Skip to main content
Erschienen in: Journal of Polymer Research 8/2019

01.08.2019 | ORIGINAL PAPER

Structural studies on transition metal ion complexes of polyethylene oxide-natural rubber block copolymers

verfasst von: M. S. Mrudula, Nidhi Tiwari, Shambhu Nath Jha, Dibyendu Bhattacharyya, M. R. Gopinathan Nair

Erschienen in: Journal of Polymer Research | Ausgabe 8/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Two shot solution polymerised NR/PEO block copolymer (BC) was used as an absorbent in this study. This polymer has got polyethylene oxide (PEO) immobilised on hydrophobic natural rubber and it was used for complexation studies with the selected 3d transition metal ions. The prepared complexes were subjected to various analytical techniques such as energy dispersive X-ray spectroscopy (EDX), Fourier Transform infrared spectroscopy(FTIR), Raman spectroscopy, X-ray diffraction (XRD) studies, extended X-ray absorption fine structure (EXAFS) analysis and X-ray absorption near edge spectroscopy (XANES). EDX analysis confirms presence of the respective metal ion in each complex. FTIR spectroscopy reveals the 72 helical conformation of polyethylene oxide segments in BC which is retained with some deformation upon complexation. The BC-metal ion interaction is confirmed by broadening of the C-O-C triplet peak. XRD analysis revealed that PEO lattice undergoes expansion during complexation inorder to accommodate the respective metal ion. From the EXAFS results it was observed that each metal ion shows only one peak that corresponds to the oxygen shell indicating the presence of only one type of metal ion bonding. The EXAFS gives hexa coordinated pattern for Co(II), Ni(II) and Zn(II) complexes while a tetra coordination for the Cu(II) complex. Metal-oxygen distance in a given complex is constant and unique which varies with the metal ion. XANES shows a distorted octahedral symmetry (Oh) with sp3d2 hybridisation for the hexa coordinated complexes and a square planar symmetry with dsp2 hybridisation for the tetra coordinated complex. Feasibility of 1 s → 3d transition confirms +2 oxidation state of the metal ions. The combined result of EXAFS and FTIR shows the best fit structure of the complexes in which metal ions are encapsulated within the PEO helical tunnel.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Wilkinson SM, Sheedy TM, New EJ (2016) Synthesis and characterization of metal complexes with schiff base ligands. J Chem Educ 93:5–8CrossRef Wilkinson SM, Sheedy TM, New EJ (2016) Synthesis and characterization of metal complexes with schiff base ligands. J Chem Educ 93:5–8CrossRef
2.
Zurück zum Zitat Luo S, Zhang S, Wang Y et al (2010) Complexes of ionic liquids with poly(ethylene glycol)s. J Organomet Chem 75:1888–1891CrossRef Luo S, Zhang S, Wang Y et al (2010) Complexes of ionic liquids with poly(ethylene glycol)s. J Organomet Chem 75:1888–1891CrossRef
3.
Zurück zum Zitat Reddy MJ, Kumar JS, Subba Rao UV, Chu PP (2006) Structural and ionic conductivity of PEO blend PEG solid polymer electrolyte. Solid State Ionics 177:253–256CrossRef Reddy MJ, Kumar JS, Subba Rao UV, Chu PP (2006) Structural and ionic conductivity of PEO blend PEG solid polymer electrolyte. Solid State Ionics 177:253–256CrossRef
4.
Zurück zum Zitat Syrlybaeva R, Movsum-zade N, Safiullina I et al (2015) Polymer-metal complexes of polyacrylonitrile and its copolymers : synthesis and theoretical study. J Polym Res 22:100 (1-8)CrossRef Syrlybaeva R, Movsum-zade N, Safiullina I et al (2015) Polymer-metal complexes of polyacrylonitrile and its copolymers : synthesis and theoretical study. J Polym Res 22:100 (1-8)CrossRef
5.
Zurück zum Zitat Chatani Y, Okamura S (1987) Crystal structure of poly(ethylene oxide)-sodium iodide complex. Polymer 28:1815–1820CrossRef Chatani Y, Okamura S (1987) Crystal structure of poly(ethylene oxide)-sodium iodide complex. Polymer 28:1815–1820CrossRef
6.
