Skip to main content
Erschienen in: Journal of Sol-Gel Science and Technology 3/2016

01.03.2016 | Original Paper

Zirconium-substituted LiSn2P3O12 solid electrolytes prepared via sol–gel method

verfasst von: N. A. Mustaffa, N. S. Mohamed

Erschienen in: Journal of Sol-Gel Science and Technology | Ausgabe 3/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Li1.5Sn2P2.5Zr0.5O12 compound was synthesized using a simple and economical water-based sol–gel technique. XRD analysis showed that the compound contains a NASICON-structured rhombohedral crystalline phase and Zr4+ was successfully substituted into the LiSn2P3O12 structure instead of forming impurities. The compound displayed a greater conductivity value compared to the unsubstituted parent compound, LiSn2P3O12. The Li1.5Sn2P2.5Zr0.5O12 compound displayed total conductivity values of 1.32 × 10−6 S cm−1 at room temperature and 5.77 × 10−5 S cm−1 at 500 °C. Furthermore, the AC conductivity, σ AC, was found to increase with rising temperature and the outcomes were discussed using the correlated barrier hopping model. The Li1.5Sn2P2.5Zr0.5O12 compound was also electrochemically stable up to 5.2 V, which was greater than the unsubstituted parent compound. Meanwhile, the transference number measurement was near to unity and it can be inferred that the majority of mobile charge carriers were ions and anticipated to be Li+.

