Skip to main content
Erschienen in: International Journal of Mechanics and Materials in Design 3/2017

04.02.2016

An elastic–plastic asperity contact model and its application for micro-contact analysis of gear tooth profiles

verfasst von: Changjiang Zhou, Futian Huang, Xu Han, Yuantong Gu

Erschienen in: International Journal of Mechanics and Materials in Design | Ausgabe 3/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This paper presents a continuous elastic–plastic asperity contact model with or without the consideration of friction to investigate the micro-contact properties of gear tooth profiles. The model for normal or side contact analysis is established according to Hertz contact theory and the asperity morphology feature, which yields to similar results as obtained from the model proposed by Chang W.R., Etsion I., and Bogy D.B. (CEB model) and the model proposed by Kogut L. and Etsion I. (KE model). More importantly, this model avoids the constant average contact stress as predicted by the CEB model, and the noncontinuous contact stress and deformation within the ultimate strength as given by the KE model. As a application of the present theoretical model in micro-contact analysis of rough tooth profiles, a finite element model (FE model) for elastic–plastic asperity in normal or side contact is established according to the measured surface parameters of a spur gear pair. It is shown that the extreme point of Von Mise stress of the asperities along the normal vector is ascertained by FE model, and that the extreme point is relative to the initial occurrence of the asperities plastic deformation. Compared with the present theoretical model, the similar normal contact stress along the contact radius is attained by FE model. Though the contact stress isogram in the specific plane in normal or side contact of the asperities is a circle or ellipse respectively when the plastic deformation is expanded from the inside of the asperities to their surfaces, it is in line with the distribution of elastic and plastic region of the theoretical model. Compared with CEB model, KE model, and FE model, the consistent results are attained by the present theoretical model in elastic–plastic asperity contact analysis. The results indicate that the theoretical model is applicable to the elastic–plastic asperity contact analysis on the rough surface of a spur gear drive.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Abdo, J., Farhang, K.: Elastic–plastic contact model for rough surfaces based on plastic asperity concept. Int. J. Non Linear Mech. 40(4), 495–506 (2005)CrossRefMATH Abdo, J., Farhang, K.: Elastic–plastic contact model for rough surfaces based on plastic asperity concept. Int. J. Non Linear Mech. 40(4), 495–506 (2005)CrossRefMATH
Zurück zum Zitat Arias-Cuevas, O., Li, Z., Lewis, R., et al.: Rolling–sliding laboratory tests of friction modifiers in dry and wet wheel-rail contacts. Wear 268(3), 543–551 (2010)CrossRef Arias-Cuevas, O., Li, Z., Lewis, R., et al.: Rolling–sliding laboratory tests of friction modifiers in dry and wet wheel-rail contacts. Wear 268(3), 543–551 (2010)CrossRef
Zurück zum Zitat Britton, R.D., Elcoate, C.D., Alanou, M.P., et al.: Effect of surface finish on gear tooth friction. J. Tribol. 122(1), 354–360 (2000)CrossRef Britton, R.D., Elcoate, C.D., Alanou, M.P., et al.: Effect of surface finish on gear tooth friction. J. Tribol. 122(1), 354–360 (2000)CrossRef
Zurück zum Zitat Chang, W.R., Etsion, I., Bogy, D.B.: An elastic–plastic model for the contact of rough surfaces. J. Tribol. 109(2), 257–263 (1987)CrossRef Chang, W.R., Etsion, I., Bogy, D.B.: An elastic–plastic model for the contact of rough surfaces. J. Tribol. 109(2), 257–263 (1987)CrossRef