Zurück zum Zitat Brandell D, Liivat A, Aabloo A, Thomas JO (2005) Molecular dynamics simulation of the crystalline short-chain polymer system LiPF6·PEO6(Mw~ 1000). J Mater Chem 15:4338–4345CrossRef Brandell D, Liivat A, Aabloo A, Thomas JO (2005) Molecular dynamics simulation of the crystalline short-chain polymer system LiPF6·PEO6(Mw~ 1000). J Mater Chem 15:4338–4345CrossRef
7.
Zurück zum Zitat Okada T (1993) Complexation of poly(oxyethy1ene) in analytical chemistry. Analyst 118:959–971CrossRef Okada T (1993) Complexation of poly(oxyethy1ene) in analytical chemistry. Analyst 118:959–971CrossRef
8.
Zurück zum Zitat Young W, Epps TH (2009) Salt doping in PEO-containing block copolymers: counterion and concentration effects. Macromolecules 68:2672–2678CrossRef Young W, Epps TH (2009) Salt doping in PEO-containing block copolymers: counterion and concentration effects. Macromolecules 68:2672–2678CrossRef
9.
Zurück zum Zitat Buwalda SJ, Dijkstra PJ, Feijen J (2012) Poly(ethylene glycol)-poly(L-lactide) star block copolymer hydrogels crosslinked by metal-ligand coordination. J Polym Sci Part A Polym Chem 50:1783–1791CrossRef Buwalda SJ, Dijkstra PJ, Feijen J (2012) Poly(ethylene glycol)-poly(L-lactide) star block copolymer hydrogels crosslinked by metal-ligand coordination. J Polym Sci Part A Polym Chem 50:1783–1791CrossRef
10.
Zurück zum Zitat Yanagida S, Takahashi K, Okahara M (1977) Metal-ion complexation of noncyclic poly(ethylene) derivatives. I. Solvent extraction of alkali and alkaline earth metal thiocyanates and iodides. Bull Chem Soc Japan 50:1386–1390CrossRef Yanagida S, Takahashi K, Okahara M (1977) Metal-ion complexation of noncyclic poly(ethylene) derivatives. I. Solvent extraction of alkali and alkaline earth metal thiocyanates and iodides. Bull Chem Soc Japan 50:1386–1390CrossRef
11.
Zurück zum Zitat Awano H, Ono K, Murakami K (1982) The interaction of a neutral polymer with small ions in solution. II. The binding of alkali metal ions to poly(oxyethylene) in several organic solvents. Bull Chem Soc Japan 55:2530–2536CrossRef Awano H, Ono K, Murakami K (1982) The interaction of a neutral polymer with small ions in solution. II. The binding of alkali metal ions to poly(oxyethylene) in several organic solvents. Bull Chem Soc Japan 55:2530–2536CrossRef
12.
Zurück zum Zitat Miyazaki T, Yanagida S, Itoh A, Okahara M (1982) Synthesis and alkali-cation complexing properties of 12-crown-4 derivatives. Bull Chem Soc Japan 55:2005–2009CrossRef Miyazaki T, Yanagida S, Itoh A, Okahara M (1982) Synthesis and alkali-cation complexing properties of 12-crown-4 derivatives. Bull Chem Soc Japan 55:2005–2009CrossRef
13.
Zurück zum Zitat Awano H, Ono K, Murakami K (1982) The interaction of a neutral polymer with small ions in solution. I. A method for the analysis of ion binding to a neutral polymer. Bull Chem Soc Japan 55:2525–2529CrossRef Awano H, Ono K, Murakami K (1982) The interaction of a neutral polymer with small ions in solution. I. A method for the analysis of ion binding to a neutral polymer. Bull Chem Soc Japan 55:2525–2529CrossRef
14.
Zurück zum Zitat Hines CC, Bauer CB, Rogers RD (2007) Lanthanide polyether complexation chemistry: the interaction of hydrated lanthanide(III) nitrate salts with an acyclic 18-crown-6 analog, pentaethylene glycol. New J Chem 31:762–769CrossRef Hines CC, Bauer CB, Rogers RD (2007) Lanthanide polyether complexation chemistry: the interaction of hydrated lanthanide(III) nitrate salts with an acyclic 18-crown-6 analog, pentaethylene glycol. New J Chem 31:762–769CrossRef
15.
