Skip to main content
Erschienen in: International Journal of Mechanics and Materials in Design 1/2015

01.03.2015

Prediction of Young’s modulus of hexagonal monolayer sheets based on molecular mechanics

verfasst von: Minh-Quy Le

Erschienen in: International Journal of Mechanics and Materials in Design | Ausgabe 1/2015

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The present work investigates Young’s modulus of hexagonal monolayer sheets based on molecular mechanics. A repeating unit cell of the sheet has been chosen. Harmonic force field is adopted to model atomic interactions. The total energy of the unit cell is established as a function of the force constants and atomic displacements. A closed-form expression is formulated for Young’s modulus of the sheet by minimizing the total energy of the unit cell under uniaxial tension in equilibrium state. Molecular dynamics simulations were also carried out to consider Young’s modulus of graphene, boron nitride, silicon carbide, aluminum nitride, and boron antimonide monolayer sheets. The accuracy of the proposed formula is verified and discussed with results obtained by molecular dynamics simulations and available data in the literature for these 5 sheets.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Andrew, R.C., Mapasha, R.E., Ukpong, A.M., Chetty, N.: Mechanical properties of graphene and boronitrene. Phys. Rev. B 85, 125428 (2012)CrossRef Andrew, R.C., Mapasha, R.E., Ukpong, A.M., Chetty, N.: Mechanical properties of graphene and boronitrene. Phys. Rev. B 85, 125428 (2012)CrossRef
Zurück zum Zitat Arroyo, M., Belytschko, T.: An atomistic-based finite deformation membrane for single layer crystalline films. J. Mech. Phys. Solids 50, 1941–1977 (2002)CrossRefMATHMathSciNet Arroyo, M., Belytschko, T.: An atomistic-based finite deformation membrane for single layer crystalline films. J. Mech. Phys. Solids 50, 1941–1977 (2002)CrossRefMATHMathSciNet
Zurück zum Zitat Arroyo, M., Belytschko, T.: Finite crystal elasticity of carbon nanotubes based on the exponential cauchy-born rule. Phys. Rev. B 69, 115415 (2004)CrossRef Arroyo, M., Belytschko, T.: Finite crystal elasticity of carbon nanotubes based on the exponential cauchy-born rule. Phys. Rev. B 69, 115415 (2004)CrossRef
Zurück zum Zitat Baumeier, B., Krüger, P., Pollmann, J.: Structural, elastic, and electronic properties of SiC, BN, and BeO nanotubes. Phys. Rev. B 76, 085407 (2007)CrossRef Baumeier, B., Krüger, P., Pollmann, J.: Structural, elastic, and electronic properties of SiC, BN, and BeO nanotubes. Phys. Rev. B 76, 085407 (2007)CrossRef
Zurück zum Zitat Benkabou, F., Certier, M., Aourag, H.: Elastic Properties of Zinc-blende GaN, AlN and InN from Molecular Dynamics. Mol. Simul. 29, 201 (2003)CrossRef Benkabou, F., Certier, M., Aourag, H.: Elastic Properties of Zinc-blende GaN, AlN and InN from Molecular Dynamics. Mol. Simul. 29, 201 (2003)CrossRef
Zurück zum Zitat Berinskii, I.E., Borodich, F.M.: Elastic in-plane properties of 2D linearized models of graphene. Mech. Mater. 62, 60–68 (2013)CrossRef Berinskii, I.E., Borodich, F.M.: Elastic in-plane properties of 2D linearized models of graphene. Mech. Mater. 62, 60–68 (2013)CrossRef
Zurück zum Zitat Berinskii, I.E., Krivtsov, A.M.: On using many-particle interatomic potentials to compute elastic properties of graphene and diamond. Mech. Solids 45, 815 (2010)CrossRef Berinskii, I.E., Krivtsov, A.M.: On using many-particle interatomic potentials to compute elastic properties of graphene and diamond. Mech. Solids 45, 815 (2010)CrossRef