Graphical Abstract

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Knauth P (2009) Inorganic solid Li ion conductors: an overview. Solid State Ionics 180:911–916CrossRef Knauth P (2009) Inorganic solid Li ion conductors: an overview. Solid State Ionics 180:911–916CrossRef
2.
Zurück zum Zitat Fergus JW (2012) Ion transport in sodium ion conducting solid electrolytes. Solid State Ionics 227:102–112CrossRef Fergus JW (2012) Ion transport in sodium ion conducting solid electrolytes. Solid State Ionics 227:102–112CrossRef
3.
Zurück zum Zitat Hong HYP (1976) Crystal structures and crystal chemistry in the system Na1+xZr2SixP3−xO12. J Mater Res Bull 11:173–182CrossRef Hong HYP (1976) Crystal structures and crystal chemistry in the system Na1+xZr2SixP3−xO12. J Mater Res Bull 11:173–182CrossRef
4.
Zurück zum Zitat Goodenough JB, Hong HYP, Kafalas JA (1976) Fast Na+-ion transport in skeleton structures. J Mater Res Bull 11:203–220CrossRef Goodenough JB, Hong HYP, Kafalas JA (1976) Fast Na+-ion transport in skeleton structures. J Mater Res Bull 11:203–220CrossRef
5.
Zurück zum Zitat Kumar PP, Yashonath S (2006) Ionic conduction in the solid state. J Chem Sci 118:135–154CrossRef Kumar PP, Yashonath S (2006) Ionic conduction in the solid state. J Chem Sci 118:135–154CrossRef
6.
Zurück zum Zitat Martinez A, Rojo JM, Iglesias JE, Sanz J, Rojas RM (1994) Formation process of LiSn2(PO4)3, a monoclinically distorted NASICON-type structure. Chem Mater 6:1790–1795CrossRef Martinez A, Rojo JM, Iglesias JE, Sanz J, Rojas RM (1994) Formation process of LiSn2(PO4)3, a monoclinically distorted NASICON-type structure. Chem Mater 6:1790–1795CrossRef
7.
Zurück zum Zitat Martinez-juarez A, Rojo JM, Iglesias JE, Sanz J (1995) Reversible monoclinic-rhombohedral transformation in LiSn2(PO4)3 with NASICON-type structure. Chem Mater 7:1857–1862CrossRef Martinez-juarez A, Rojo JM, Iglesias JE, Sanz J (1995) Reversible monoclinic-rhombohedral transformation in LiSn2(PO4)3 with NASICON-type structure. Chem Mater 7:1857–1862CrossRef
8.
Zurück zum Zitat Norhaniza R, Subban RHY, Mohamed NS (2010) Effects of sintering temperature on the structure and conductivity of LiSn2P3O12 prepared by mechanical milling method. Adv Mater Res 129–131:338–342CrossRef Norhaniza R, Subban RHY, Mohamed NS (2010) Effects of sintering temperature on the structure and conductivity of LiSn2P3O12 prepared by mechanical milling method. Adv Mater Res 129–131:338–342CrossRef
9.
Zurück zum Zitat Cui W-J, Yi J, Chen L, Wang C-X, Xia Y-Y (2012) Synthesis and electrochemical characteristics of NASICON-structured LiSn2(PO4)3 anode material for lithium-ion batteries. J Power Sources 217:77–84CrossRef Cui W-J, Yi J, Chen L, Wang C-X, Xia Y-Y (2012) Synthesis and electrochemical characteristics of NASICON-structured LiSn2(PO4)3 anode material for lithium-ion batteries. J Power Sources 217:77–84CrossRef
10.
Zurück zum Zitat Iglesias JE, Sanz J, Martinez-Juarez A, Rojo JM (1997) Low-temperature triclinic distortion in NASICON-type LiSn2(PO4)3. J Solid State Chem 130:322–326CrossRef Iglesias JE, Sanz J, Martinez-Juarez A, Rojo JM (1997) Low-temperature triclinic distortion in NASICON-type LiSn2(PO4)3. J Solid State Chem 130:322–326CrossRef
11.
Zurück zum Zitat Martinez-Juarez A, Jimenez R, Duran-Martin P, Ibanez J, Rojo JM (1997) Effect of the phase transition of LiSn2(PO4)3 on the Li+ ion conduction in LiSn2(PO4)3-Teflon composites. J Phys Condens Mater 9:4119CrossRef Martinez-Juarez A, Jimenez R, Duran-Martin P, Ibanez J, Rojo JM (1997) Effect of the phase transition of LiSn2(PO4)3 on the Li+ ion conduction in LiSn2(PO4)3-Teflon composites. J Phys Condens Mater 9:4119CrossRef
12.
Zurück zum Zitat Lazarraga MG, Ibanez J, Tabellout M, Rojo JM (2004) On the aggregation process of ceramic LiSn2P3O12 particles embedded in Teflon matrix. Compos Sci Technol 64:759–765CrossRef Lazarraga MG, Ibanez J, Tabellout M, Rojo JM (2004) On the aggregation process of ceramic LiSn2P3O12 particles embedded in Teflon matrix. Compos Sci Technol 64:759–765CrossRef
