Skip to main content
Erschienen in: Journal of Sol-Gel Science and Technology 3/2016

01.03.2016 | Original Paper

Injectable gel from squid pen chitosan for bone tissue engineering applications

verfasst von: Amin Shavandi, Alaa El-Din A. Bekhit, Zhifa Sun, M. Azam Ali

Erschienen in: Journal of Sol-Gel Science and Technology | Ausgabe 3/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The aim of this study was to evaluate the potential of squid pen chitosan for developing injectable gels for bone tissue engineering applications. Gel mixtures made of glycerol phosphate mixed with crab (RC) or squid pen (RS) chitosan (2 % w/v) at four different concentrations (0, 30, 50 and 70 %) of calcium phosphate compounds (CaP, hydroxyapatite and β-tricalcium phosphate, HA/β-TCP) were investigated for their biocompatibility and mechanical properties. The proposed gel rapidly settled (<3 min) and formed a stable gel at body temperature (i.e. 37 °C). The chemical compositions and crystallinity of the gels were characterised by FTIR and XRD. The surface morphology and microstructure of the gels were characterised using SEM. The physical properties (such as water uptake, washout resistant and syringeability), compressive modulus and biocompatibility properties (cell cytotoxicity) of the gels were also studied. The RS chitosan gels showed the highest water uptake ability (>2000 %), compressive modulus (up to 26 kPa) and better cell (Saos-2) compatibility compared to the RC chitosan. This study showed that RS chitosan is a promising alternative to commercially available crab/shrimp chitosan for producing injectable gels for tissue engineering applications.

Graphical Abstract

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Huang Z, Tian J, Yu B, Xu Y, Feng Q (2009) A bone-like nano-hydroxyapatite/collagen loaded injectable scaffold. Biomed Mater 4:055005CrossRef Huang Z, Tian J, Yu B, Xu Y, Feng Q (2009) A bone-like nano-hydroxyapatite/collagen loaded injectable scaffold. Biomed Mater 4:055005CrossRef
2.
Zurück zum Zitat Soundrapandian C, Datta S, Kundu B, Basu D, Sa B (2010) Porous bioactive glass scaffolds for local drug delivery in osteomyelitis: development and in vitro characterization. AAPS PharmSciTech 11:1675–1683CrossRef Soundrapandian C, Datta S, Kundu B, Basu D, Sa B (2010) Porous bioactive glass scaffolds for local drug delivery in osteomyelitis: development and in vitro characterization. AAPS PharmSciTech 11:1675–1683CrossRef
3.
Zurück zum Zitat Mishra D, Bhunia B, Banerjee I, Datta P, Dhara S, Maiti TK (2011) Enzymatically crosslinked carboxymethyl–chitosan/gelatin/nano-hydroxyapatite injectable gels for in situ bone tissue engineering application. Mater Sci Eng, C 31:1295–1304CrossRef Mishra D, Bhunia B, Banerjee I, Datta P, Dhara S, Maiti TK (2011) Enzymatically crosslinked carboxymethyl–chitosan/gelatin/nano-hydroxyapatite injectable gels for in situ bone tissue engineering application. Mater Sci Eng, C 31:1295–1304CrossRef
4.
Zurück zum Zitat Bi L, Cheng W, Fan H, Pei G (2010) Reconstruction of goat tibial defects using an injectable tricalcium phosphate/chitosan in combination with autologous platelet-rich plasma. Biomaterials 31:3201–3211CrossRef Bi L, Cheng W, Fan H, Pei G (2010) Reconstruction of goat tibial defects using an injectable tricalcium phosphate/chitosan in combination with autologous platelet-rich plasma. Biomaterials 31:3201–3211CrossRef
5.
Zurück zum Zitat García Cruz DM, Escobar Ivirico JL, Gomes MM, Gómez Ribelles JL, Sánchez MS, Reis RL et al (2008) Chitosan microparticles as injectable scaffolds for tissue engineering. J Tissue Eng Regen Med 2:378–380CrossRef García Cruz DM, Escobar Ivirico JL, Gomes MM, Gómez Ribelles JL, Sánchez MS, Reis RL et al (2008) Chitosan microparticles as injectable scaffolds for tissue engineering. J Tissue Eng Regen Med 2:378–380CrossRef
6.