Zurück zum Zitat Boldrin, L., Scarpa, F., Chowdhury, R., Adhikari, S.: Effective mechanical properties of hexagonal boron nitride nanosheets. Nanotechnology 22, 505702 (2011)CrossRef Boldrin, L., Scarpa, F., Chowdhury, R., Adhikari, S.: Effective mechanical properties of hexagonal boron nitride nanosheets. Nanotechnology 22, 505702 (2011)CrossRef
Zurück zum Zitat Bosak, A., Serrano, J., Krisch, M., Watanabe, K., Taniguchi, T., Kanda, H.: Elasticity of hexagonal boron nitride: inelastic x-ray scattering measurements. Phys. Rev. B 73, 041402R (2006)CrossRef Bosak, A., Serrano, J., Krisch, M., Watanabe, K., Taniguchi, T., Kanda, H.: Elasticity of hexagonal boron nitride: inelastic x-ray scattering measurements. Phys. Rev. B 73, 041402R (2006)CrossRef
Zurück zum Zitat Brenner, D.W.: Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films. Phys. Rev. B 42(15), 9458 (1990)CrossRef Brenner, D.W.: Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films. Phys. Rev. B 42(15), 9458 (1990)CrossRef
Zurück zum Zitat Burkert, U., Allinger, N.L.: Molecular Mechanics. ACS Monograph 177. American Chemical Society, Washington, DC (1982) Burkert, U., Allinger, N.L.: Molecular Mechanics. ACS Monograph 177. American Chemical Society, Washington, DC (1982)
Zurück zum Zitat Chang, T.: A molecular based anisotropic shell model for single-walled carbon nanotubes. J. Mech. Phys. Solids 58, 1422–1433 (2010)CrossRefMathSciNet Chang, T.: A molecular based anisotropic shell model for single-walled carbon nanotubes. J. Mech. Phys. Solids 58, 1422–1433 (2010)CrossRefMathSciNet
Zurück zum Zitat Chang, T., Gao, H.: Size-dependent elastic properties of a single-walled carbon nanotube via a molecular mechanics model. J. Mech. Phys. Solids 51, 1059–1074 (2003)CrossRefMATH Chang, T., Gao, H.: Size-dependent elastic properties of a single-walled carbon nanotube via a molecular mechanics model. J. Mech. Phys. Solids 51, 1059–1074 (2003)CrossRefMATH
Zurück zum Zitat Cheng, Y., Shi, G.: The prediction of mechanical properties of graphene by molecular mechanics and structural mechanics method. Adv. Mater. Res. 583, 403–407 (2012)CrossRef Cheng, Y., Shi, G.: The prediction of mechanical properties of graphene by molecular mechanics and structural mechanics method. Adv. Mater. Res. 583, 403–407 (2012)CrossRef
Zurück zum Zitat Chopra, N.G., Zettl, A.: Measurement of the elastic modulus of a multi-wall boron nitride nanotube. Solid State Commun. 105(5), 297 (1998)CrossRef Chopra, N.G., Zettl, A.: Measurement of the elastic modulus of a multi-wall boron nitride nanotube. Solid State Commun. 105(5), 297 (1998)CrossRef
Zurück zum Zitat Claeyssens, F., Freeman, C.L., Allan, N.L., Sun, Y., Ashfold, M.N.R., Harding, J.H.: Growth of ZnO thin films-experiment and theory. J. Mater. Chem. 15, 139–148 (2005)CrossRef Claeyssens, F., Freeman, C.L., Allan, N.L., Sun, Y., Ashfold, M.N.R., Harding, J.H.: Growth of ZnO thin films-experiment and theory. J. Mater. Chem. 15, 139–148 (2005)CrossRef
Zurück zum Zitat Cornell, W.D., Cieplak, P., Bayly, C.I., Gould, I.R., Merz, K.M., Ferguson, D.M., Spellmeyer, D.C., Fox, T., Caldwell, J.W., Kollman, P.A.: A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. J. Am. Chem. Soc. 117, 5179–5197 (1995)CrossRef Cornell, W.D., Cieplak, P., Bayly, C.I., Gould, I.R., Merz, K.M., Ferguson, D.M., Spellmeyer, D.C., Fox, T., Caldwell, J.W., Kollman, P.A.: A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. J. Am. Chem. Soc. 117, 5179–5197 (1995)CrossRef
