Skip to main content
Erschienen in: International Journal of Mechanics and Materials in Design 1/2018

23.11.2016

Predicting mechanical properties of fuzzy fiber reinforced composites: radially grown carbon nanotubes on the carbon fiber

verfasst von: Roham Rafiee, Amin Ghorbanhosseini

Erschienen in: International Journal of Mechanics and Materials in Design | Ausgabe 1/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

It is intended to predict mechanical properties of fuzzy fiber reinforced polymer. An appropriate computational modeling is developed on the basis of bottom-up modeling covering all involved scales of nano, micro, meso and macro. The effective parameters of each scale are identified using top-down scanning approach and defining a representative volume element for each scale of analysis. At nano-scale, mechanical properties of isolated CNT are estimated. Then, at the upper scale of micro, the interaction between CNT and surrounding polymer is investigated considering non-bonded van der Waals interactions. Mechanical properties of the CNT/polymer nanocomposite with radial arrangement of CNT are derived at meso scale. Subsequently, mechanical properties of a single fuzzy fiber encompassing core carbon fiber and surrounding CNT/polymer are calculated. Finally, mechanical properties of the uni-directional and short fuzzy fiber reinforced composites are evaluated at the scale of macro. Treating CNT volume fraction and its arbitrary non-straight shapes as random parameters, developed modeling is conducted stochastically. The results imply on the importance of stochastic modeling, since deterministic modeling is led to a noticeable overestimation in predicted results. A very good agreement is reported between predicted results by stochastic modeling and published experimental data in literature.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Affdl, J.C.H., Kardos, J.L.: The Halpin–Tsai equations: a review. Polym. Eng. Sci. 16(5), 344–352 (1976)CrossRef Affdl, J.C.H., Kardos, J.L.: The Halpin–Tsai equations: a review. Polym. Eng. Sci. 16(5), 344–352 (1976)CrossRef
Zurück zum Zitat Agrawal Paras, M., Sudalayandi Bala, S., Raff Lionel, M., Komanduri Ranga, A.: A comparison of different methods of Young’s modulus determination for single-wall carbon nanotubes (SWCNT) using molecular dynamics (MD) simulations. Comput. Mater. Sci. 38, 271–281 (2006)CrossRef Agrawal Paras, M., Sudalayandi Bala, S., Raff Lionel, M., Komanduri Ranga, A.: A comparison of different methods of Young’s modulus determination for single-wall carbon nanotubes (SWCNT) using molecular dynamics (MD) simulations. Comput. Mater. Sci. 38, 271–281 (2006)CrossRef
Zurück zum Zitat Ashrafi, B., Hubert, P.: Modeling the elastic properties of carbon nanotube array/polymer composites. Compos. Sci. Technol. 66, 387–396 (2006)CrossRef Ashrafi, B., Hubert, P.: Modeling the elastic properties of carbon nanotube array/polymer composites. Compos. Sci. Technol. 66, 387–396 (2006)CrossRef
Zurück zum Zitat Bower, C., Zhu, W., Jin, S., Zhou, O.: Plasma-induced alignment of carbon nanotubes. Appl. Phys. Lett. 77, 830–832 (2000)CrossRef Bower, C., Zhu, W., Jin, S., Zhou, O.: Plasma-induced alignment of carbon nanotubes. Appl. Phys. Lett. 77, 830–832 (2000)CrossRef
Zurück zum Zitat Chatzigeorgiou, G., Efendiev, Y., Lagoudas, D.C.: Homogenization of aligned ‘‘fuzzy fiber’’ composites. Int. J. Solid Struct. 48, 2668–2680 (2011)CrossRef Chatzigeorgiou, G., Efendiev, Y., Lagoudas, D.C.: Homogenization of aligned ‘‘fuzzy fiber’’ composites. Int. J. Solid Struct. 48, 2668–2680 (2011)CrossRef
