Skip to main content
Erschienen in: Journal of Polymer Research 12/2019

01.12.2019 | ORIGINAL PAPER

pH-responsive hydrogels based on the self-assembly of short polypeptides for controlled release of peptide and protein drugs

verfasst von: Xue Bao, Xinghui Si, Xiaoya Ding, Lijie Duan, Chunsheng Xiao

Erschienen in: Journal of Polymer Research | Ausgabe 12/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this study, a pH-responsive hydrogel consisting of a 4-arm poly(ethylene glycol)-block-poly(L-glutamic acid) (4a-PEG-PLG) copolymer was developed and used for the controlled release of peptide and protein drugs. It was found that the mechanical properties and degradation processes of the hydrogels could be tuned by changing the polymer concentrations. In vitro drug release results revealed that the release of insulin (or BSA) from hydrogel was highly dependent on the pH, i.e., less than 20% of insulin (or BSA) was released in the artificial gastric fluid (AGF) at 72 h, while close to 100% of insulin (or BSA) was released in the artificial intestinal fluid (AIF). It was because that the deprotonation of carboxyl groups in PLG block caused the disassembly, and even disintegration of the hydrogel in AGF, thereby resulting in accelerated drug release. Circular dichroism spectra showed that the bioactivities of insulin and BSA released from hydrogels were obviously unchanged compared to those of native insulin and BSA, respectively. Mouse fibroblast L929 cells were cultured on the surface of hydrogels and the viabilities of cultured cells were above 90% after incubation for 24 h, indicating that the hydrogels had good cytocompatibilities. Moreover, in vivo degradation evaluation disclosed that the formed hydrogels will completely degrade after 8 days, and the H&E staining study demonstrated the excellent biocompatibility of the as-prepared hydrogels. Therefore, the biocompatible and biodegradable 4a-PEG-PLG hydrogel may serve as a promising platform for pH-responsive drug delivery.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Ferreira NN, Ferreira LMB, Cardoso VMO, Boni FI, Souza ALR, Gremiao MPD (2018) Recent advances in smart hydrogels for biomedical applications: from self-assembly to functional approaches. Eur Polym J 99:117–133 Ferreira NN, Ferreira LMB, Cardoso VMO, Boni FI, Souza ALR, Gremiao MPD (2018) Recent advances in smart hydrogels for biomedical applications: from self-assembly to functional approaches. Eur Polym J 99:117–133
2.
Zurück zum Zitat Park K, Kwon IC, Park K (2011) Oral protein delivery: current status and future prospect. React Funct Polym 71:280–287 Park K, Kwon IC, Park K (2011) Oral protein delivery: current status and future prospect. React Funct Polym 71:280–287
3.
Zurück zum Zitat Vermonden T, Censi R, Hennink WE (2012) Hydrogels for Protein Delivery. Chem Rev 112:2853–2888PubMed Vermonden T, Censi R, Hennink WE (2012) Hydrogels for Protein Delivery. Chem Rev 112:2853–2888PubMed
4.
Zurück zum Zitat Pelegri-O’Day EM, Lin EW, Maynard HD (2014) Therapeutic protein–polymer conjugates: advancing beyond PEGylation. J Am Chem Soc 136:14323–14332PubMed Pelegri-O’Day EM, Lin EW, Maynard HD (2014) Therapeutic protein–polymer conjugates: advancing beyond PEGylation. J Am Chem Soc 136:14323–14332PubMed
5.
Zurück zum Zitat Renukuntla J, Vadlapudi AD, Patel A, Boddu SHS, Mitra AK (2013) Approaches for enhancing oral bioavailability of peptides and proteins. Int J Pharm 447:75–93PubMedPubMedCentral Renukuntla J, Vadlapudi AD, Patel A, Boddu SHS, Mitra AK (2013) Approaches for enhancing oral bioavailability of peptides and proteins. Int J Pharm 447:75–93PubMedPubMedCentral
7.
Zurück zum Zitat Yu M, Wu J, Shi J, Farokhzad OC (2016) Nanotechnology for protein delivery: overview and perspectives. J Control Release 240:24–37PubMed Yu M, Wu J, Shi J, Farokhzad OC (2016) Nanotechnology for protein delivery: overview and perspectives. J Control Release 240:24–37PubMed
8.
Zurück zum Zitat Ali I (2011) Nano anti-cancer drugs: pros and cons and future perspectives. Curr Cancer Drug Tar 11:131–134 Ali I (2011) Nano anti-cancer drugs: pros and cons and future perspectives. Curr Cancer Drug Tar 11:131–134
9.