Zurück zum Zitat Barthélemy PP, Desreux JF, Massaux J (1986) Complexation of lanthanides by linear polyethers in propylene carbonate: a “crown-like” behaviour. J Chem Soc Dalton Trans:2497–2499 Barthélemy PP, Desreux JF, Massaux J (1986) Complexation of lanthanides by linear polyethers in propylene carbonate: a “crown-like” behaviour. J Chem Soc Dalton Trans:2497–2499
16.
Zurück zum Zitat Glasse MD, Idris R, Latham RJ et al (2002) Polymer electrolytes based on modified natural rubber. Solid State Ionics 147:289–294CrossRef Glasse MD, Idris R, Latham RJ et al (2002) Polymer electrolytes based on modified natural rubber. Solid State Ionics 147:289–294CrossRef
17.
Zurück zum Zitat Yoshizawa M, Marwanta E, Ohno H (2000) Preparation and characteristics of natural rubber/poly(ethylene oxide) salt hybrid mixtures as novel polymer electrolytes. Polymer 41:9049–9053CrossRef Yoshizawa M, Marwanta E, Ohno H (2000) Preparation and characteristics of natural rubber/poly(ethylene oxide) salt hybrid mixtures as novel polymer electrolytes. Polymer 41:9049–9053CrossRef
18.
Zurück zum Zitat Samani MR, Borghei SM, Olad A, Chaichi MJ (2010) Removal of chromium from aqueous solution using polyaniline - poly ethylene glycol composite. J Hazard Mater 184:248–254PubMedCrossRef Samani MR, Borghei SM, Olad A, Chaichi MJ (2010) Removal of chromium from aqueous solution using polyaniline - poly ethylene glycol composite. J Hazard Mater 184:248–254PubMedCrossRef
19.
Zurück zum Zitat Staunton E, Christie AM, Martin-Litas I et al (2004) Structure of the poly(ethylene oxide)-zinc chloride complex. Angew Chem Int Ed 116:2155–2157CrossRef Staunton E, Christie AM, Martin-Litas I et al (2004) Structure of the poly(ethylene oxide)-zinc chloride complex. Angew Chem Int Ed 116:2155–2157CrossRef
20.
Zurück zum Zitat Tummler B, Maass G, Vogtle F et al (1979) Open-chain polyethers. Inflence of aromatic donor end groups on thermodynamics and kinetics of alkali metal ion complex formation. J Am Chem Soc 101:2588–2598CrossRef Tummler B, Maass G, Vogtle F et al (1979) Open-chain polyethers. Inflence of aromatic donor end groups on thermodynamics and kinetics of alkali metal ion complex formation. J Am Chem Soc 101:2588–2598CrossRef
21.
Zurück zum Zitat Bessbousse H, Rhlalou T, Verchere J-F, Lebrun L (2009) Novel metal-complexing membrane containing poly(4-vinylpyridine ) for removal of Hg(II) from aqueous solution. J Phys Chem B 113:8588–8598PubMedCrossRef Bessbousse H, Rhlalou T, Verchere J-F, Lebrun L (2009) Novel metal-complexing membrane containing poly(4-vinylpyridine ) for removal of Hg(II) from aqueous solution. J Phys Chem B 113:8588–8598PubMedCrossRef
22.
Zurück zum Zitat Niitani T, Shimada M, Kawamura K, Kanamura K (2005) Characteristics of new-type solid polymer electrolyte controlling nano-structure. J Power Sources 146:386–390CrossRef Niitani T, Shimada M, Kawamura K, Kanamura K (2005) Characteristics of new-type solid polymer electrolyte controlling nano-structure. J Power Sources 146:386–390CrossRef
23.
Zurück zum Zitat Sadoway DR (2004) Block and graft copolymer electrolytes for high-performance, solid-state, lithium batteries. J Power Sources 129:1–3CrossRef Sadoway DR (2004) Block and graft copolymer electrolytes for high-performance, solid-state, lithium batteries. J Power Sources 129:1–3CrossRef
24.