Zurück zum Zitat Erhart, P., Albe, K.: Analytical potential for atomistic simulations of silicon, carbon, and silicon carbide. Phys. Rev. B 71, 035211 (2005)CrossRef Erhart, P., Albe, K.: Analytical potential for atomistic simulations of silicon, carbon, and silicon carbide. Phys. Rev. B 71, 035211 (2005)CrossRef
Zurück zum Zitat Golberg, D., Costa, P., Lourie, O., Mitome, M., Bai, X., Kurashima, K., Zhi, C., Tang, C., Bando, Y.: Direct force measurements and kinking under elastic deformation of individual multiwalled boron nitride nanotubes. Nano Lett. 7, 2146 (2007)CrossRef Golberg, D., Costa, P., Lourie, O., Mitome, M., Bai, X., Kurashima, K., Zhi, C., Tang, C., Bando, Y.: Direct force measurements and kinking under elastic deformation of individual multiwalled boron nitride nanotubes. Nano Lett. 7, 2146 (2007)CrossRef
Zurück zum Zitat Hansson, A., Mota, F.B., Rivelino, R.: Metallic behavior in low-dimensional honeycomb SiB crystals: a first-principles prediction of atomic structure and electronic properties. Phys. Rev. B 86, 195416 (2012)CrossRef Hansson, A., Mota, F.B., Rivelino, R.: Metallic behavior in low-dimensional honeycomb SiB crystals: a first-principles prediction of atomic structure and electronic properties. Phys. Rev. B 86, 195416 (2012)CrossRef
Zurück zum Zitat Hernández, E., Goze, C., Bernier, P., Rubio, A.: Elastic properties of C and BxCyNz composite nanotubes. Phys. Rev. Lett. 80, 4502 (1998)CrossRef Hernández, E., Goze, C., Bernier, P., Rubio, A.: Elastic properties of C and BxCyNz composite nanotubes. Phys. Rev. Lett. 80, 4502 (1998)CrossRef
Zurück zum Zitat Huang, Y., Wu, J., Hwang, K.C.: Thickness of graphene and single-wall carbon nanotubes. Phys. Rev. B 74, 245413 (2006)CrossRef Huang, Y., Wu, J., Hwang, K.C.: Thickness of graphene and single-wall carbon nanotubes. Phys. Rev. B 74, 245413 (2006)CrossRef
Zurück zum Zitat Jiang, H., Zhang, P., Liu, B., Huang, Y., Geubelle, P.H., Gao, H., Hwang, K.C.: The effect of nanotube radius on the constitutive model for carbon nanotubes. Comput. Mater. Sci. 28, 429–442 (2003)CrossRef Jiang, H., Zhang, P., Liu, B., Huang, Y., Geubelle, P.H., Gao, H., Hwang, K.C.: The effect of nanotube radius on the constitutive model for carbon nanotubes. Comput. Mater. Sci. 28, 429–442 (2003)CrossRef
Zurück zum Zitat Jiang, L., Guo, W.: A molecular mechanics study on size-dependent elastic properties of single-walled boron nitride nanotubes. J. Mech. Phys. Solids 59, 1204–1213 (2011)CrossRefMATHMathSciNet Jiang, L., Guo, W.: A molecular mechanics study on size-dependent elastic properties of single-walled boron nitride nanotubes. J. Mech. Phys. Solids 59, 1204–1213 (2011)CrossRefMATHMathSciNet
Zurück zum Zitat Kınacı, A., Haskins, J.B., Sevik, C., Cagın, T.: Thermal conductivity of BN-C nanostructures. Phys. Rev. B 86, 115410 (2012)CrossRef Kınacı, A., Haskins, J.B., Sevik, C., Cagın, T.: Thermal conductivity of BN-C nanostructures. Phys. Rev. B 86, 115410 (2012)CrossRef
Zurück zum Zitat Kudin, K.N., Scuseria, G.E., Yakobson, B.I.: C2F, BN, and C nanoshell elasticity from ab initio computations. Phys. Rev. B 64, 235406 (2001)CrossRef Kudin, K.N., Scuseria, G.E., Yakobson, B.I.: C2F, BN, and C nanoshell elasticity from ab initio computations. Phys. Rev. B 64, 235406 (2001)CrossRef