Zurück zum Zitat Ali I, Lone MN, Suhail M, Mukhtar SD, Asnin L (2016) Advances in Nanocarriers for anticancer drugs delivery. Curr Med Chem 23:2159–2187PubMed Ali I, Lone MN, Suhail M, Mukhtar SD, Asnin L (2016) Advances in Nanocarriers for anticancer drugs delivery. Curr Med Chem 23:2159–2187PubMed
10.
Zurück zum Zitat Caló E, Khutoryanskiy VV (2015) Biomedical applications of hydrogels: a review of patents and commercial products. Eur Polym J 65:252–267 Caló E, Khutoryanskiy VV (2015) Biomedical applications of hydrogels: a review of patents and commercial products. Eur Polym J 65:252–267
11.
Zurück zum Zitat Gyles DA, Castro LD, Silva JOC, Ribeiro-Costa RM (2017) A review of the designs and prominent biomedical advances of natural and synthetic hydrogel formulations. Eur Polym J 88:373–392 Gyles DA, Castro LD, Silva JOC, Ribeiro-Costa RM (2017) A review of the designs and prominent biomedical advances of natural and synthetic hydrogel formulations. Eur Polym J 88:373–392
12.
Zurück zum Zitat Jeong KH, Park D, Lee YC (2017) Polymer-based hydrogel scaffolds for skin tissue engineering applications: a mini-review. J Polym Res 24:112 Jeong KH, Park D, Lee YC (2017) Polymer-based hydrogel scaffolds for skin tissue engineering applications: a mini-review. J Polym Res 24:112
13.
Zurück zum Zitat Buwalda SJ, Vermonden T, Hennink WE (2017) Hydrogels for therapeutic delivery: current developments and future directions. Biomacromolecules 18:316–330PubMed Buwalda SJ, Vermonden T, Hennink WE (2017) Hydrogels for therapeutic delivery: current developments and future directions. Biomacromolecules 18:316–330PubMed
15.
Zurück zum Zitat Nguyen QV, Huynh DP, Park JH, Lee DS (2015) Injectable polymeric hydrogels for the delivery of therapeutic agents: a review. Eur Polym J 72:602–619 Nguyen QV, Huynh DP, Park JH, Lee DS (2015) Injectable polymeric hydrogels for the delivery of therapeutic agents: a review. Eur Polym J 72:602–619
16.
Zurück zum Zitat Alarcón CH, Pennadam S, Alexander C (2005) Stimuli responsive polymers for biomedical applications. Chem Soc Rev 34:276–285 Alarcón CH, Pennadam S, Alexander C (2005) Stimuli responsive polymers for biomedical applications. Chem Soc Rev 34:276–285
17.
Zurück zum Zitat Chaturvedi K, Ganguly K, Nadagouda MN, Aminabhavi TM (2013) Polymeric hydrogels for oral insulin delivery. J Control Release 165:129–138PubMed Chaturvedi K, Ganguly K, Nadagouda MN, Aminabhavi TM (2013) Polymeric hydrogels for oral insulin delivery. J Control Release 165:129–138PubMed
18.
Zurück zum Zitat Ding X, Wang Y, Li G, Xiao C, Chen X (2019) Iminoboronate Ester cross-linked hydrogels with injectable, self-healing and multi-responsive properties. Acta Polym Sin 50:505–515 Ding X, Wang Y, Li G, Xiao C, Chen X (2019) Iminoboronate Ester cross-linked hydrogels with injectable, self-healing and multi-responsive properties. Acta Polym Sin 50:505–515
19.
Zurück zum Zitat Buwalda SJ, Boere KWM, Dijkstra PJ, Feijen J, Vermonden T, Hennink WE (2014) Hydrogels in a historical perspective: from simple networks to smart materials. J Control Release 190:254–273PubMed Buwalda SJ, Boere KWM, Dijkstra PJ, Feijen J, Vermonden T, Hennink WE (2014) Hydrogels in a historical perspective: from simple networks to smart materials. J Control Release 190:254–273PubMed
20.
Zurück zum Zitat Shafagh N, Sabzi M, Afshari MJ (2018) Development of pH-sensitive and antibacterial gelatin/citric acid/ag nanocomposite hydrogels with potential for biomedical applications. J Polym Res 25:259 Shafagh N, Sabzi M, Afshari MJ (2018) Development of pH-sensitive and antibacterial gelatin/citric acid/ag nanocomposite hydrogels with potential for biomedical applications. J Polym Res 25:259
21.