Zurück zum Zitat Chatzigeorgiou, G., Seidel, G.S., Lagoudas, D.C.: Effective mechanical properties of ‘‘fuzzy fiber’’ composites. Compos. Part B Eng. 43, 2577–2593 (2012)CrossRef Chatzigeorgiou, G., Seidel, G.S., Lagoudas, D.C.: Effective mechanical properties of ‘‘fuzzy fiber’’ composites. Compos. Part B Eng. 43, 2577–2593 (2012)CrossRef
Zurück zum Zitat Ci, L., Zhao, Z., Bai, J.: Direct growth of carbon nanotubes on the surface of ceramic fibers. Carbon 43(4), 883–886 (2005)CrossRef Ci, L., Zhao, Z., Bai, J.: Direct growth of carbon nanotubes on the surface of ceramic fibers. Carbon 43(4), 883–886 (2005)CrossRef
Zurück zum Zitat Coleman, J.N., Khan, U., Blau, W.J., Gun’ko, Y.K.: Small but strong: a review of the mechanical properties of carbon nanotube-polymer composites. Carbon 44, 1624–1652 (2006)CrossRef Coleman, J.N., Khan, U., Blau, W.J., Gun’ko, Y.K.: Small but strong: a review of the mechanical properties of carbon nanotube-polymer composites. Carbon 44, 1624–1652 (2006)CrossRef
Zurück zum Zitat Dai, H.: Carbon nanotubes: opportunities and challenges. Surf. Sci. 500, 218–241 (2002)CrossRef Dai, H.: Carbon nanotubes: opportunities and challenges. Surf. Sci. 500, 218–241 (2002)CrossRef
Zurück zum Zitat Dhala, S., Ray, M.C.: Micromechanics of piezoelectric fuzzy-fiber reinforced composites. Mech. Mater. 81, 1–17 (2015)CrossRef Dhala, S., Ray, M.C.: Micromechanics of piezoelectric fuzzy-fiber reinforced composites. Mech. Mater. 81, 1–17 (2015)CrossRef
Zurück zum Zitat Esawi, A.M.K., Farag, M.M.: Carbon nanotube reinforced composites: potential and current challenges. Mater. Des. 28, 2394–2401 (2007)CrossRef Esawi, A.M.K., Farag, M.M.: Carbon nanotube reinforced composites: potential and current challenges. Mater. Des. 28, 2394–2401 (2007)CrossRef
Zurück zum Zitat Eshelby, J.D.: The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proc. R. Soc. Lond. Ser. 241, 376–396 (1957)MathSciNetCrossRefMATH Eshelby, J.D.: The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proc. R. Soc. Lond. Ser. 241, 376–396 (1957)MathSciNetCrossRefMATH
Zurück zum Zitat Fereidoon, A., Rafiee, R., Maleki Moghadam, R.: Modal analysis of carbon nanotube reinforced polymer using multi-scale finite element method. Mech. Compos. Mater. 14(3), 1–8 (2013) Fereidoon, A., Rafiee, R., Maleki Moghadam, R.: Modal analysis of carbon nanotube reinforced polymer using multi-scale finite element method. Mech. Compos. Mater. 14(3), 1–8 (2013)
Zurück zum Zitat Garcia, E., Wardle, B., Hart, A., Yamamoto, N.: Fabrication and multifunctional properties of a hybrid laminate with aligned carbon nanotubes grown in situ. Compos. Sci. Technol. 68, 2034–2041 (2008)CrossRef Garcia, E., Wardle, B., Hart, A., Yamamoto, N.: Fabrication and multifunctional properties of a hybrid laminate with aligned carbon nanotubes grown in situ. Compos. Sci. Technol. 68, 2034–2041 (2008)CrossRef
Zurück zum Zitat Hashin, Z.: Analysis of composite materials—a survey. J. Appl. Mech. 50, 481–505 (1983)CrossRefMATH Hashin, Z.: Analysis of composite materials—a survey. J. Appl. Mech. 50, 481–505 (1983)CrossRefMATH
Zurück zum Zitat Jalalahmadi, B., Naghdabadi, R.: Finite element modeling of single-walled carbon nanotubes with introducing a new wall thickness. J. Phys: Conf. Ser. 61, 497–502 (2007) Jalalahmadi, B., Naghdabadi, R.: Finite element modeling of single-walled carbon nanotubes with introducing a new wall thickness. J. Phys: Conf. Ser. 61, 497–502 (2007)