Zurück zum Zitat Ramesh S, Yuen TF, Shen CJ (2008) Conductivity and FTIR studies on PEO-LiX [X: CF3SO3-, SO42-] polymer electrolytes. Spectrochim Acta Part A 69:670–675CrossRef Ramesh S, Yuen TF, Shen CJ (2008) Conductivity and FTIR studies on PEO-LiX [X: CF3SO3-, SO42-] polymer electrolytes. Spectrochim Acta Part A 69:670–675CrossRef
25.
Zurück zum Zitat Armand M (1994) The history of polymer electrolytes. Solid State Ionics 69:309–319CrossRef Armand M (1994) The history of polymer electrolytes. Solid State Ionics 69:309–319CrossRef
26.
Zurück zum Zitat Baril D, Michot C, Armand M (1997) Electrochemistry of liquids vs. solids: polymer electrolytes. Solid State Ionics 94:35–47CrossRef Baril D, Michot C, Armand M (1997) Electrochemistry of liquids vs. solids: polymer electrolytes. Solid State Ionics 94:35–47CrossRef
27.
Zurück zum Zitat Latham RJ, Linford RG, Schlindwein WS (1989) Cation-oxygen geometry in polymer electrolytes: interpretation of EXAFS results. Faraday Discuss Chem Soc 88:103–111CrossRef Latham RJ, Linford RG, Schlindwein WS (1989) Cation-oxygen geometry in polymer electrolytes: interpretation of EXAFS results. Faraday Discuss Chem Soc 88:103–111CrossRef
28.
Zurück zum Zitat Cai H, Hu R, Egami T et al (1992) Local structure studies of PEO-based NiBr2 electrolytes. Electrochim Acta 37:1663–1665CrossRef Cai H, Hu R, Egami T et al (1992) Local structure studies of PEO-based NiBr2 electrolytes. Electrochim Acta 37:1663–1665CrossRef
29.
Zurück zum Zitat Bandara HMN, Linford RG, Latham RJ, Schlindwein WS (1995) XAFS studies of polymer electrolytes. Mater Res Soc Symp Proc 369:547–557CrossRef Bandara HMN, Linford RG, Latham RJ, Schlindwein WS (1995) XAFS studies of polymer electrolytes. Mater Res Soc Symp Proc 369:547–557CrossRef
30.
Zurück zum Zitat Latham RJ, Linford RG, Pynenburg RAJ, Schlindwein WS (1993) Factors affecting X-ray absorption fine structure of zinc in oxygen-plus-halide environments within polymer electrolytes. J Electrochem Soc 140:1056–1060CrossRef Latham RJ, Linford RG, Pynenburg RAJ, Schlindwein WS (1993) Factors affecting X-ray absorption fine structure of zinc in oxygen-plus-halide environments within polymer electrolytes. J Electrochem Soc 140:1056–1060CrossRef
31.
Zurück zum Zitat Latham RJ, Linford RG, Pynenburg RAJ et al (1993) Plasticiser-induced local structure in polymer electrolytes. J Chem Soc Faraday Trans 89:349–354CrossRef Latham RJ, Linford RG, Pynenburg RAJ et al (1993) Plasticiser-induced local structure in polymer electrolytes. J Chem Soc Faraday Trans 89:349–354CrossRef
32.
Zurück zum Zitat Latham RJ, Linford RG (1996) Polymer electrolytes — low molecular weight analogues as mimics of high concentration crystalline phase materials. Solid State Ionics 85:193–196CrossRef Latham RJ, Linford RG (1996) Polymer electrolytes — low molecular weight analogues as mimics of high concentration crystalline phase materials. Solid State Ionics 85:193–196CrossRef
33.
Zurück zum Zitat Cole M, Latham RJ, Linford RG et al (1989) EXAFS of polymer electrolytes. Mater Res Soc Symp Proc 135:383–388CrossRef Cole M, Latham RJ, Linford RG et al (1989) EXAFS of polymer electrolytes. Mater Res Soc Symp Proc 135:383–388CrossRef
34.