Zurück zum Zitat Fan X, Wang T, Miao W (2018) The preparation of pH-sensitive hydrogel based on host-guest and electrostatic interactions and its drug release studies in vitro. J Polym Res 25:215 Fan X, Wang T, Miao W (2018) The preparation of pH-sensitive hydrogel based on host-guest and electrostatic interactions and its drug release studies in vitro. J Polym Res 25:215
22.
Zurück zum Zitat Peppas NA, Wood KM, Blanchette JO (2004) Hydrogels for oral delivery of therapeutic proteins. Expert Opin Biol Th 4:881–887 Peppas NA, Wood KM, Blanchette JO (2004) Hydrogels for oral delivery of therapeutic proteins. Expert Opin Biol Th 4:881–887
23.
Zurück zum Zitat Lowman AM, Morishita M, Kajita M, Nagai T, Peppas NA (1999) Oral delivery of insulin using pH-responsive complexation gels. J Pharm Sci 88:933–937PubMed Lowman AM, Morishita M, Kajita M, Nagai T, Peppas NA (1999) Oral delivery of insulin using pH-responsive complexation gels. J Pharm Sci 88:933–937PubMed
24.
Zurück zum Zitat Torres-Lugo M, Peppas NA (1999) Molecular design and in vitro studies of novel pH-sensitive hydrogels for the Oral delivery of calcitonin. Macromolecules 32:6646–6651 Torres-Lugo M, Peppas NA (1999) Molecular design and in vitro studies of novel pH-sensitive hydrogels for the Oral delivery of calcitonin. Macromolecules 32:6646–6651
25.
Zurück zum Zitat Nakamura K, Murray RJ, Joseph JI, Peppas NA, Morishita M, Lowman AM (2004) Oral insulin delivery using P(MAA-g-EG) hydrogels: effects of network morphology on insulin delivery characteristics. J Control Release 95:589–599PubMed Nakamura K, Murray RJ, Joseph JI, Peppas NA, Morishita M, Lowman AM (2004) Oral insulin delivery using P(MAA-g-EG) hydrogels: effects of network morphology on insulin delivery characteristics. J Control Release 95:589–599PubMed
26.
Zurück zum Zitat Zhao C, Zhuang X, He P, Xiao C, He C, Sun J, Chen X, Jing X (2009) Synthesis of biodegradable thermo- and pH-responsive hydrogels for controlled dru g release. Polymer 50:4308–4316 Zhao C, Zhuang X, He P, Xiao C, He C, Sun J, Chen X, Jing X (2009) Synthesis of biodegradable thermo- and pH-responsive hydrogels for controlled dru g release. Polymer 50:4308–4316
27.
Zurück zum Zitat Zhang Z, Chen L, Zhao C, Bai Y, Deng M, Shan H, Zhuang X, Chen X, Jing X (2011) Thermo- and pH-responsive HPC-g-AA/AA hydrogels for controlled drug delivery applications. Polymer 52:676–682 Zhang Z, Chen L, Zhao C, Bai Y, Deng M, Shan H, Zhuang X, Chen X, Jing X (2011) Thermo- and pH-responsive HPC-g-AA/AA hydrogels for controlled drug delivery applications. Polymer 52:676–682
28.
Zurück zum Zitat Zhao C, He P, Xiao C, Gao X, Zhuang X, Chen X (2012) Photo-cross-linked biodegradable thermo- and pH-responsive hydrogels for controlled drug release. J Appl Polym Sci 123(5):2923–2932 Zhao C, He P, Xiao C, Gao X, Zhuang X, Chen X (2012) Photo-cross-linked biodegradable thermo- and pH-responsive hydrogels for controlled drug release. J Appl Polym Sci 123(5):2923–2932
29.
Zurück zum Zitat Yang N, Wang Y, Zhang Q, Chen L, Zhao Y (2017) γ-Polyglutamic acid mediated crosslinking PNIPAAm-based thermo/pH-responsive hydrogels for controlled drug release. Polym Degrad Stabil 144:53–61 Yang N, Wang Y, Zhang Q, Chen L, Zhao Y (2017) γ-Polyglutamic acid mediated crosslinking PNIPAAm-based thermo/pH-responsive hydrogels for controlled drug release. Polym Degrad Stabil 144:53–61
30.