Zurück zum Zitat Kalamkarov, A.L., Georgiades, A.V., Rokkam, S.K., Veedu, V.P., Ghasemi-Nejhad, M.N.: Analytical and numerical techniques to predict carbon nanotubes properties. Int. J. Solids Struct. 43, 6832–6854 (2006)CrossRefMATH Kalamkarov, A.L., Georgiades, A.V., Rokkam, S.K., Veedu, V.P., Ghasemi-Nejhad, M.N.: Analytical and numerical techniques to predict carbon nanotubes properties. Int. J. Solids Struct. 43, 6832–6854 (2006)CrossRefMATH
Zurück zum Zitat Kang, I., Heung, Y.Y., Kim, J.H., Lee, J.W., Gollapudi, R., Subramaniam, S., et al.: Introduction to carbon nanotube and nanofiber smart materials. Compos. Part B Eng. 37, 382–394 (2006)CrossRef Kang, I., Heung, Y.Y., Kim, J.H., Lee, J.W., Gollapudi, R., Subramaniam, S., et al.: Introduction to carbon nanotube and nanofiber smart materials. Compos. Part B Eng. 37, 382–394 (2006)CrossRef
Zurück zum Zitat Kleiber, M., Hien, T.D.: The stochastic finite element method. Wiley, New York (1992)MATH Kleiber, M., Hien, T.D.: The stochastic finite element method. Wiley, New York (1992)MATH
Zurück zum Zitat Kulkarni, M., Carnahan, D., Kulkarni, K., Qian, D., Abot, J.L.: Elastic response of a carbon nanotube fiber reinforced polymeric composite: a numerical and experimental study. Compos. Part B Eng. 41, 414–421 (2010)CrossRef Kulkarni, M., Carnahan, D., Kulkarni, K., Qian, D., Abot, J.L.: Elastic response of a carbon nanotube fiber reinforced polymeric composite: a numerical and experimental study. Compos. Part B Eng. 41, 414–421 (2010)CrossRef
Zurück zum Zitat Kundalwal, S.I., Meguid, S.A.: Micromechanics modeling of the effective thermoelastic response of nano-tailored composites. Eur. J. Mech. A Solids 53, 241–253 (2015)MathSciNetCrossRef Kundalwal, S.I., Meguid, S.A.: Micromechanics modeling of the effective thermoelastic response of nano-tailored composites. Eur. J. Mech. A Solids 53, 241–253 (2015)MathSciNetCrossRef
Zurück zum Zitat Kundalwal, S.I., Ray, M.C.: Micromechanical analysis of fuzzy fiber reinforced composites. Int. J. Mech. Mater. Des. 7, 149–166 (2011)CrossRef Kundalwal, S.I., Ray, M.C.: Micromechanical analysis of fuzzy fiber reinforced composites. Int. J. Mech. Mater. Des. 7, 149–166 (2011)CrossRef
Zurück zum Zitat Kundalwal, S.I., Ray, M.C.: Effect of carbon nanotube waviness on the effective thermoelastic properties of a novel continuous fuzzy fiber reinforced composite. Compos. Part B Eng. 80, 199–209 (2014a)CrossRef Kundalwal, S.I., Ray, M.C.: Effect of carbon nanotube waviness on the effective thermoelastic properties of a novel continuous fuzzy fiber reinforced composite. Compos. Part B Eng. 80, 199–209 (2014a)CrossRef
Zurück zum Zitat Kundalwal, S.I., Ray, M.C.: Estimation of thermal conductivities of novel fuzzy fiber reinforced composite. Int. J. Therm. Sci. 76, 90–100 (2014b)CrossRefMATH Kundalwal, S.I., Ray, M.C.: Estimation of thermal conductivities of novel fuzzy fiber reinforced composite. Int. J. Therm. Sci. 76, 90–100 (2014b)CrossRefMATH
Zurück zum Zitat Kundalwal, S.I., Kumar, R.S., Ray, M.C.: Effective thermal conductivities of a novel fuzzy carbon fiber heat exchanger containing wavy carbon nanotubes. Int. J. Heat Mass Transf. 72, 440–451 (2014a)CrossRef Kundalwal, S.I., Kumar, R.S., Ray, M.C.: Effective thermal conductivities of a novel fuzzy carbon fiber heat exchanger containing wavy carbon nanotubes. Int. J. Heat Mass Transf. 72, 440–451 (2014a)CrossRef