Zurück zum Zitat Le, M.Q.: Atomistic study on the tensile properties of hexagonal AlN, BN, GaN, InN and SiC sheets. J. Comput. Theor. Nanosci. 11, 1458–1464 (2014a)CrossRef Le, M.Q.: Atomistic study on the tensile properties of hexagonal AlN, BN, GaN, InN and SiC sheets. J. Comput. Theor. Nanosci. 11, 1458–1464 (2014a)CrossRef
Zurück zum Zitat Le, M.Q.: Young’s modulus prediction of hexagonal nanosheets and nanotubes based on dimensional analysis and atomistic simulations. Meccanica 49(7), 1709–1719 (2014b)CrossRefMATH Le, M.Q.: Young’s modulus prediction of hexagonal nanosheets and nanotubes based on dimensional analysis and atomistic simulations. Meccanica 49(7), 1709–1719 (2014b)CrossRefMATH
Zurück zum Zitat Leach, A.R., Leach, A.R.: Molecular Modelling Principles and Applications, chap. 4, 2nd edn, p. 165. Prentice Hal, Harlow (2001) Leach, A.R., Leach, A.R.: Molecular Modelling Principles and Applications, chap. 4, 2nd edn, p. 165. Prentice Hal, Harlow (2001)
Zurück zum Zitat Lee, C., Wei, X., Kysar, J.W., Hone, J.: Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321(5887), 385 (2008)CrossRef Lee, C., Wei, X., Kysar, J.W., Hone, J.: Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321(5887), 385 (2008)CrossRef
Zurück zum Zitat Lei, X., Natsuki, T., Shi, J., Ni, Q.Q.: Analysis of carbon nanotubes on the mechanical properties at atomic scale. J. Nanomater. 2011, 1 (2011)CrossRef Lei, X., Natsuki, T., Shi, J., Ni, Q.Q.: Analysis of carbon nanotubes on the mechanical properties at atomic scale. J. Nanomater. 2011, 1 (2011)CrossRef
Zurück zum Zitat Li, C., Chou, T.W.: A structural mechanics approach for the analysis of carbon nanotubes. Int. J. Solids Struct. 40, 2487–2499 (2003)CrossRefMATH Li, C., Chou, T.W.: A structural mechanics approach for the analysis of carbon nanotubes. Int. J. Solids Struct. 40, 2487–2499 (2003)CrossRefMATH
Zurück zum Zitat Lin, S.S.: Light-emitting two-dimensional ultrathin silicon carbide. J. Phys. Chem. C 116, 3951 (2012)CrossRef Lin, S.S.: Light-emitting two-dimensional ultrathin silicon carbide. J. Phys. Chem. C 116, 3951 (2012)CrossRef
Zurück zum Zitat Natsuki, T., Tantrakarn, K., Endo, M.: Prediction of elastic properties for single-walled carbon nanotubes. Carbon 42, 39–45 (2004)CrossRef Natsuki, T., Tantrakarn, K., Endo, M.: Prediction of elastic properties for single-walled carbon nanotubes. Carbon 42, 39–45 (2004)CrossRef
Zurück zum Zitat Odegard, G.M., Gates, T.S., Nicholson, L.M., Wise, K.E.: Equivalent-continuum modeling of nano-structured materials. Compos. Sci. Technol. 62, 1869–1880 (2002)CrossRef Odegard, G.M., Gates, T.S., Nicholson, L.M., Wise, K.E.: Equivalent-continuum modeling of nano-structured materials. Compos. Sci. Technol. 62, 1869–1880 (2002)CrossRef
Zurück zum Zitat Oh, E.S.: Elastic properties of boron-nitride nanotubes through the con- tinuum lattice approach. Mater. Lett. 64, 859 (2010)CrossRef Oh, E.S.: Elastic properties of boron-nitride nanotubes through the con- tinuum lattice approach. Mater. Lett. 64, 859 (2010)CrossRef
Zurück zum Zitat Oh, E.S.: Elastic properties of various boron-nitride structures. Met. Mater. Int. 17, 21 (2011)CrossRef Oh, E.S.: Elastic properties of various boron-nitride structures. Met. Mater. Int. 17, 21 (2011)CrossRef