Zurück zum Zitat Andrews KC, Cole M, Latham RJ et al (1988) EXAFS studies of divalent polymeric electrolytes: an investigation of PEO4:CaI2 at room temperature. Solid State Ionics 28–30:929–935CrossRef Andrews KC, Cole M, Latham RJ et al (1988) EXAFS studies of divalent polymeric electrolytes: an investigation of PEO4:CaI2 at room temperature. Solid State Ionics 28–30:929–935CrossRef
35.
Zurück zum Zitat Cole M, Sheldon MH, Glasse MD et al (1989) EXAFS and thermal studies on zinc polymeric electrolytes. Appl Phys A Solids Surfaces 49:249–257CrossRef Cole M, Sheldon MH, Glasse MD et al (1989) EXAFS and thermal studies on zinc polymeric electrolytes. Appl Phys A Solids Surfaces 49:249–257CrossRef
36.
Zurück zum Zitat Einset AG, Schlindwein WS, Latham RJ, Linford RG, Pynenburg R (1991) Investigation of ZnBr2:PEO polymer electrolyte characteristics. J Electrochem Soc 138:1569–1574CrossRef Einset AG, Schlindwein WS, Latham RJ, Linford RG, Pynenburg R (1991) Investigation of ZnBr2:PEO polymer electrolyte characteristics. J Electrochem Soc 138:1569–1574CrossRef
37.
Zurück zum Zitat Latham RJ, Linford RG, Pynenburg R, Schlindwein WS (1992) EXAFS and related studies of mixed polymer electrolytes. Electrochim Acta 37:1529–1531CrossRef Latham RJ, Linford RG, Pynenburg R, Schlindwein WS (1992) EXAFS and related studies of mixed polymer electrolytes. Electrochim Acta 37:1529–1531CrossRef
38.
Zurück zum Zitat Chintapalli S, Frech R (1995) Ionic association and conductivity in poly(ethylene oxide) and poly (propylene oxide) metal salt systems. Electrochim Acta 40:2093–2099CrossRef Chintapalli S, Frech R (1995) Ionic association and conductivity in poly(ethylene oxide) and poly (propylene oxide) metal salt systems. Electrochim Acta 40:2093–2099CrossRef
39.
Zurück zum Zitat Berthier C, Gorecki W, Minier M et al (1983) Microscopic investigation of ionic conductivity in alkali metal salts-poly(ethylene oxide) adducts. Solid State Ionics 11:91–95CrossRef Berthier C, Gorecki W, Minier M et al (1983) Microscopic investigation of ionic conductivity in alkali metal salts-poly(ethylene oxide) adducts. Solid State Ionics 11:91–95CrossRef
40.
Zurück zum Zitat Mohan VM, Raja V, Bhargav PB et al (2007) Structural, electrical and optical properties of pure and NaLaF4 doped PEO polymer electrolyte films. J Polym Res 14:283–290CrossRef Mohan VM, Raja V, Bhargav PB et al (2007) Structural, electrical and optical properties of pure and NaLaF4 doped PEO polymer electrolyte films. J Polym Res 14:283–290CrossRef
41.
Zurück zum Zitat Shriver DF, Papke BL, Patner MA, Dupon R, Wong T, Brodwin M (1981) Structure and ion transport in polymer-salt complexes. Solid State Ionics 5:83–88CrossRef Shriver DF, Papke BL, Patner MA, Dupon R, Wong T, Brodwin M (1981) Structure and ion transport in polymer-salt complexes. Solid State Ionics 5:83–88CrossRef
42.
Zurück zum Zitat Jayathilaka PARD, Dissanayake MAKL, Albinsson I, Mellander BE (2002) Effect of nano - porous Al2O3 on thermal, dielectric and transport properties of the (PEO)9LiTFSI polymer electrolyte systems. Electrochim Acta 47:3257–3268CrossRef Jayathilaka PARD, Dissanayake MAKL, Albinsson I, Mellander BE (2002) Effect of nano - porous Al2O3 on thermal, dielectric and transport properties of the (PEO)9LiTFSI polymer electrolyte systems. Electrochim Acta 47:3257–3268CrossRef
43.