Zurück zum Zitat Wang Y, Yang N, Wang D, He Y, Chen L, Zhao Y (2018) Poly (MAH-β-cyclodextrin-co-NIPAAm) hydrogels with drug hosting and thermo/pH-sensitive for controlled drug release. Polym Degrad and Stabil 147:123–131 Wang Y, Yang N, Wang D, He Y, Chen L, Zhao Y (2018) Poly (MAH-β-cyclodextrin-co-NIPAAm) hydrogels with drug hosting and thermo/pH-sensitive for controlled drug release. Polym Degrad and Stabil 147:123–131
31.
Zurück zum Zitat Yu L, Ding J (2008) Injectable hydrogels as unique biomedical materials. Chem Soc Rev 37:1473–1481PubMed Yu L, Ding J (2008) Injectable hydrogels as unique biomedical materials. Chem Soc Rev 37:1473–1481PubMed
32.
Zurück zum Zitat Dong R, Pang Y, Su Y, Zhu X (2015) Supramolecular hydrogels: synthesis, properties and their biomedical applications. Biomater Sci 3:937–954PubMed Dong R, Pang Y, Su Y, Zhu X (2015) Supramolecular hydrogels: synthesis, properties and their biomedical applications. Biomater Sci 3:937–954PubMed
33.
Zurück zum Zitat Chung HJ, Park TG (2009) Self-assembled and nanostructured hydrogels for drug delivery and tissue engineering. Nano Today 4:429–437 Chung HJ, Park TG (2009) Self-assembled and nanostructured hydrogels for drug delivery and tissue engineering. Nano Today 4:429–437
34.
Zurück zum Zitat Yang JA, Yeom J, Hwang BW, Hoffman AS, Hahn SK (2014) In situ-forming injectable hydrogels for regenerative medicine. Prog Polym Sci 39:1973–1986 Yang JA, Yeom J, Hwang BW, Hoffman AS, Hahn SK (2014) In situ-forming injectable hydrogels for regenerative medicine. Prog Polym Sci 39:1973–1986
35.
Zurück zum Zitat Kopeček J, Yang J (2012) Smart self-assembled hybrid hydrogel biomaterials. Angew Chem Int Edit 51:7396–7417 Kopeček J, Yang J (2012) Smart self-assembled hybrid hydrogel biomaterials. Angew Chem Int Edit 51:7396–7417
36.
Zurück zum Zitat Radvar E, Azevedo HS (2019) Supramolecular peptide/polymer hybrid hydrogels for biomedical applications. Macrom Biosci 19:1800221 Radvar E, Azevedo HS (2019) Supramolecular peptide/polymer hybrid hydrogels for biomedical applications. Macrom Biosci 19:1800221
37.
Zurück zum Zitat Clarke DE, Pashuck ET, Bertazzo S, Weaver JV, Stevens MM (2017) Self-healing, self-assembled β-sheet peptide–poly (γ-glutamic acid) hybrid hydrogels. J Am Chem Soc 139:7250–7255PubMedPubMedCentral Clarke DE, Pashuck ET, Bertazzo S, Weaver JV, Stevens MM (2017) Self-healing, self-assembled β-sheet peptide–poly (γ-glutamic acid) hybrid hydrogels. J Am Chem Soc 139:7250–7255PubMedPubMedCentral
38.
Zurück zum Zitat Gačanin J, Hedrich J, Sieste S, Glaßer G, Lieberwirth I, Schilling C, Fischer S, Barth H, Knöll B, Synatschke CV, Weil T (2019) Autonomous ultrafast self-healing hydrogels by pH-responsive functional nanofiber Gelators as cell matrices. Adv Mater 31:1805044 Gačanin J, Hedrich J, Sieste S, Glaßer G, Lieberwirth I, Schilling C, Fischer S, Barth H, Knöll B, Synatschke CV, Weil T (2019) Autonomous ultrafast self-healing hydrogels by pH-responsive functional nanofiber Gelators as cell matrices. Adv Mater 31:1805044
39.
Zurück zum Zitat Xiao C, Zhao C, He P, Tang Z, Chen X, Jing X (2010) Facile synthesis of Glycopolypeptides by combination of ring-opening polymerization of an alkyne-substituted N-carboxyanhydride and click "glycosylation". Macromol Rapid Comm 31:991–997 Xiao C, Zhao C, He P, Tang Z, Chen X, Jing X (2010) Facile synthesis of Glycopolypeptides by combination of ring-opening polymerization of an alkyne-substituted N-carboxyanhydride and click "glycosylation". Macromol Rapid Comm 31:991–997
40.