Zurück zum Zitat Pacilé, D., Meyer, J.C., Girit, Ç.Ö., Zettl, A.: The two-dimensional phase of boron nitride: few-atomic-layer sheets and suspended membranes. Appl. Phys. Lett. 92, 133107 (2008)CrossRef Pacilé, D., Meyer, J.C., Girit, Ç.Ö., Zettl, A.: The two-dimensional phase of boron nitride: few-atomic-layer sheets and suspended membranes. Appl. Phys. Lett. 92, 133107 (2008)CrossRef
Zurück zum Zitat Pantano, A., Parks, D.M., Boyce, M.C.: Mechanics of deformation of single- and multi-wall carbon nanotubes. J. Mech. Phys. Solids 52, 789 (2004)CrossRefMATH Pantano, A., Parks, D.M., Boyce, M.C.: Mechanics of deformation of single- and multi-wall carbon nanotubes. J. Mech. Phys. Solids 52, 789 (2004)CrossRefMATH
Zurück zum Zitat Peng, Q., Ji, W., De, S.: Mechanical properties of the hexagonal boron nitride monolayer: ab initio study. Comput. Mater. Sci. 56, 11 (2012)CrossRef Peng, Q., Ji, W., De, S.: Mechanical properties of the hexagonal boron nitride monolayer: ab initio study. Comput. Mater. Sci. 56, 11 (2012)CrossRef
Zurück zum Zitat Plimpton, S.J.: Fast parallel algorithms for short—range molecular dynamics. J. Comp. Phys. 117, 1 (1995)CrossRefMATH Plimpton, S.J.: Fast parallel algorithms for short—range molecular dynamics. J. Comp. Phys. 117, 1 (1995)CrossRefMATH
Zurück zum Zitat Rappe, A.K., Casewit, C.J., Colwell, K.S., Goddard III, W.A., Skid, W.M.: UFF, A full periodic table force field for molecular mechanics and molecular dynamics simulations. J. Am. Chem. Soc. 114(25), 10024 (1992)CrossRef Rappe, A.K., Casewit, C.J., Colwell, K.S., Goddard III, W.A., Skid, W.M.: UFF, A full periodic table force field for molecular mechanics and molecular dynamics simulations. J. Am. Chem. Soc. 114(25), 10024 (1992)CrossRef
Zurück zum Zitat Rappe, A.K., Casewit, C.J.: Molecular Mechanics Across Chemistry. University Science Books, California (1997) Rappe, A.K., Casewit, C.J.: Molecular Mechanics Across Chemistry. University Science Books, California (1997)
Zurück zum Zitat Reddy, C.D., Rajendran, S., Liew, K.M.: Equilibrium configuration and continuum elastic properties of finite sized graphene. Nanotechnology 17(3), 864–870 (2006)CrossRef Reddy, C.D., Rajendran, S., Liew, K.M.: Equilibrium configuration and continuum elastic properties of finite sized graphene. Nanotechnology 17(3), 864–870 (2006)CrossRef
Zurück zum Zitat Ru, C.Q.: Chirality-dependent mechanical behavior of carbon nanotubes based on an anisotropic elastic shell model. Math. Mech. Solids 14, 88–101 (2009)CrossRefMATHMathSciNet Ru, C.Q.: Chirality-dependent mechanical behavior of carbon nanotubes based on an anisotropic elastic shell model. Math. Mech. Solids 14, 88–101 (2009)CrossRefMATHMathSciNet
Zurück zum Zitat Scarpa, F., Adhikari, S.: A mechanical equivalence for Poisson’s ratio and thickness of C–C bonds in single wall carbon nanotubes. J. Phys. D Appl. Phys. 41, 085306 (2008)CrossRef Scarpa, F., Adhikari, S.: A mechanical equivalence for Poisson’s ratio and thickness of C–C bonds in single wall carbon nanotubes. J. Phys. D Appl. Phys. 41, 085306 (2008)CrossRef
Zurück zum Zitat Sahin, H., Cahangirov, S., Topsakal, M., Bekaroglu, E., Akturk, E., Senger, R.T., Ciraci, S.: Monolayer honeycomb structures of group-IV elements and III-V binary compounds: first-principles calculations. Phys. Rev. B 80, 155453 (2009)CrossRef Sahin, H., Cahangirov, S., Topsakal, M., Bekaroglu, E., Akturk, E., Senger, R.T., Ciraci, S.: Monolayer honeycomb structures of group-IV elements and III-V binary compounds: first-principles calculations. Phys. Rev. B 80, 155453 (2009)CrossRef