Zurück zum Zitat Kundalwal, S.I., Ray, M.C., Meguid, S.A.: Shear lag model for regullarly staggered short fuzzy fiber reinforced composite. J. Appl. Mech. 81(9), 091001 (2014b)CrossRef Kundalwal, S.I., Ray, M.C., Meguid, S.A.: Shear lag model for regullarly staggered short fuzzy fiber reinforced composite. J. Appl. Mech. 81(9), 091001 (2014b)CrossRef
Zurück zum Zitat Kundawal, S.I., Ray, M.C.: Effective properties of a novel continuous fuzzy-fiber reinforced composite using the method of cells and the finite element method. Eur. J. Mech. A. Solids 36, 191–203 (2012)CrossRef Kundawal, S.I., Ray, M.C.: Effective properties of a novel continuous fuzzy-fiber reinforced composite using the method of cells and the finite element method. Eur. J. Mech. A. Solids 36, 191–203 (2012)CrossRef
Zurück zum Zitat Lau, K.T., Gu, C., Hui, D.: A critical review on nanotube and nanotube/nanoclay related polymer composite materials. Compos. Part B Eng. 37, 425–436 (2006)CrossRef Lau, K.T., Gu, C., Hui, D.: A critical review on nanotube and nanotube/nanoclay related polymer composite materials. Compos. Part B Eng. 37, 425–436 (2006)CrossRef
Zurück zum Zitat Li, C., Chou, T.W.: Multiscale modeling of carbon nanotube reinforced polymer composites. J. Nanosci. Nanotechnol. 3, 423–430 (2003)CrossRef Li, C., Chou, T.W.: Multiscale modeling of carbon nanotube reinforced polymer composites. J. Nanosci. Nanotechnol. 3, 423–430 (2003)CrossRef
Zurück zum Zitat Li, C., Chou, T.W.: Multiscale modeling of compressive behavior of carbon nanotubes/polymer composites. Compos. Sci. Technol. 66, 2409–2414 (2006)CrossRef Li, C., Chou, T.W.: Multiscale modeling of compressive behavior of carbon nanotubes/polymer composites. Compos. Sci. Technol. 66, 2409–2414 (2006)CrossRef
Zurück zum Zitat Liu, B., Jiang, H., Huang, Y., Qu, S., Yu, M.F., Hwang, K.C.: Atomic-scale finite element method in multiscale computation with applications to carbon nanotubes. Phys. Rev. B 72, 035435 (2005)CrossRef Liu, B., Jiang, H., Huang, Y., Qu, S., Yu, M.F., Hwang, K.C.: Atomic-scale finite element method in multiscale computation with applications to carbon nanotubes. Phys. Rev. B 72, 035435 (2005)CrossRef
Zurück zum Zitat Mathur, R., Chatterjee, S., Singh, B.: Growth of carbon nanotubes on carbon fibre substrates to produce hybrid/phenolic composites with improved mechanical properties. Compos. Sci. Technol. 68, 1608–1615 (2008)CrossRef Mathur, R., Chatterjee, S., Singh, B.: Growth of carbon nanotubes on carbon fibre substrates to produce hybrid/phenolic composites with improved mechanical properties. Compos. Sci. Technol. 68, 1608–1615 (2008)CrossRef
Zurück zum Zitat Mori, T., Tanaka, K.: Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta Metall. Sin. 21, 71–575 (1973) Mori, T., Tanaka, K.: Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta Metall. Sin. 21, 71–575 (1973)
Zurück zum Zitat Mukhopadhyay, K., Dwivedi, C.D., Mathur, G.N.: Conversion of carbon nanotubes to carbon fibers by sonication. Carbon 40, 1373–1376 (2002)CrossRef Mukhopadhyay, K., Dwivedi, C.D., Mathur, G.N.: Conversion of carbon nanotubes to carbon fibers by sonication. Carbon 40, 1373–1376 (2002)CrossRef
Zurück zum Zitat Odegard, G.M., Gates, T.S., Wise, K.E., Park, C., Siochi, E.J.: Constitutive modeling of nanotube-reinforced polymer composites. Compos. Sci. Technol. 63, 1671–1687 (2003)CrossRef Odegard, G.M., Gates, T.S., Wise, K.E., Park, C., Siochi, E.J.: Constitutive modeling of nanotube-reinforced polymer composites. Compos. Sci. Technol. 63, 1671–1687 (2003)CrossRef