Zurück zum Zitat Huang Z, Feng Q, Yu B, Li S (2011) Biomimetic properties of an injectable chitosan/nano-hydroxyapatite/collagen composite. Mater Sci Eng, C 31:683–687CrossRef Huang Z, Feng Q, Yu B, Li S (2011) Biomimetic properties of an injectable chitosan/nano-hydroxyapatite/collagen composite. Mater Sci Eng, C 31:683–687CrossRef
7.
Zurück zum Zitat Shen D, Wang X, Zhang L, Zhao X, Li J, Cheng K et al (2011) The amelioration of cardiac dysfunction after myocardial infarction by the injection of keratin biomaterials derived from human hair. Biomaterials 32:9290–9299CrossRef Shen D, Wang X, Zhang L, Zhao X, Li J, Cheng K et al (2011) The amelioration of cardiac dysfunction after myocardial infarction by the injection of keratin biomaterials derived from human hair. Biomaterials 32:9290–9299CrossRef
8.
Zurück zum Zitat Eeckman F, Moës AJ, Amighi K (2004) Poly(N-isopropylacrylamide) copolymers for constant temperature controlled drug delivery. Int J Pharm 273:109–119CrossRef Eeckman F, Moës AJ, Amighi K (2004) Poly(N-isopropylacrylamide) copolymers for constant temperature controlled drug delivery. Int J Pharm 273:109–119CrossRef
9.
Zurück zum Zitat Stile RA, Chung E, Burghardt WR, Healy KE (2004) Poly(N-isopropylacrylamide)-based semi-interpenetrating polymer networks for tissue engineering applications. Effects of linear poly(acrylic acid) chains on rheology. J Biomater Sci Polym Ed 15:865–878CrossRef Stile RA, Chung E, Burghardt WR, Healy KE (2004) Poly(N-isopropylacrylamide)-based semi-interpenetrating polymer networks for tissue engineering applications. Effects of linear poly(acrylic acid) chains on rheology. J Biomater Sci Polym Ed 15:865–878CrossRef
10.
Zurück zum Zitat Thein-Han WW, Misra RDK (2009) Biomimetic chitosan–nanohydroxyapatite composite scaffolds for bone tissue engineering. Acta Biomater 5:1182–1197CrossRef Thein-Han WW, Misra RDK (2009) Biomimetic chitosan–nanohydroxyapatite composite scaffolds for bone tissue engineering. Acta Biomater 5:1182–1197CrossRef
11.
Zurück zum Zitat Qiu Y (2008) Chitosan derivatives for tissue engineering. Clemson University, Clemson Qiu Y (2008) Chitosan derivatives for tissue engineering. Clemson University, Clemson
12.
Zurück zum Zitat Jiang CJ, Xu MQ (2006) Kinetics of heterogeneous deacetylation of β-chitin. Chem Eng Technol 29:511–516CrossRef Jiang CJ, Xu MQ (2006) Kinetics of heterogeneous deacetylation of β-chitin. Chem Eng Technol 29:511–516CrossRef
13.
Zurück zum Zitat Kurita K (2001) Controlled functionalization of the polysaccharide chitin. Prog Polym Sci 26:1921–1971CrossRef Kurita K (2001) Controlled functionalization of the polysaccharide chitin. Prog Polym Sci 26:1921–1971CrossRef
14.
Zurück zum Zitat Kurita K, Tomita K, Tada T, Ishii S, Nishimura S-I, Shimoda K (1993) Squid chitin as a potential alternative chitin source: deacetylation behavior and characteristic properties. J Polym Sci, Part A: Polym Chem 31:485–491CrossRef Kurita K, Tomita K, Tada T, Ishii S, Nishimura S-I, Shimoda K (1993) Squid chitin as a potential alternative chitin source: deacetylation behavior and characteristic properties. J Polym Sci, Part A: Polym Chem 31:485–491CrossRef
15.