Zurück zum Zitat Scarpa, F., Adhikari, S., Phani, A.S.: Effective elastic mechanical properties of single layer graphene sheets. Nanotechnology 20, 065709 (2009)CrossRef Scarpa, F., Adhikari, S., Phani, A.S.: Effective elastic mechanical properties of single layer graphene sheets. Nanotechnology 20, 065709 (2009)CrossRef
Zurück zum Zitat Schneider, T., Stoll, E.: Molecular-dynamics study of a three-dimensional one-component model for distortive phase transitions. Phys. Rev. B 17(3), 1302–1322 (1978)CrossRef Schneider, T., Stoll, E.: Molecular-dynamics study of a three-dimensional one-component model for distortive phase transitions. Phys. Rev. B 17(3), 1302–1322 (1978)CrossRef
Zurück zum Zitat Shi, Y., Hamsen, C., Jia, X., Kim, K.K., Reina, A., Hofmann, M., Hsu, A.L., Zhang, K., Li, H., Juang, Z.Y., Dresselhaus, M.S., Li, L.J., Kong, J.: Synthesis of few-layer hexagonal boron nitride thin film by chemical vapor deposition. Nano Lett. 10, 4134 (2010)CrossRef Shi, Y., Hamsen, C., Jia, X., Kim, K.K., Reina, A., Hofmann, M., Hsu, A.L., Zhang, K., Li, H., Juang, Z.Y., Dresselhaus, M.S., Li, L.J., Kong, J.: Synthesis of few-layer hexagonal boron nitride thin film by chemical vapor deposition. Nano Lett. 10, 4134 (2010)CrossRef
Zurück zum Zitat Shokrieh, M.M., Rafiee, R.: Prediction of Young’s modulus of graphene sheets and carbon nanotubes using nanoscale continuum mechanics approach. Mater. Des. 31, 790–795 (2010)CrossRef Shokrieh, M.M., Rafiee, R.: Prediction of Young’s modulus of graphene sheets and carbon nanotubes using nanoscale continuum mechanics approach. Mater. Des. 31, 790–795 (2010)CrossRef
Zurück zum Zitat Song, L., Ci, L., Lu, H., Sorokin, P.B., Jin, C., Ni, J., Kvashnin, A.G., Kvashnin, D.G., Lou, J., Yakobson, B.I., Ajayan, P.M.: Large scale growth and characterization of atomic hexagonal boron nitride layers. Nano Lett. 10, 3209 (2010)CrossRef Song, L., Ci, L., Lu, H., Sorokin, P.B., Jin, C., Ni, J., Kvashnin, A.G., Kvashnin, D.G., Lou, J., Yakobson, B.I., Ajayan, P.M.: Large scale growth and characterization of atomic hexagonal boron nitride layers. Nano Lett. 10, 3209 (2010)CrossRef
Zurück zum Zitat Suryavanshi, A.P., Yu, M.F., Wen, J., Tang, C., Bando, Y.: Elastic modulus and resonance behavior of boron nitride nanotubes. Appl. Phys. Lett. 84, 2527 (2004)CrossRef Suryavanshi, A.P., Yu, M.F., Wen, J., Tang, C., Bando, Y.: Elastic modulus and resonance behavior of boron nitride nanotubes. Appl. Phys. Lett. 84, 2527 (2004)CrossRef
Zurück zum Zitat Topsakal, M., Aktürk, E., Ciraci, S.: First-principles study of two- and one-dimensional honeycomb structures of boron nitride. Phys. Rev. B 79, 115442 (2009)CrossRef Topsakal, M., Aktürk, E., Ciraci, S.: First-principles study of two- and one-dimensional honeycomb structures of boron nitride. Phys. Rev. B 79, 115442 (2009)CrossRef
Zurück zum Zitat Tserpes, K.I., Papanikos, P.: Finite element modeling of single-walled carbon nanotubes. Compos. B 36, 468–477 (2005)CrossRef Tserpes, K.I., Papanikos, P.: Finite element modeling of single-walled carbon nanotubes. Compos. B 36, 468–477 (2005)CrossRef
Zurück zum Zitat Tu, Z.C., Hu, X.: Elasticity and piezoelectricity of zinc oxide crystals, single layers, and possible single-walled nanotubes. Phys. Rev. B 74, 035434 (2006)CrossRef Tu, Z.C., Hu, X.: Elasticity and piezoelectricity of zinc oxide crystals, single layers, and possible single-walled nanotubes. Phys. Rev. B 74, 035434 (2006)CrossRef