Zurück zum Zitat Ciavarella, M., Delfine, V., Demelio, G.: A “re-vitalized” Greenwood and Williamson model of elastic contact between fractal surfaces. J. Mech. Phys. Solids 54(12), 2569–2591 (2006)CrossRefMATH Ciavarella, M., Delfine, V., Demelio, G.: A “re-vitalized” Greenwood and Williamson model of elastic contact between fractal surfaces. J. Mech. Phys. Solids 54(12), 2569–2591 (2006)CrossRefMATH
Zurück zum Zitat Daves, W., Fisher, F.D., Fisher, J.: Modelling of the wheel-rail contact taking into account micro-structure and material behavior of the contacting materials. In: Proceedings of the 5th International Conference on Contact Mechanics and Wear of Wheel/Rail System, Japan, pp. 136–141 (2000) Daves, W., Fisher, F.D., Fisher, J.: Modelling of the wheel-rail contact taking into account micro-structure and material behavior of the contacting materials. In: Proceedings of the 5th International Conference on Contact Mechanics and Wear of Wheel/Rail System, Japan, pp. 136–141 (2000)
Zurück zum Zitat Farhang, K., Lim, A.: A kinetic friction model for viscoelastic contact of nominally flat rough surfaces. J. Tribol. 129(3), 799–807 (2007)CrossRef Farhang, K., Lim, A.: A kinetic friction model for viscoelastic contact of nominally flat rough surfaces. J. Tribol. 129(3), 799–807 (2007)CrossRef
Zurück zum Zitat Greenwood, J.A., Tripp, J.H.: The contact of two nominally flat rough surfaces. Proc. Inst. Mech. Eng. 185(1), 625–633 (1970)CrossRef Greenwood, J.A., Tripp, J.H.: The contact of two nominally flat rough surfaces. Proc. Inst. Mech. Eng. 185(1), 625–633 (1970)CrossRef
Zurück zum Zitat Greenwood, J.A., Williamson, J.B.P.: Contact of nominally flat surfaces. Math. Phys. Sci. 295(1442), 00–319 (1966)CrossRef Greenwood, J.A., Williamson, J.B.P.: Contact of nominally flat surfaces. Math. Phys. Sci. 295(1442), 00–319 (1966)CrossRef
Zurück zum Zitat Han, L., Zhang, D.W., Wang, F.J.: Predicting film parameter and friction coefficient for helical gears considering surface roughness and load variation. Tribol. Trans. 56(1), 49–57 (2013)CrossRef Han, L., Zhang, D.W., Wang, F.J.: Predicting film parameter and friction coefficient for helical gears considering surface roughness and load variation. Tribol. Trans. 56(1), 49–57 (2013)CrossRef
Zurück zum Zitat Jackson, R.L., Green, I.: A finite element study of elasto-plastic hemispherical contact against a rigid flat. J. Tribol. 127(2), 343–354 (2005)CrossRef Jackson, R.L., Green, I.: A finite element study of elasto-plastic hemispherical contact against a rigid flat. J. Tribol. 127(2), 343–354 (2005)CrossRef
Zurück zum Zitat Johnson, K.L., Johnson, K.L.: Contact mechanics. Cambridge University Press, London (1987)MATH Johnson, K.L., Johnson, K.L.: Contact mechanics. Cambridge University Press, London (1987)MATH
Zurück zum Zitat Kogut, L., Etsion, I.: Elastic–plastic contact analysis of a sphere and a rigid flat. J. Appl. Mech. 69(5), 657–662 (2002)CrossRefMATH Kogut, L., Etsion, I.: Elastic–plastic contact analysis of a sphere and a rigid flat. J. Appl. Mech. 69(5), 657–662 (2002)CrossRefMATH
Zurück zum Zitat Li, B., Hong, J., Du, G.S.F.: An integrated mechanical–electrical predictive model of electrical contact resistance between two rough surfaces. Tribol. Trans. 58(3), 537–548 (2015)CrossRef Li, B., Hong, J., Du, G.S.F.: An integrated mechanical–electrical predictive model of electrical contact resistance between two rough surfaces. Tribol. Trans. 58(3), 537–548 (2015)CrossRef
Zurück zum Zitat Lian, Y.P., Liu, Y., Zhang, X.: Coupling of membrane element with material point method for fluid–membrane interaction problems. Int. J. Mech. Mater. Des. 10(2), 199–211 (2014)CrossRef Lian, Y.P., Liu, Y., Zhang, X.: Coupling of membrane element with material point method for fluid–membrane interaction problems. Int. J. Mech. Mater. Des. 10(2), 199–211 (2014)CrossRef
Zurück zum Zitat Liu, L., Zhou, C.J., Wang, Z.H.: Smooth and non-smooth contact analysis of micro-surfaces of gear teeth. In: International Gear Conference 2014: 26th–28th August 2014, Lyon. Chandos Publishing, 360 (2014) Liu, L., Zhou, C.J., Wang, Z.H.: Smooth and non-smooth contact analysis of micro-surfaces of gear teeth. In: International Gear Conference 2014: 26th–28th August 2014, Lyon. Chandos Publishing, 360 (2014)