Zurück zum Zitat Lima IS, Airoldi C (2004) A thermodynamic investigation on chitosan–divalent cation interactions. Thermochim Acta 421:133–139CrossRef Lima IS, Airoldi C (2004) A thermodynamic investigation on chitosan–divalent cation interactions. Thermochim Acta 421:133–139CrossRef
16.
Zurück zum Zitat Susana Cortizo M, Berghoff CF, Alessandrini JL (2008) Characterization of chitin from Illex argentinus squid pen. Carbohydr Polym 74:10–15CrossRef Susana Cortizo M, Berghoff CF, Alessandrini JL (2008) Characterization of chitin from Illex argentinus squid pen. Carbohydr Polym 74:10–15CrossRef
17.
Zurück zum Zitat Rinaudo M (2006) Chitin and chitosan: properties and applications. Prog Polym Sci 31:603–632CrossRef Rinaudo M (2006) Chitin and chitosan: properties and applications. Prog Polym Sci 31:603–632CrossRef
18.
Zurück zum Zitat Chandumpai A, Singhpibulporn N, Faroongsarng D, Sornprasit P (2004) Preparation and physico-chemical characterization of chitin and chitosan from the pens of the squid species, Loligo lessoniana and Loligo formosana. Carbohydr Polym 58:467–474CrossRef Chandumpai A, Singhpibulporn N, Faroongsarng D, Sornprasit P (2004) Preparation and physico-chemical characterization of chitin and chitosan from the pens of the squid species, Loligo lessoniana and Loligo formosana. Carbohydr Polym 58:467–474CrossRef
19.
Zurück zum Zitat Liu H, Li H, Cheng W, Yang Y, Zhu M, Zhou C (2006) Novel injectable calcium phosphate/chitosan composites for bone substitute materials. Acta Biomater 2:557–565CrossRef Liu H, Li H, Cheng W, Yang Y, Zhu M, Zhou C (2006) Novel injectable calcium phosphate/chitosan composites for bone substitute materials. Acta Biomater 2:557–565CrossRef
20.
Zurück zum Zitat Cho J, Heuzey M-C, Bégin A, Carreau PJ (2005) Physical gelation of chitosan in the presence of β-glycerophosphate: the effect of temperature. Biomacromolecules 6:3267–3275CrossRef Cho J, Heuzey M-C, Bégin A, Carreau PJ (2005) Physical gelation of chitosan in the presence of β-glycerophosphate: the effect of temperature. Biomacromolecules 6:3267–3275CrossRef
21.
Zurück zum Zitat Zhou HY, Jiang LJ, Cao PP, Li JB, Chen XG (2015) Glycerophosphate-based chitosan thermosensitive hydrogels and their biomedical applications. Carbohydr Polym 117:524–536CrossRef Zhou HY, Jiang LJ, Cao PP, Li JB, Chen XG (2015) Glycerophosphate-based chitosan thermosensitive hydrogels and their biomedical applications. Carbohydr Polym 117:524–536CrossRef
22.
Zurück zum Zitat Shavandi A, Bekhit AE-D, Ali A, Sun Z (2015) A novel squid pen chitosan/hydroxyapatite/β-tricalcium phosphate composite for bone tissue engineering. Mater Sci Eng C 55:373–383CrossRef Shavandi A, Bekhit AE-D, Ali A, Sun Z (2015) A novel squid pen chitosan/hydroxyapatite/β-tricalcium phosphate composite for bone tissue engineering. Mater Sci Eng C 55:373–383CrossRef
23.
Zurück zum Zitat Shavandi A, Bekhit AE-D, Ali A, Sun Z, Ratnayake JT (2015) Microwave-assisted synthesis of high purity β-tricalcium phosphate crystalline powder from the waste of Green mussel shells (Perna canaliculus). Powder Technol 273:33–39CrossRef Shavandi A, Bekhit AE-D, Ali A, Sun Z, Ratnayake JT (2015) Microwave-assisted synthesis of high purity β-tricalcium phosphate crystalline powder from the waste of Green mussel shells (Perna canaliculus). Powder Technol 273:33–39CrossRef
24.