Zurück zum Zitat Qian, D., Dickey, E., Andrews, R., Rantell, T.: Load transfer and deformation mechanisms in carbon nanotube-polystyrene composites. Appl. Phys. Lett. 76(20), 2868–2870 (2000)CrossRef Qian, D., Dickey, E., Andrews, R., Rantell, T.: Load transfer and deformation mechanisms in carbon nanotube-polystyrene composites. Appl. Phys. Lett. 76(20), 2868–2870 (2000)CrossRef
Zurück zum Zitat Rafiee, R.: Influence of carbon nanotubes waviness on the stiffness reduction of CNT/polymer composites. Compos. Struct. 97, 304–309 (2013)CrossRef Rafiee, R.: Influence of carbon nanotubes waviness on the stiffness reduction of CNT/polymer composites. Compos. Struct. 97, 304–309 (2013)CrossRef
Zurück zum Zitat Rafiee, R., Firouzbakht, V.: Multi-scale modeling of carbon nanotubes reinforced polymers using irregular tessellation technique. Mech. Mater. 78, 74–84 (2014)CrossRef Rafiee, R., Firouzbakht, V.: Multi-scale modeling of carbon nanotubes reinforced polymers using irregular tessellation technique. Mech. Mater. 78, 74–84 (2014)CrossRef
Zurück zum Zitat Rafiee, R., Maleki, R.: Moghadam, Simulation of impact and post-impact behavior of carbon nanotube reinforced polymer using multi-scale finite element modeling. Comput. Mater. Sci. 63, 261–268 (2012)CrossRef Rafiee, R., Maleki, R.: Moghadam, Simulation of impact and post-impact behavior of carbon nanotube reinforced polymer using multi-scale finite element modeling. Comput. Mater. Sci. 63, 261–268 (2012)CrossRef
Zurück zum Zitat Rafiee, R., Maleki Moghad, R.: On the modeling of carbon nanotubes: a critical review. Compos. Part B Eng. 56, 435–449 (2014)CrossRef Rafiee, R., Maleki Moghad, R.: On the modeling of carbon nanotubes: a critical review. Compos. Part B Eng. 56, 435–449 (2014)CrossRef
Zurück zum Zitat Rafiee, R., Pourazizi, R.: Evaluating the influence of defects on the Young’s modulus of carbon nanotubes using stochastic modeling. J. Mater. Res. 17(3), 758–766 (2014)CrossRef Rafiee, R., Pourazizi, R.: Evaluating the influence of defects on the Young’s modulus of carbon nanotubes using stochastic modeling. J. Mater. Res. 17(3), 758–766 (2014)CrossRef
Zurück zum Zitat Rafiee, R., Pourazizi, R.: Influence of CNT functionalization on the interphase region between CNT and polymer. Comput. Mater. Sci. 96, 573–578 (2015)CrossRef Rafiee, R., Pourazizi, R.: Influence of CNT functionalization on the interphase region between CNT and polymer. Comput. Mater. Sci. 96, 573–578 (2015)CrossRef
Zurück zum Zitat Rafiee, R., Fereidoon, A., Heidarhaei, M.: Influence of non-bonded interphase on crack driving force in carbon nanotube reinforced polymer. Comput. Mater. Sci. 56, 25–28 (2012)CrossRef Rafiee, R., Fereidoon, A., Heidarhaei, M.: Influence of non-bonded interphase on crack driving force in carbon nanotube reinforced polymer. Comput. Mater. Sci. 56, 25–28 (2012)CrossRef
Zurück zum Zitat Rafiee, R., Rabczuk, T., Pourazizi, R., Zhao, J., Zhang, Y.: Challenges of the modeling methods for investigating the interaction between the CNT and surrounding polymer. Adv. Mater. Sci. Eng. (2013). doi:10.1155/2013/183026 Rafiee, R., Rabczuk, T., Pourazizi, R., Zhao, J., Zhang, Y.: Challenges of the modeling methods for investigating the interaction between the CNT and surrounding polymer. Adv. Mater. Sci. Eng. (2013). doi:10.​1155/​2013/​183026