Zurück zum Zitat Liu, T.X., Liu, G., Xie, Q., Zeng, Q.R.: 2D Adaptive-surface description model for elastic–plastic asperity problems. J. Mech. Eng. 43(9), 91–95 (2007)CrossRef Liu, T.X., Liu, G., Xie, Q., Zeng, Q.R.: 2D Adaptive-surface description model for elastic–plastic asperity problems. J. Mech. Eng. 43(9), 91–95 (2007)CrossRef
Zurück zum Zitat Majumdar, A., Bhushan, B.: Fractal model of elastic–plastic contact between rough surfaces. J. Tribol. 113(1), 1–11 (1991)CrossRef Majumdar, A., Bhushan, B.: Fractal model of elastic–plastic contact between rough surfaces. J. Tribol. 113(1), 1–11 (1991)CrossRef
Zurück zum Zitat Meguid, S.A., Czekanski, A.: Advances in computational contact mechanics. Int. J. Mech. Mater. Des. 4(4), 419–443 (2008)CrossRef Meguid, S.A., Czekanski, A.: Advances in computational contact mechanics. Int. J. Mech. Mater. Des. 4(4), 419–443 (2008)CrossRef
Zurück zum Zitat Sepehri, A., Farhang, K.: Closed-form equations for three dimensional elastic–plastic contact of nominally flat rough surfaces. J. Tribol. 131(4), 041402 (2009)CrossRef Sepehri, A., Farhang, K.: Closed-form equations for three dimensional elastic–plastic contact of nominally flat rough surfaces. J. Tribol. 131(4), 041402 (2009)CrossRef
Zurück zum Zitat Wang, Y.Q., Bian, R.: Influence of surface roughness wave on thermal elastohydrodynamic lubrication of involute spur gears. J. Mech. Eng. 45(8), 112–118 (2009)CrossRef Wang, Y.Q., Bian, R.: Influence of surface roughness wave on thermal elastohydrodynamic lubrication of involute spur gears. J. Mech. Eng. 45(8), 112–118 (2009)CrossRef
Zurück zum Zitat White, J.: A gas lubrication equation for high Knudsen number flows and striated rough surfaces. J. Tribol. 132(2), 021701 (2010)CrossRef White, J.: A gas lubrication equation for high Knudsen number flows and striated rough surfaces. J. Tribol. 132(2), 021701 (2010)CrossRef
Zurück zum Zitat White, J.: Combined effects of surface roughness and rarefaction in the region between high wave number-limited and high bearing number-limited lubricant flows. J. Tribol. 137(1), 012001 (2015)CrossRef White, J.: Combined effects of surface roughness and rarefaction in the region between high wave number-limited and high bearing number-limited lubricant flows. J. Tribol. 137(1), 012001 (2015)CrossRef
Zurück zum Zitat Zhang, Z., Wu, H., Hao, W., et al.: A systematic AMF–FEM coupled method for the thermo-elasto-plastic contact analysis of the plasma sprayed HA-coated biocomposite. Int. J. Mech. Mater. Des. 9(3), 227–238 (2013)CrossRef Zhang, Z., Wu, H., Hao, W., et al.: A systematic AMF–FEM coupled method for the thermo-elasto-plastic contact analysis of the plasma sprayed HA-coated biocomposite. Int. J. Mech. Mater. Des. 9(3), 227–238 (2013)CrossRef
Zurück zum Zitat Zhao, Y., Maietta, D.M., Chang, L.: An asperity microcontact model incorporating the transition from elastic deformation to fully plastic flow. J. Tribol. 122(1), 86–93 (2000)CrossRef Zhao, Y., Maietta, D.M., Chang, L.: An asperity microcontact model incorporating the transition from elastic deformation to fully plastic flow. J. Tribol. 122(1), 86–93 (2000)CrossRef
Metadaten
Titel
An elastic–plastic asperity contact model and its application for micro-contact analysis of gear tooth profiles
verfasst von
Changjiang Zhou
Futian Huang
Xu Han
Yuantong Gu
Publikationsdatum
04.02.2016
Verlag
Springer Netherlands
Erschienen in
International Journal of Mechanics and Materials in Design / Ausgabe 3/2017
Print ISSN: 1569-1713
Elektronische ISSN: 1573-8841
DOI
https://doi.org/10.1007/s10999-016-9338-1

Weitere Artikel der Ausgabe 3/2017

International Journal of Mechanics and Materials in Design 3/2017 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.