13.
Zurück zum Zitat Burmakin EI, Shekhtman GS (2010) Lithium-conducting solid electrolyte of Li4GeO4–Li3PO4 system with addition of zirconium ions. Russ J Electrochem 46:234–236 Burmakin EI, Shekhtman GS (2010) Lithium-conducting solid electrolyte of Li4GeO4–Li3PO4 system with addition of zirconium ions. Russ J Electrochem 46:234–236
14.
Zurück zum Zitat Narváez-Semanate JL, Rodrigues ACM (2010) Microstructure and ionic conductivity of Li1+xAlxTi2−x(PO4)3 NASICON glass-ceramics. Solid State Ionics 181:1197–1204CrossRef Narváez-Semanate JL, Rodrigues ACM (2010) Microstructure and ionic conductivity of Li1+xAlxTi2−x(PO4)3 NASICON glass-ceramics. Solid State Ionics 181:1197–1204CrossRef
15.
Zurück zum Zitat Mustaffa NA, Mohamed NS (2015) Properties of stannum-based Li-NASICON-structured solid electrolytes for potential application in electrochemical devices. Int J Electrochem Sci 10:5382–5394 Mustaffa NA, Mohamed NS (2015) Properties of stannum-based Li-NASICON-structured solid electrolytes for potential application in electrochemical devices. Int J Electrochem Sci 10:5382–5394
16.
Zurück zum Zitat Mustaffa NA, Adnan SBRS, Sulaiman M, Mohamed NS (2015) Low-temperature sintering effects on NASICON-structured LiSn2P3O12 solid electrolytes prepared via citric acid-assisted sol–gel method. Ionics 21:955–965CrossRef Mustaffa NA, Adnan SBRS, Sulaiman M, Mohamed NS (2015) Low-temperature sintering effects on NASICON-structured LiSn2P3O12 solid electrolytes prepared via citric acid-assisted sol–gel method. Ionics 21:955–965CrossRef
17.
Zurück zum Zitat Norhaniza R, Subban RHY, Mohamed NS (2011) Ion conduction in vanadium-substituted LiSn2P3O12. J Mater Sci 46:7815–7821CrossRef Norhaniza R, Subban RHY, Mohamed NS (2011) Ion conduction in vanadium-substituted LiSn2P3O12. J Mater Sci 46:7815–7821CrossRef
18.
Zurück zum Zitat Kubanska A, Castro L, Tortet L, Schäf O, Dollé M, Bouchet R (2014) Elaboration of controlled size Li1.5Al0.5Ge1.5(PO4)3 crystallites from glass-ceramics. Solid State Ion 266:44–50CrossRef Kubanska A, Castro L, Tortet L, Schäf O, Dollé M, Bouchet R (2014) Elaboration of controlled size Li1.5Al0.5Ge1.5(PO4)3 crystallites from glass-ceramics. Solid State Ion 266:44–50CrossRef
19.
Zurück zum Zitat Almond DP, Dunchan GK, West AR (1983) The determination of hopping rates and carrier concentrations in ionic conductors by a new analysis of ac conductivity. Solid State Ion 8:159–164CrossRef Almond DP, Dunchan GK, West AR (1983) The determination of hopping rates and carrier concentrations in ionic conductors by a new analysis of ac conductivity. Solid State Ion 8:159–164CrossRef
20.
Zurück zum Zitat Zhou DF, Xia YJ, Zhu JX, Meng J (2009) Preparation and electrical properties of new ion conductors Ce6−xDyxMoO15−δ (0.0 ≤ x ≤ 1.8). Solid State Sci 11:1587–1591CrossRef Zhou DF, Xia YJ, Zhu JX, Meng J (2009) Preparation and electrical properties of new ion conductors Ce6−xDyxMoO15−δ (0.0 ≤ x ≤ 1.8). Solid State Sci 11:1587–1591CrossRef
21.
Zurück zum Zitat Pérez-Estébanez M, Isasi-Marín J, Díaz-Guerra C, Rivera-Calzada A, León C, Santamaría J (2013) Influence of chromium content on the optical and electrical properties of Li1 + xCrxTi2−x(PO4)3. Solid State Ion 241:36–45CrossRef Pérez-Estébanez M, Isasi-Marín J, Díaz-Guerra C, Rivera-Calzada A, León C, Santamaría J (2013) Influence of chromium content on the optical and electrical properties of Li1 + xCrxTi2−x(PO4)3. Solid State Ion 241:36–45CrossRef
22.
Zurück zum Zitat Xu X, Wen Z, Gu Z, Xu X, Lin Z (2004) Preparation and characterization of lithium ion-conducting glass-ceramics in the Li1+xCrxGe2−x(PO4)3system. Electrochem Commun 6:1233–1237CrossRef Xu X, Wen Z, Gu Z, Xu X, Lin Z (2004) Preparation and characterization of lithium ion-conducting glass-ceramics in the Li1+xCrxGe2−x(PO4)3system. Electrochem Commun 6:1233–1237CrossRef