Zurück zum Zitat Ray, M.C.: A shear lag model of piezoelectric composite reinforced with carbon nanotubes-coated piezoelectric fibers. Int. J. Mech. Mater. Des. 6, 147–155 (2010)CrossRef Ray, M.C.: A shear lag model of piezoelectric composite reinforced with carbon nanotubes-coated piezoelectric fibers. Int. J. Mech. Mater. Des. 6, 147–155 (2010)CrossRef
Zurück zum Zitat Ray, M.C., Kundalwal, S.I.: A thermomechanical shear lag analysis of short fuzzy fiber reinforced composite containing wavy carbon nanotubes. Eur. J. Mech. A Solids 44, 41–60 (2014)MathSciNetCrossRefMATH Ray, M.C., Kundalwal, S.I.: A thermomechanical shear lag analysis of short fuzzy fiber reinforced composite containing wavy carbon nanotubes. Eur. J. Mech. A Solids 44, 41–60 (2014)MathSciNetCrossRefMATH
Zurück zum Zitat Ren, X., Burton, J., Seidel, G.D., Lafdi, K.: Computational multiscale modeling and characterization of piezoresistivity in fuzzy fiber reinforced polymer composites. Int. J. Solids Struct. 54, 121–134 (2015)CrossRef Ren, X., Burton, J., Seidel, G.D., Lafdi, K.: Computational multiscale modeling and characterization of piezoresistivity in fuzzy fiber reinforced polymer composites. Int. J. Solids Struct. 54, 121–134 (2015)CrossRef
Zurück zum Zitat Reng, X., Burton, J., Seidel, G.D., Latifi, K.: Computational multi-scale modeling and characterization of piezoresistivity in fuzzy fiber reinforced polymer composites. Int. J. Solid Struct. 54, 121–134 (2015)CrossRef Reng, X., Burton, J., Seidel, G.D., Latifi, K.: Computational multi-scale modeling and characterization of piezoresistivity in fuzzy fiber reinforced polymer composites. Int. J. Solid Struct. 54, 121–134 (2015)CrossRef
Zurück zum Zitat Sadd, M.H.: Elasticity, theory, application and numerics. Elsevier Butterworth-Heinemann, Oxford (2005) Sadd, M.H.: Elasticity, theory, application and numerics. Elsevier Butterworth-Heinemann, Oxford (2005)
Zurück zum Zitat Sager, R., Klein, P., Lagoudas, D., Zhang, Q., Liu, J., Baur, J.: Effect of carbon nanotubes on the interfacial shear strength of T650 carbon fiber in an epoxy matrix. Compos. Sci. Technol. 69, 898–904 (2009)CrossRef Sager, R., Klein, P., Lagoudas, D., Zhang, Q., Liu, J., Baur, J.: Effect of carbon nanotubes on the interfacial shear strength of T650 carbon fiber in an epoxy matrix. Compos. Sci. Technol. 69, 898–904 (2009)CrossRef
Zurück zum Zitat Salvetat-Delmotte, J.P., Rubio, A.: Mechanical properties of carbon nanotubes: a fiber digest for beginners. Carbon 40, 1729–1734 (2002)CrossRef Salvetat-Delmotte, J.P., Rubio, A.: Mechanical properties of carbon nanotubes: a fiber digest for beginners. Carbon 40, 1729–1734 (2002)CrossRef
Zurück zum Zitat Schadler, L., Giannaris, S.C., Ajayan, P.M.: Load transfer in carbon nanotube epoxy composites. Appl. Phys. Lett. 73(26), 3842–3844 (1998)CrossRef Schadler, L., Giannaris, S.C., Ajayan, P.M.: Load transfer in carbon nanotube epoxy composites. Appl. Phys. Lett. 73(26), 3842–3844 (1998)CrossRef
Zurück zum Zitat Sebastian, J., Schehl, N., Bouchard, M., Boehle, M., Li, L., Lagounov, A., Lafdi, K.: Health monitoring of structural composites with embedded carbon nanotubes coated glass fiber sensors. Carbon 66, 191–200 (2014)CrossRef Sebastian, J., Schehl, N., Bouchard, M., Boehle, M., Li, L., Lagounov, A., Lafdi, K.: Health monitoring of structural composites with embedded carbon nanotubes coated glass fiber sensors. Carbon 66, 191–200 (2014)CrossRef