Zurück zum Zitat Tu, Z.C., Ou-Yang, Z.: Single-walled and multiwalled carbon nanotubes viewed as elastic tubes with the effective Young’s moduli dependent on layer number. Phys. Rev. B 65, 233407 (2002)CrossRef Tu, Z.C., Ou-Yang, Z.: Single-walled and multiwalled carbon nanotubes viewed as elastic tubes with the effective Young’s moduli dependent on layer number. Phys. Rev. B 65, 233407 (2002)CrossRef
Zurück zum Zitat Verma, V., Jindal, V.K., Dharamvir, K.: Elastic moduli of a boron nitride nanotube. Nanotechnology 18, 435711 (2007)CrossRef Verma, V., Jindal, V.K., Dharamvir, K.: Elastic moduli of a boron nitride nanotube. Nanotechnology 18, 435711 (2007)CrossRef
Zurück zum Zitat Yakobson, B.I., Brabec, C.J., Bernholc, J.: Nanomechanics of carbon tubes: instabilities beyond linear response. Phys. Rev. Lett. 76(14), 2511 (1996)CrossRef Yakobson, B.I., Brabec, C.J., Bernholc, J.: Nanomechanics of carbon tubes: instabilities beyond linear response. Phys. Rev. Lett. 76(14), 2511 (1996)CrossRef
Zurück zum Zitat Zhang, C.W.: First-principles study on electronic structures and magnetic properties of AlN nanosheets and nanoribbons. J. Appl. Phys. 111, 043702 (2012)CrossRef Zhang, C.W.: First-principles study on electronic structures and magnetic properties of AlN nanosheets and nanoribbons. J. Appl. Phys. 111, 043702 (2012)CrossRef
Zurück zum Zitat Zhang, H.W., Wang, J.B., Guo, X.: Predicting the elastic properties of single-walled carbon nanotubes. J. Mech. Phys. Solids 53, 1929–1950 (2005)CrossRefMATH Zhang, H.W., Wang, J.B., Guo, X.: Predicting the elastic properties of single-walled carbon nanotubes. J. Mech. Phys. Solids 53, 1929–1950 (2005)CrossRefMATH
Zurück zum Zitat Zhang, P., Huang, Y., Geubelle, P.H.: The elastic modulus of single-wall carbon nanotubes: a continuum analysis incorporating interatomic potentials. Int. J. Solids Struct. 39, 3893–3906 (2002)CrossRefMATH Zhang, P., Huang, Y., Geubelle, P.H.: The elastic modulus of single-wall carbon nanotubes: a continuum analysis incorporating interatomic potentials. Int. J. Solids Struct. 39, 3893–3906 (2002)CrossRefMATH
Zurück zum Zitat Zhao, J., Wang, L., Jiang, J.W., Wang, Z., Guo, W., Rabczuk, T.: A comparative study of two molecular mechanics models based on harmonic potentials. J. Appl. Phys. 113(6), 063509 (2013)CrossRef Zhao, J., Wang, L., Jiang, J.W., Wang, Z., Guo, W., Rabczuk, T.: A comparative study of two molecular mechanics models based on harmonic potentials. J. Appl. Phys. 113(6), 063509 (2013)CrossRef
Zurück zum Zitat Zhou, X., Zhou, J., Ou-Yang, Z.: Strain energy and Young’s modulus of single-wall carbon nanotubes calculated from electronic energy-band theory. Phys. Rev. B 62(20), 13692 (2000)CrossRef Zhou, X., Zhou, J., Ou-Yang, Z.: Strain energy and Young’s modulus of single-wall carbon nanotubes calculated from electronic energy-band theory. Phys. Rev. B 62(20), 13692 (2000)CrossRef
Metadaten
Titel
Prediction of Young’s modulus of hexagonal monolayer sheets based on molecular mechanics
verfasst von
Minh-Quy Le
Publikationsdatum
01.03.2015
Verlag
Springer Netherlands
Erschienen in
International Journal of Mechanics and Materials in Design / Ausgabe 1/2015
Print ISSN: 1569-1713
Elektronische ISSN: 1573-8841
DOI
https://doi.org/10.1007/s10999-014-9271-0

Weitere Artikel der Ausgabe 1/2015

International Journal of Mechanics and Materials in Design 1/2015 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.