24.
Zurück zum Zitat Chowdari BVR, Subba Rao GV, Lee GYH (2000) XPS and ionic conductivity studies on Li2O–Al2O3–(TiO2 or GeO2)–P2O5 glass–ceramics. Solid State Ion 136–137:1067–1075CrossRef Chowdari BVR, Subba Rao GV, Lee GYH (2000) XPS and ionic conductivity studies on Li2O–Al2O3–(TiO2 or GeO2)–P2O5 glass–ceramics. Solid State Ion 136–137:1067–1075CrossRef
25.
Zurück zum Zitat Chang CM, Lee YI, Hong SH (2005) Spark plasma sintering of LiTi2(PO4)3-based solid electrolytes. J Am Ceram Soc 88:1803–1807CrossRef Chang CM, Lee YI, Hong SH (2005) Spark plasma sintering of LiTi2(PO4)3-based solid electrolytes. J Am Ceram Soc 88:1803–1807CrossRef
26.
Zurück zum Zitat Arbi K, Rojo JM, Sanz J (2007) Lithium mobility in titanium based Nasicon Li1+xTi2−xAlx(PO4)3 and LiTi2−xZrx(PO4)3 materials followed by NMR and impedance spectroscopy. J Eur Ceram Soc 27:4215–4218CrossRef Arbi K, Rojo JM, Sanz J (2007) Lithium mobility in titanium based Nasicon Li1+xTi2−xAlx(PO4)3 and LiTi2−xZrx(PO4)3 materials followed by NMR and impedance spectroscopy. J Eur Ceram Soc 27:4215–4218CrossRef
27.
Zurück zum Zitat Jonscher AK (1983) Dielectric relaxation in solids. Chelsea Dielectric Press, London Jonscher AK (1983) Dielectric relaxation in solids. Chelsea Dielectric Press, London
28.
Zurück zum Zitat Ghosh A (1990) Frequency-dependent conductivity in bismuth-vanadate glassy semiconductor. Phys Rev B 41:1479–1488CrossRef Ghosh A (1990) Frequency-dependent conductivity in bismuth-vanadate glassy semiconductor. Phys Rev B 41:1479–1488CrossRef
30.
Zurück zum Zitat Almond DP, West AR (1983) Mobile Ion concentrations in solid electrolytes from an analysis of AC conductivity. Solid State Ion 9&10:277CrossRef Almond DP, West AR (1983) Mobile Ion concentrations in solid electrolytes from an analysis of AC conductivity. Solid State Ion 9&10:277CrossRef
31.
Zurück zum Zitat Teo LP, Buraidah MH, Nor AFM, Majid SR (2012) Conductivity and dielectric studies of Li2SnO3. Ionics 18:655–665CrossRef Teo LP, Buraidah MH, Nor AFM, Majid SR (2012) Conductivity and dielectric studies of Li2SnO3. Ionics 18:655–665CrossRef
32.
Zurück zum Zitat Vijayakumar M, Hirankumar G, Bhuvaneswari MS, Selvasekarapandian S (2003) Influence of B2O3 doping on conductivity of LiTiO2 electrode material. J Power Sources 117:143–147CrossRef Vijayakumar M, Hirankumar G, Bhuvaneswari MS, Selvasekarapandian S (2003) Influence of B2O3 doping on conductivity of LiTiO2 electrode material. J Power Sources 117:143–147CrossRef
33.
Zurück zum Zitat Savitha T, Selvasekarapandian S, Ramya CS, Bhuvaneswari MS, Hirankumar G, Baskaran R, Angelo PC (2006) Structural and ionic transport properties of Li2AlZr[PO4]3. J Power Sources 157:533–536CrossRef Savitha T, Selvasekarapandian S, Ramya CS, Bhuvaneswari MS, Hirankumar G, Baskaran R, Angelo PC (2006) Structural and ionic transport properties of Li2AlZr[PO4]3. J Power Sources 157:533–536CrossRef
34.
Zurück zum Zitat Adnan SBRS, Mohamed NS (2012) Conductivity and dielectric studies of Li2ZnSiO4 ceramic electrolyte synthesized via citrate sol gel method. Int J Electrochem Sci 7:9844–9858 Adnan SBRS, Mohamed NS (2012) Conductivity and dielectric studies of Li2ZnSiO4 ceramic electrolyte synthesized via citrate sol gel method. Int J Electrochem Sci 7:9844–9858
Metadaten
Titel
Zirconium-substituted LiSn2P3O12 solid electrolytes prepared via sol–gel method
verfasst von
N. A. Mustaffa
N. S. Mohamed
Publikationsdatum
01.03.2016
Verlag
Springer US
Erschienen in
Journal of Sol-Gel Science and Technology / Ausgabe 3/2016
Print ISSN: 0928-0707
Elektronische ISSN: 1573-4846
DOI
https://doi.org/10.1007/s10971-015-3886-y

Weitere Artikel der Ausgabe 3/2016

Journal of Sol-Gel Science and Technology 3/2016 Zur Ausgabe

Review Paper: Sol-gel and hybrid materials for biological and health (medical) applications

Review of aerogel-based materials in biomedical applications

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.