomposites. Indian J Chem Tech 25:51–60 Choudhary S (2018) Influence of Al2O3 nanoparticles on the dielectric properties and structural dynamics of PVA–PEO blend based nanocomposites. Indian J Chem Tech 25:51–60
83.
Metadaten
Titel
Effects of amorphous silica nanoparticles and polymer blend compositions on the structural, thermal and dielectric properties of PEO–PMMA blend based polymer nanocomposites
verfasst von
Shobhna Choudhary
Publikationsdatum
01.05.2018
Verlag
Springer Netherlands
Erschienen in
Journal of Polymer Research / Ausgabe 5/2018
Print ISSN: 1022-9760
Elektronische ISSN: 1572-8935
DOI
https://doi.org/10.1007/s10965-018-1510-x

Weitere Artikel der Ausgabe 5/2018

Journal of Polymer Research 5/2018 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.