Zurück zum Zitat Seidel, G.D., Lagoudas, D.C.: Micromechanical analysis of the effective elastic properties of carbon nanotube reinforced composites. Mech. Mater. 38, 884–907 (2006)CrossRef Seidel, G.D., Lagoudas, D.C.: Micromechanical analysis of the effective elastic properties of carbon nanotube reinforced composites. Mech. Mater. 38, 884–907 (2006)CrossRef
Zurück zum Zitat Shokrieh, M.M., Rafiee, R.: A review of mechanical properties of isolated carbon nanotubes and carbon nanotube composites. Mech. Compos. Mater. 46, 155–172 (2010a)CrossRef Shokrieh, M.M., Rafiee, R.: A review of mechanical properties of isolated carbon nanotubes and carbon nanotube composites. Mech. Compos. Mater. 46, 155–172 (2010a)CrossRef
Zurück zum Zitat Shokrieh, M.M., Rafiee, R.: Prediction of Young’s modulus of graphene sheets and carbon nanotubes using nano-scale continuum mechanics approach. Mater. Des. 31, 790–795 (2010b)CrossRef Shokrieh, M.M., Rafiee, R.: Prediction of Young’s modulus of graphene sheets and carbon nanotubes using nano-scale continuum mechanics approach. Mater. Des. 31, 790–795 (2010b)CrossRef
Zurück zum Zitat Shokrieh, M.M., Rafiee, R.: Prediction of mechanical properties of an embedded carbon nanotube in polymer matrix based on developing equivalent long fiber. Mech. Res. Commun. 37(2), 235–240 (2010c)CrossRef Shokrieh, M.M., Rafiee, R.: Prediction of mechanical properties of an embedded carbon nanotube in polymer matrix based on developing equivalent long fiber. Mech. Res. Commun. 37(2), 235–240 (2010c)CrossRef
Zurück zum Zitat Shokrieh, M.M., Rafiee, R.: Development of a full range multi-scale model to obtain elastic properties of CNT/polymer composites. Iran. Polym. J. 21, 397–402 (2012)CrossRef Shokrieh, M.M., Rafiee, R.: Development of a full range multi-scale model to obtain elastic properties of CNT/polymer composites. Iran. Polym. J. 21, 397–402 (2012)CrossRef
Zurück zum Zitat Thostenson, E., Li, W., Wang, Z., Ren, Z., Chou, T.: Carbon nanotube/carbon fiber hybrid multiscale composites. J. Appl. Phys. 91(9), 6034–6037 (2002)CrossRef Thostenson, E., Li, W., Wang, Z., Ren, Z., Chou, T.: Carbon nanotube/carbon fiber hybrid multiscale composites. J. Appl. Phys. 91(9), 6034–6037 (2002)CrossRef
Zurück zum Zitat Tjong, S.C.: Structural and mechanical properties of polymer nanocomposites. Mater. Sci. Eng. R 53, 173–197 (2006)CrossRef Tjong, S.C.: Structural and mechanical properties of polymer nanocomposites. Mater. Sci. Eng. R 53, 173–197 (2006)CrossRef
Zurück zum Zitat To, C.W.S.: Bending and shear moduli of single-walled carbon nanotubes. Finite Elem. Anal. Des. 42, 404–413 (2006)CrossRef To, C.W.S.: Bending and shear moduli of single-walled carbon nanotubes. Finite Elem. Anal. Des. 42, 404–413 (2006)CrossRef
Zurück zum Zitat Tserpes, K.I., Papanikos, P.: Finite element modeling of single-walled carbon nanotubes. Compos. Part B Eng. 36, 468–477 (2005)CrossRef Tserpes, K.I., Papanikos, P.: Finite element modeling of single-walled carbon nanotubes. Compos. Part B Eng. 36, 468–477 (2005)CrossRef
Zurück zum Zitat Villoria, R.G., Miravete, A.: Mechanical model to evaluate the effect of the dispersion in nanocomposites. Acta Mater. 55, 3025–3031 (2007)CrossRef Villoria, R.G., Miravete, A.: Mechanical model to evaluate the effect of the dispersion in nanocomposites. Acta Mater. 55, 3025–3031 (2007)CrossRef