Zurück zum Zitat Ding J, Shi F, Xiao C, Lin L, Chen L, He C, Zhuang X, Chen X (2011) One-step preparation of reduction-responsive poly(ethylene glycol)-poly(amino acid)s nanogels as efficient intracellular drug delivery platforms. Polym Chem 2:2857–2864 Ding J, Shi F, Xiao C, Lin L, Chen L, He C, Zhuang X, Chen X (2011) One-step preparation of reduction-responsive poly(ethylene glycol)-poly(amino acid)s nanogels as efficient intracellular drug delivery platforms. Polym Chem 2:2857–2864
41.
Zurück zum Zitat Liu L, Zhang Y, Yu S, Yang Z, He C, Chen X (2018) Dual stimuli-responsive nanoparticle-incorporated hydrogels as an Oral insulin carrier for intestine-targeted delivery and enhanced Paracellular permeation. Acs Biomater Sci Eng 4:2889–2902 Liu L, Zhang Y, Yu S, Yang Z, He C, Chen X (2018) Dual stimuli-responsive nanoparticle-incorporated hydrogels as an Oral insulin carrier for intestine-targeted delivery and enhanced Paracellular permeation. Acs Biomater Sci Eng 4:2889–2902
42.
Zurück zum Zitat Patel M, Lee HJ, Park S, Kim Y, Jeong B (2018) Injectable thermogel for 3D culture of stem cells. Biomaterials 159:91–107PubMed Patel M, Lee HJ, Park S, Kim Y, Jeong B (2018) Injectable thermogel for 3D culture of stem cells. Biomaterials 159:91–107PubMed
43.
Zurück zum Zitat Xiao C, Cheng Y, Zhang Y, Ding J, He C, Zhuang X, Chen X (2014) Side chain impacts on pH- and thermo-responsiveness of tertiary amine functionalized polypeptides. J Polym Sci Polym Chem 52:671–679 Xiao C, Cheng Y, Zhang Y, Ding J, He C, Zhuang X, Chen X (2014) Side chain impacts on pH- and thermo-responsiveness of tertiary amine functionalized polypeptides. J Polym Sci Polym Chem 52:671–679
44.
Zurück zum Zitat Donten ML, Hamm P (2013) pH-jump induced α-helix folding of poly-L-glutamic acid. Chem Phys 422:124–130 Donten ML, Hamm P (2013) pH-jump induced α-helix folding of poly-L-glutamic acid. Chem Phys 422:124–130
45.
Zurück zum Zitat Lou J, Stowers R, Nam S, Xia Y, Chaudhuri O (2018) Stress relaxing hyaluronic acid-collagen hydrogels promote cell spreading, fiber remodeling, and focal adhesion formation in 3D cell culture. Biomaterials 154:213–222PubMed Lou J, Stowers R, Nam S, Xia Y, Chaudhuri O (2018) Stress relaxing hyaluronic acid-collagen hydrogels promote cell spreading, fiber remodeling, and focal adhesion formation in 3D cell culture. Biomaterials 154:213–222PubMed
46.
Zurück zum Zitat Wollenberg AL, O'Shea TM, Kim JH, Czechanski A, Reinholdt LG, Sofroniew MV, Deming TJ (2018) Injectable polypeptide hydrogels via methionine modification for neural stem cell delivery. Biomaterials 178:527–545PubMedPubMedCentral Wollenberg AL, O'Shea TM, Kim JH, Czechanski A, Reinholdt LG, Sofroniew MV, Deming TJ (2018) Injectable polypeptide hydrogels via methionine modification for neural stem cell delivery. Biomaterials 178:527–545PubMedPubMedCentral
47.
Zurück zum Zitat Ding X, Li G, Xiao C, Chen X (2019) Enhancing the stability of hydrogels by doubling the Schiff Base linkages. Macromol Chem Phys 220:1800484 Ding X, Li G, Xiao C, Chen X (2019) Enhancing the stability of hydrogels by doubling the Schiff Base linkages. Macromol Chem Phys 220:1800484
Metadaten
Titel
pH-responsive hydrogels based on the self-assembly of short polypeptides for controlled release of peptide and protein drugs
verfasst von
Xue Bao
Xinghui Si
Xiaoya Ding
Lijie Duan
Chunsheng Xiao
Publikationsdatum
01.12.2019
Verlag
Springer Netherlands
Erschienen in
Journal of Polymer Research / Ausgabe 12/2019
Print ISSN: 1022-9760
Elektronische ISSN: 1572-8935
DOI
https://doi.org/10.1007/s10965-019-1953-8

Weitere Artikel der Ausgabe 12/2019

Journal of Polymer Research 12/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.