Zurück zum Zitat Passerini S, Cndni R, Scrosati B (1989) Characterization of poly(ethylene oxide) copper salt polymer electrolytes. Appl Phys A Mater Sci Process 49:425–429CrossRef Passerini S, Cndni R, Scrosati B (1989) Characterization of poly(ethylene oxide) copper salt polymer electrolytes. Appl Phys A Mater Sci Process 49:425–429CrossRef
44.
Zurück zum Zitat Lundrerg RD, Bailey FE, Callard RW (1966) Interactions of inorganic salts with poly(ethylene oxide). J Polym Sci Part A-1(4):1563–1577CrossRef Lundrerg RD, Bailey FE, Callard RW (1966) Interactions of inorganic salts with poly(ethylene oxide). J Polym Sci Part A-1(4):1563–1577CrossRef
45.
Zurück zum Zitat Choudhary S, Sengwa RJ (2017) Morphological, structural, dielectric and electrical properties of PEO–ZnO nanodielectric films. J Polym Res 24:54 (1-12)CrossRef Choudhary S, Sengwa RJ (2017) Morphological, structural, dielectric and electrical properties of PEO–ZnO nanodielectric films. J Polym Res 24:54 (1-12)CrossRef
46.
Zurück zum Zitat Liao CS, Ye WB (2003) Enhanced ionic conductivity in poly(ethylene oxide)/layered double hydroxide nanocomposite electrolytes. J Polym Res 10:241–246CrossRef Liao CS, Ye WB (2003) Enhanced ionic conductivity in poly(ethylene oxide)/layered double hydroxide nanocomposite electrolytes. J Polym Res 10:241–246CrossRef
47.
Zurück zum Zitat Dhatarwal P, Sengwa RJ (2017) Dielectric and electrical characterization of (PEO–PMMA)–LiBF4–EC plasticized solid polymer electrolyte films. J Polym Res 24:135 (1-10)CrossRef Dhatarwal P, Sengwa RJ (2017) Dielectric and electrical characterization of (PEO–PMMA)–LiBF4–EC plasticized solid polymer electrolyte films. J Polym Res 24:135 (1-10)CrossRef
48.
Zurück zum Zitat Siva Kumar J, Vijaya Kumar K, Subrahmanyam AR, Jaipal Reddy M (2007) Conductivity study of polyethylene oxide (PEO) complexed with sodium bicarbonate. J Mater Sci 42:5752–5755CrossRef Siva Kumar J, Vijaya Kumar K, Subrahmanyam AR, Jaipal Reddy M (2007) Conductivity study of polyethylene oxide (PEO) complexed with sodium bicarbonate. J Mater Sci 42:5752–5755CrossRef
49.
Zurück zum Zitat Jannasch P (2002) Ionic conductivity in physical networks of polyethylene-polyether-polyethylene triblock copolymers. Chem Mater 14:2718–2724CrossRef Jannasch P (2002) Ionic conductivity in physical networks of polyethylene-polyether-polyethylene triblock copolymers. Chem Mater 14:2718–2724CrossRef
50.
Zurück zum Zitat Alloin F, Sanchez JY, Armand MB (1992) Conductivity measurements of LiTFSI triblock copolymers with a central POE sequence. Electrochim Acta 37:1729–1731CrossRef Alloin F, Sanchez JY, Armand MB (1992) Conductivity measurements of LiTFSI triblock copolymers with a central POE sequence. Electrochim Acta 37:1729–1731CrossRef
51.
Zurück zum Zitat Lobitz P, Fiillbier H, Reiche A, Illner JC (1992) Ionic conductivjty in poly(ethylene oxide)-copolymer mixtures with LiI. Solid State Ionics 58:41–48CrossRef Lobitz P, Fiillbier H, Reiche A, Illner JC (1992) Ionic conductivjty in poly(ethylene oxide)-copolymer mixtures with LiI. Solid State Ionics 58:41–48CrossRef
52.
Zurück zum Zitat Yuan R, Teran AA, Gurevitch I et al (2013) Ionic conductivity of low molecular weight block copolymer electrolytes. Macromolecules 46:914–921CrossRef Yuan R, Teran AA, Gurevitch I et al (2013) Ionic conductivity of low molecular weight block copolymer electrolytes. Macromolecules 46:914–921CrossRef
53.