Zurück zum Zitat Shavandi A, Bekhit AE-D, Ali A, Sun Z (2015) Synthesis of nano-hydroxyapatite (nHA) from waste mussel shells using a rapid microwave method. Mater Chem Phys 149–150:607–616CrossRef Shavandi A, Bekhit AE-D, Ali A, Sun Z (2015) Synthesis of nano-hydroxyapatite (nHA) from waste mussel shells using a rapid microwave method. Mater Chem Phys 149–150:607–616CrossRef
25.
Zurück zum Zitat Chaussard G, Domard A (2004) New aspects of the extraction of chitin from squid pens. Biomacromolecules 5:559–564CrossRef Chaussard G, Domard A (2004) New aspects of the extraction of chitin from squid pens. Biomacromolecules 5:559–564CrossRef
26.
Zurück zum Zitat Youn DK, No HK, Prinyawiwatkul W (2013) Preparation and characteristics of squid pen β-chitin prepared under optimal deproteinisation and demineralisation condition. Int J Food Sci Technol 48:571–577CrossRef Youn DK, No HK, Prinyawiwatkul W (2013) Preparation and characteristics of squid pen β-chitin prepared under optimal deproteinisation and demineralisation condition. Int J Food Sci Technol 48:571–577CrossRef
27.
Zurück zum Zitat Xu J, McCarthy SP, Gross RA, Kaplan DL (1996) Chitosan film acylation and effects on biodegradability. Macromolecules 29:3436–3440CrossRef Xu J, McCarthy SP, Gross RA, Kaplan DL (1996) Chitosan film acylation and effects on biodegradability. Macromolecules 29:3436–3440CrossRef
28.
Zurück zum Zitat Yen M-T, Yang J-H, Mau J-L (2009) Physicochemical characterization of chitin and chitosan from crab shells. Carbohydr Polym 75:15–21CrossRef Yen M-T, Yang J-H, Mau J-L (2009) Physicochemical characterization of chitin and chitosan from crab shells. Carbohydr Polym 75:15–21CrossRef
29.
Zurück zum Zitat Yasmeen S, Lo MK, Bajracharya S, Roldo M (2014) Injectable scaffolds for bone regeneration. Langmuir 30:12977–12985CrossRef Yasmeen S, Lo MK, Bajracharya S, Roldo M (2014) Injectable scaffolds for bone regeneration. Langmuir 30:12977–12985CrossRef
30.
Zurück zum Zitat Ahmadi R, de Bruijn JD (2008) Biocompatibility and gelation of chitosan–glycerol phosphate hydrogels. J Biomed Mater Res, Part A 86:824–832CrossRef Ahmadi R, de Bruijn JD (2008) Biocompatibility and gelation of chitosan–glycerol phosphate hydrogels. J Biomed Mater Res, Part A 86:824–832CrossRef
31.
Zurück zum Zitat Tan H, Chu CR, Payne KA, Marra KG (2009) Injectable in situ forming biodegradable chitosan–hyaluronic acid based hydrogels for cartilage tissue engineering. Biomaterials 30:2499–2506CrossRef Tan H, Chu CR, Payne KA, Marra KG (2009) Injectable in situ forming biodegradable chitosan–hyaluronic acid based hydrogels for cartilage tissue engineering. Biomaterials 30:2499–2506CrossRef
32.
Zurück zum Zitat Meng D, Dong L, Wen Y, Xie Q (2015) Effects of adding resorbable chitosan microspheres to calcium phosphate cements for bone regeneration. Mater Sci Eng C Mater Biol Appl 47:266–272CrossRef Meng D, Dong L, Wen Y, Xie Q (2015) Effects of adding resorbable chitosan microspheres to calcium phosphate cements for bone regeneration. Mater Sci Eng C Mater Biol Appl 47:266–272CrossRef
33.
Zurück zum Zitat Zhang X, Zhu L, Lv H, Cao Y, Liu Y, Xu Y et al (2012) Repair of rabbit femoral condyle bone defects with injectable nanohydroxyapatite/chitosan composites. J Mater Sci Mater Med 23:1941–1949CrossRef Zhang X, Zhu L, Lv H, Cao Y, Liu Y, Xu Y et al (2012) Repair of rabbit femoral condyle bone defects with injectable nanohydroxyapatite/chitosan composites. J Mater Sci Mater Med 23:1941–1949CrossRef
34.