Zurück zum Zitat Wang, X.Y., Wang, X.: Numerical simulation for bending modulus of carbon nanotubes and some explanations for experiment. Compos. Part B Eng. 35, 79–86 (2004)CrossRef Wang, X.Y., Wang, X.: Numerical simulation for bending modulus of carbon nanotubes and some explanations for experiment. Compos. Part B Eng. 35, 79–86 (2004)CrossRef
Zurück zum Zitat Wernik, J.M., Meguid, S.A.: Multiscale modeling of the nonlinear response of nano-reinforced polymers. Acta Mech. 217(1–2), 1–16 (2011)CrossRefMATH Wernik, J.M., Meguid, S.A.: Multiscale modeling of the nonlinear response of nano-reinforced polymers. Acta Mech. 217(1–2), 1–16 (2011)CrossRefMATH
Zurück zum Zitat Wood, C.D., Palmeri, M.J., Putz, K.W., Ho, G., Barto, R., Catherine Brinson, L.: Nanoscale structure and local mechanical properties of fiber-reinforced composites containing MWCNT-grafted hybrid glass fibers. Compos. Sci. Technol. 72, 1705–1710 (2012)CrossRef Wood, C.D., Palmeri, M.J., Putz, K.W., Ho, G., Barto, R., Catherine Brinson, L.: Nanoscale structure and local mechanical properties of fiber-reinforced composites containing MWCNT-grafted hybrid glass fibers. Compos. Sci. Technol. 72, 1705–1710 (2012)CrossRef
Zurück zum Zitat Yamamoto, N., John Hart, A., Garcia, E.J., Wicks, S.S., Duong, H.M., Slocum, A.H., Wardle, B.L.: High-yield growth and morphology control of aligned carbon nanotubes on ceramic fibers for multifunctional enhancement of structural composites. Carbon 47, 551–560 (2009)CrossRef Yamamoto, N., John Hart, A., Garcia, E.J., Wicks, S.S., Duong, H.M., Slocum, A.H., Wardle, B.L.: High-yield growth and morphology control of aligned carbon nanotubes on ceramic fibers for multifunctional enhancement of structural composites. Carbon 47, 551–560 (2009)CrossRef
Zurück zum Zitat Zhao, Z., Ci, L., Cheng, H., Bai, J.: The growth of multi-walled carbon nanotubes with different morphologies on carbon fibers. Carbon 43(3), 663–665 (2005)CrossRef Zhao, Z., Ci, L., Cheng, H., Bai, J.: The growth of multi-walled carbon nanotubes with different morphologies on carbon fibers. Carbon 43(3), 663–665 (2005)CrossRef
Zurück zum Zitat Zhu, S., Su, C.H., Lehoczky, S., Muntele, I., Ila, D.: Carbon nanotube growth on carbon fibers. Diam. Relat. Mater. 12, 1825–1828 (2003)CrossRef Zhu, S., Su, C.H., Lehoczky, S., Muntele, I., Ila, D.: Carbon nanotube growth on carbon fibers. Diam. Relat. Mater. 12, 1825–1828 (2003)CrossRef
Zurück zum Zitat Zhu, J., Peng, H., Rodriguez-Macias, F., Margrave, J., Khabashesku, V., Imam, A., Lozano, K., Barrera, E.: Reinforcing epoxy polymer composites through covalent integration of functionalized nanotubes. Adv. Funct. Mater. 14(7), 643–648 (2004)CrossRef Zhu, J., Peng, H., Rodriguez-Macias, F., Margrave, J., Khabashesku, V., Imam, A., Lozano, K., Barrera, E.: Reinforcing epoxy polymer composites through covalent integration of functionalized nanotubes. Adv. Funct. Mater. 14(7), 643–648 (2004)CrossRef
Metadaten
Titel
Predicting mechanical properties of fuzzy fiber reinforced composites: radially grown carbon nanotubes on the carbon fiber
verfasst von
Roham Rafiee
Amin Ghorbanhosseini
Publikationsdatum
23.11.2016
Verlag
Springer Netherlands
Erschienen in
International Journal of Mechanics and Materials in Design / Ausgabe 1/2018
Print ISSN: 1569-1713
Elektronische ISSN: 1573-8841
DOI
https://doi.org/10.1007/s10999-016-9359-9

Weitere Artikel der Ausgabe 1/2018

International Journal of Mechanics and Materials in Design 1/2018 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.