Zurück zum Zitat Devaux D, Gle D, Phan TNT et al (2015) Biexcitonic bound and continuum states of homogeneously and inhomogeneously broadened exciton resonances. Chem Mater 27:4682–4692CrossRef Devaux D, Gle D, Phan TNT et al (2015) Biexcitonic bound and continuum states of homogeneously and inhomogeneously broadened exciton resonances. Chem Mater 27:4682–4692CrossRef
54.
Zurück zum Zitat Chandrasekharan Nair R, Gopakumar S, Gopinathan Nair MR (2007) Synthesis and characterization of block copolymers based on natural rubber and polypropylene oxide. J Appl Polym Sci 103:955–962CrossRef Chandrasekharan Nair R, Gopakumar S, Gopinathan Nair MR (2007) Synthesis and characterization of block copolymers based on natural rubber and polypropylene oxide. J Appl Polym Sci 103:955–962CrossRef
55.
Zurück zum Zitat McMaster WH, Del Grande NK, Mallett JH, Hubbell JH (1970) Compilation of X-ray cross sectionS. At. Data Nucl. Data Tables A8:448–444 McMaster WH, Del Grande NK, Mallett JH, Hubbell JH (1970) Compilation of X-ray cross sectionS. At. Data Nucl. Data Tables A8:448–444
57.
Zurück zum Zitat Kushwaha S, Sreedhar B, Padmaja P (2012) XPS, EXAFS, and FTIR as tools to probe the unexpected adsorption-coupled reduction of U(VI) to U(V) and U(IV) on borassus flabellifer -based adsorbents. Langmuir 28:16038–16048PubMedCrossRef Kushwaha S, Sreedhar B, Padmaja P (2012) XPS, EXAFS, and FTIR as tools to probe the unexpected adsorption-coupled reduction of U(VI) to U(V) and U(IV) on borassus flabellifer -based adsorbents. Langmuir 28:16038–16048PubMedCrossRef
58.
Zurück zum Zitat Tiwari N, Kumar S, Ghosh AK et al (2017) Structural investigations of (Mn, Dy) co-doped ZnO nanocrystals using X-ray absorption studies. RSC Adv 7:56662–56675CrossRef Tiwari N, Kumar S, Ghosh AK et al (2017) Structural investigations of (Mn, Dy) co-doped ZnO nanocrystals using X-ray absorption studies. RSC Adv 7:56662–56675CrossRef
59.
Zurück zum Zitat Newville M, Ravel B, Haskel D et al (1995) Analysis of multiple-scattering XAFS data using theoretical standards. Phys B Phys Condens Matter 208–209:154–156CrossRef Newville M, Ravel B, Haskel D et al (1995) Analysis of multiple-scattering XAFS data using theoretical standards. Phys B Phys Condens Matter 208–209:154–156CrossRef
60.
Zurück zum Zitat Papke BL, Ratner MA, Shriver DF (1981) Vibrational spectroscopy and structure of polymer electrolytes, poly(ethylene oxide) complexes of alkali metal salts. J Phys Chem Solids 42:493–500CrossRef Papke BL, Ratner MA, Shriver DF (1981) Vibrational spectroscopy and structure of polymer electrolytes, poly(ethylene oxide) complexes of alkali metal salts. J Phys Chem Solids 42:493–500CrossRef
Metadaten
Titel
Structural studies on transition metal ion complexes of polyethylene oxide-natural rubber block copolymers
verfasst von
M. S. Mrudula
Nidhi Tiwari
Shambhu Nath Jha
Dibyendu Bhattacharyya
M. R. Gopinathan Nair
Publikationsdatum
01.08.2019
Verlag
Springer Netherlands
Erschienen in
Journal of Polymer Research / Ausgabe 8/2019
Print ISSN: 1022-9760
Elektronische ISSN: 1572-8935
DOI
https://doi.org/10.1007/s10965-019-1837-y

Weitere Artikel der Ausgabe 8/2019

Journal of Polymer Research 8/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.