Zurück zum Zitat Li F, Liu Y, Ding Y, Xie Q (2014) A new injectable in situ forming hydroxyapatite and thermosensitive chitosan gel promoted by Na2CO3. Soft Matter 10:2292–2303CrossRef Li F, Liu Y, Ding Y, Xie Q (2014) A new injectable in situ forming hydroxyapatite and thermosensitive chitosan gel promoted by Na2CO3. Soft Matter 10:2292–2303CrossRef
35.
Zurück zum Zitat Wang D, Zhang Y, Hong Z (2014) Novel fast-setting chitosan/β-dicalcium silicate bone cements with high compressive strength and bioactivity. Ceram Int 40:9799–9808CrossRef Wang D, Zhang Y, Hong Z (2014) Novel fast-setting chitosan/β-dicalcium silicate bone cements with high compressive strength and bioactivity. Ceram Int 40:9799–9808CrossRef
36.
Zurück zum Zitat Fan M, Ma Y, Mao J, Zhang Z, Tan H (2015) Cytocompatible in situ forming chitosan/hyaluronan hydrogels via a metal-free click chemistry for soft tissue engineering. Acta Biomater 20:60–68CrossRef Fan M, Ma Y, Mao J, Zhang Z, Tan H (2015) Cytocompatible in situ forming chitosan/hyaluronan hydrogels via a metal-free click chemistry for soft tissue engineering. Acta Biomater 20:60–68CrossRef
37.
Zurück zum Zitat Biazar E, HeidariKeshel S, Tavirani MR, Jahandideh R (2015) Bone reconstruction in rat calvarial defects by chitosan/hydroxyapatite nanoparticles scaffold loaded with unrestricted somatic stem cells. Artif Cells Nanomed Biotechnol 43:112–116CrossRef Biazar E, HeidariKeshel S, Tavirani MR, Jahandideh R (2015) Bone reconstruction in rat calvarial defects by chitosan/hydroxyapatite nanoparticles scaffold loaded with unrestricted somatic stem cells. Artif Cells Nanomed Biotechnol 43:112–116CrossRef
38.
Zurück zum Zitat Shirosaki Y, Hirai M, Hayakawa S, Fujii E, Lopes MA, Santos JD et al (2015) Preparation and in vitro cytocompatibility of chitosan–siloxane hybrid hydrogels. J Biomed Mater Res, Part A 103:289–299CrossRef Shirosaki Y, Hirai M, Hayakawa S, Fujii E, Lopes MA, Santos JD et al (2015) Preparation and in vitro cytocompatibility of chitosan–siloxane hybrid hydrogels. J Biomed Mater Res, Part A 103:289–299CrossRef
39.
Zurück zum Zitat Fatimi A, Tassin JF, Turczyn R, Axelos MA, Weiss P (2009) Gelation studies of a cellulose-based biohydrogel: the influence of pH, temperature and sterilization. Acta Biomater 5:3423–3432CrossRef Fatimi A, Tassin JF, Turczyn R, Axelos MA, Weiss P (2009) Gelation studies of a cellulose-based biohydrogel: the influence of pH, temperature and sterilization. Acta Biomater 5:3423–3432CrossRef
40.
Zurück zum Zitat Ganji F, Abdekhodaie MJ, Ramazani SAA (2007) Gelation time and degradation rate of chitosan-based injectable hydrogel. J Sol-Gel Sci Technol 42:47–53CrossRef Ganji F, Abdekhodaie MJ, Ramazani SAA (2007) Gelation time and degradation rate of chitosan-based injectable hydrogel. J Sol-Gel Sci Technol 42:47–53CrossRef
41.
Zurück zum Zitat Kumar GS, Thamizhavel A, Girija EK (2012) Microwave conversion of eggshells into flower-like hydroxyapatite nanostructure for biomedical applications. Mater Lett 76:198–200CrossRef Kumar GS, Thamizhavel A, Girija EK (2012) Microwave conversion of eggshells into flower-like hydroxyapatite nanostructure for biomedical applications. Mater Lett 76:198–200CrossRef
42.
Zurück zum Zitat Dewavrin J-Y, Hamzavi N, Shim VPW, Raghunath M (2014) Tuning the architecture of three-dimensional collagen hydrogels by physiological macromolecular crowding. Acta Biomater 10:4351–4359CrossRef Dewavrin J-Y, Hamzavi N, Shim VPW, Raghunath M (2014) Tuning the architecture of three-dimensional collagen hydrogels by physiological macromolecular crowding. Acta Biomater 10:4351–4359CrossRef
43.
Zurück zum Zitat Moreau JL, Xu HHK (2009) Mesenchymal stem cell proliferation and differentiation on an injectable calcium phosphate–chitosan composite scaffold. Biomaterials 30:2675–2682CrossRef Moreau JL, Xu HHK (2009) Mesenchymal stem cell proliferation and differentiation on an injectable calcium phosphate–chitosan composite scaffold. Biomaterials 30:2675–2682CrossRef
44.
Zurück zum Zitat Ta HT, Dass CR, Dunstan DE (2008) Injectable chitosan hydrogels for localised cancer therapy. J Controll Release 126:205–216CrossRef Ta HT, Dass CR, Dunstan DE (2008) Injectable chitosan hydrogels for localised cancer therapy. J Controll Release 126:205–216CrossRef
45.
Zurück zum Zitat Goldberg RN, Kishore N, Lennen RM (2002) Thermodynamic quantities for the ionization reactions of buffers. J Phys Chem Ref Data 31:231–370CrossRef Goldberg RN, Kishore N, Lennen RM (2002) Thermodynamic quantities for the ionization reactions of buffers. J Phys Chem Ref Data 31:231–370CrossRef
46.
Zurück zum Zitat Burckbuchler V, Mekhloufi G, Giteau AP, Grossiord JL, Huille S, Agnely F (2010) Rheological and syringeability properties of highly concentrated human polyclonal immunoglobulin solutions. Eur J Pharm Biopharm 76:351–356CrossRef Burckbuchler V, Mekhloufi G, Giteau AP, Grossiord JL, Huille S, Agnely F (2010) Rheological and syringeability properties of highly concentrated human polyclonal immunoglobulin solutions. Eur J Pharm Biopharm 76:351–356CrossRef
47.
Zurück zum Zitat Chenite A, Chaput C, Wang D, Combes C, Buschmann MD, Hoemann CD et al (2000) Novel injectable neutral solutions of chitosan form biodegradable gels in situ. Biomaterials 21:2155–2161CrossRef Chenite A, Chaput C, Wang D, Combes C, Buschmann MD, Hoemann CD et al (2000) Novel injectable neutral solutions of chitosan form biodegradable gels in situ. Biomaterials 21:2155–2161CrossRef
48.
Zurück zum Zitat Xu HHK, Simon CG Jr (2005) Fast setting calcium phosphate–chitosan scaffold: mechanical properties and biocompatibility. Biomaterials 26:1337–1348CrossRef Xu HHK, Simon CG Jr (2005) Fast setting calcium phosphate–chitosan scaffold: mechanical properties and biocompatibility. Biomaterials 26:1337–1348CrossRef
49.
Zurück zum Zitat Wang X, Chen L, Xiang H, Ye J (2007) Influence of anti-washout agents on the rheological properties and injectability of a calcium phosphate cement. J Biomed Mater Res B Appl Biomater 81B:410–418CrossRef Wang X, Chen L, Xiang H, Ye J (2007) Influence of anti-washout agents on the rheological properties and injectability of a calcium phosphate cement. J Biomed Mater Res B Appl Biomater 81B:410–418CrossRef
50.
Zurück zum Zitat Miyamoto Y, Ishikawa K, Takechi M, Yuasa M, Kon M, Nagayama M et al (1996) Non-decay type fast-setting calcium phosphate cement: setting behaviour in calf serum and its tissue response. Biomaterials 17:1429–1435CrossRef Miyamoto Y, Ishikawa K, Takechi M, Yuasa M, Kon M, Nagayama M et al (1996) Non-decay type fast-setting calcium phosphate cement: setting behaviour in calf serum and its tissue response. Biomaterials 17:1429–1435CrossRef
51.
Zurück zum Zitat Rohindra DR, Nand AV, Khurma JR (2004) Swelling properties of chitosan hydrogels. S Pac J Nat Appl Sci 22:32–35 Rohindra DR, Nand AV, Khurma JR (2004) Swelling properties of chitosan hydrogels. S Pac J Nat Appl Sci 22:32–35
52.
Zurück zum Zitat Barabás R, Czikó M, Dékány I, Bizo L, Bogya E (2013) Comparative study of particle size analysis of hydroxyapatite-based nanomaterials. Chem Pap 67:1414–1423CrossRef Barabás R, Czikó M, Dékány I, Bizo L, Bogya E (2013) Comparative study of particle size analysis of hydroxyapatite-based nanomaterials. Chem Pap 67:1414–1423CrossRef
53.
Zurück zum Zitat Rudall KM, Kenchington W (1973) The chitin system. Biol Rev 48:597–633CrossRef Rudall KM, Kenchington W (1973) The chitin system. Biol Rev 48:597–633CrossRef
54.
Zurück zum Zitat Reys LL, Silva SS, Oliveira JM, Caridade SG, Mano JF, Silva TH et al (2013) Revealing the potential of squid chitosan-based structures for biomedical applications. Biomed Mater 8:1–11CrossRef Reys LL, Silva SS, Oliveira JM, Caridade SG, Mano JF, Silva TH et al (2013) Revealing the potential of squid chitosan-based structures for biomedical applications. Biomed Mater 8:1–11CrossRef
55.
Zurück zum Zitat Teng SH, Lee EJ, Yoon BH, Shin DS, Kim HE, Oh JS (2009) Chitosan/nanohydroxyapatite composite membranes via dynamic filtration for guided bone regeneration. J Biomed Mater Res, Part A 88:569–580CrossRef Teng SH, Lee EJ, Yoon BH, Shin DS, Kim HE, Oh JS (2009) Chitosan/nanohydroxyapatite composite membranes via dynamic filtration for guided bone regeneration. J Biomed Mater Res, Part A 88:569–580CrossRef
56.
Zurück zum Zitat Elhendawi H, Felfel RM, Abd El-Hady BM, Reicha FM (2014) Effect of synthesis temperature on the crystallization and growth of in situ prepared nanohydroxyapatite in chitosan matrix. ISRN Biomater 2014:8CrossRef Elhendawi H, Felfel RM, Abd El-Hady BM, Reicha FM (2014) Effect of synthesis temperature on the crystallization and growth of in situ prepared nanohydroxyapatite in chitosan matrix. ISRN Biomater 2014:8CrossRef
57.
Zurück zum Zitat Meneghini C, Dalconi MC, Nuzzo S, Mobilio S, Wenk RH (2003) Rietveld refinement on X-ray diffraction patterns of bioapatite in human fetal bones. Biophys J 84:2021–2029CrossRef Meneghini C, Dalconi MC, Nuzzo S, Mobilio S, Wenk RH (2003) Rietveld refinement on X-ray diffraction patterns of bioapatite in human fetal bones. Biophys J 84:2021–2029CrossRef
Metadaten
Titel
Injectable gel from squid pen chitosan for bone tissue engineering applications
verfasst von
Amin Shavandi
Alaa El-Din A. Bekhit
Zhifa Sun
M. Azam Ali
Publikationsdatum
01.03.2016
Verlag
Springer US
Erschienen in
Journal of Sol-Gel Science and Technology / Ausgabe 3/2016
Print ISSN: 0928-0707
Elektronische ISSN: 1573-4846
DOI
https://doi.org/10.1007/s10971-015-3899-6

Weitere Artikel der Ausgabe 3/2016

Journal of Sol-Gel Science and Technology 3/2016 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.