Skip to main content
Erschienen in: Mitigation and Adaptation Strategies for Global Change 4/2019

19.03.2018 | Original Article

The influence of land-cover changes on the variability of saturated hydraulic conductivity in tropical peatlands

verfasst von: Sofyan Kurnianto, John Selker, J. Boone Kauffman, Daniel Murdiyarso, James T. Peterson

Erschienen in: Mitigation and Adaptation Strategies for Global Change | Ausgabe 4/2019

Einloggen, um Zugang zu erhalten

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Understanding the movement of water through peat is essential for effective conservation and management strategies for peatlands. Saturated hydraulic conductivity, Ks, describes water movement through the peat profile. However, the spatial variability of Ks in tropical peatlands and the effects of land conversion on peat characteristics are poorly understood. Utilizing the slug test method, we estimated hydraulic conductivity in tropical peatlands in West Kalimantan, Indonesia, at three depths (0.75, 3.5, and 5.5 m) across four different land-cover types (undrained forests, recently burned forests, early seral communities, and oil palm (Elaeis guineensis Jacq.) plantations). We found strong spatial autocorrelation among measurements collected at our 19 study sites and evaluated the relationship between hydraulic conductivity and land-cover types, peat properties, and depth of measurement with a hierarchical linear model. Hydraulic conductivity varied greatly (c. 0.001–13.9 m d−1). The best approximating model for estimating Ks contained depth, forest cover, a depth and forest cover interaction, and the von Post degree of decomposition (Ks ~ depth + forest + depth × forest + von Post). Parameter estimates indicated that Ks was greater in forested than non-forested sites and decreased with increasing depth and decomposition stage. There was no evidence that Ks differed among the non-forested sites or was related to other physical and chemical peat properties. Our results suggest that Ks should be measured directly in tropical peatlands rather than estimated as a function of peat properties. Additionally, the strong spatial dependence suggests that similar research designs should examine the sample data for spatial dependence and, if necessary, incorporate hierarchical models.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Akaike H (1973) Information theory and an extension of the maximum likelihood principle. In: Petrov BN, Csaki F (eds) Second international symposium on information theory. Akademiai Kiado, Budapest, Hungary, pp 267–281 Akaike H (1973) Information theory and an extension of the maximum likelihood principle. In: Petrov BN, Csaki F (eds) Second international symposium on information theory. Akademiai Kiado, Budapest, Hungary, pp 267–281
Zurück zum Zitat Anderson DE (2002) Carbon accumulation and C/N ratios of peat bogs in North-West Scotland carbon accumulation and C/N ratios of peat bogs in North-West Scotland. Scottish Geogr J 118:323–341 Anderson DE (2002) Carbon accumulation and C/N ratios of peat bogs in North-West Scotland carbon accumulation and C/N ratios of peat bogs in North-West Scotland. Scottish Geogr J 118:323–341
Zurück zum Zitat Anshari GZ, Afifudin M, Nuriman M, Gusmayanti E, Arianie L, Susana R, Nusantara RW, Sugardjito J, Rafiastanto A (2010) Drainage and land use impacts on changes in selected peat properties and peat degradation in West Kalimantan Province, Indonesia. Biogeosciences 7:3403–3419. https://doi.org/10.5194/bg-7-3403-2010 CrossRef Anshari GZ, Afifudin M, Nuriman M, Gusmayanti E, Arianie L, Susana R, Nusantara RW, Sugardjito J, Rafiastanto A (2010) Drainage and land use impacts on changes in selected peat properties and peat degradation in West Kalimantan Province, Indonesia. Biogeosciences 7:3403–3419. https://​doi.​org/​10.​5194/​bg-7-3403-2010 CrossRef
Zurück zum Zitat Baird AJ (1997) Field estimation of macropore functioning and surface hydraulic conductivity in a fen peat. Hydrol Process 11:287–295CrossRef Baird AJ (1997) Field estimation of macropore functioning and surface hydraulic conductivity in a fen peat. Hydrol Process 11:287–295CrossRef
Zurück zum Zitat Bartoń K (2016) MuMIn: Multi-Model Inference Bartoń K (2016) MuMIn: Multi-Model Inference
Zurück zum Zitat Basuki I (2017) Carbon dynamics in response to land cover change in tropical peatland, Kalimantan. Oregon State University, Indonesia Basuki I (2017) Carbon dynamics in response to land cover change in tropical peatland, Kalimantan. Oregon State University, Indonesia
Zurück zum Zitat Beckwith CW, Baird AJ (2001) Effect of biogenic gas bubbles on water flow through poorly decomposed blanket peat. Water Resour Res 37:551–558CrossRef Beckwith CW, Baird AJ (2001) Effect of biogenic gas bubbles on water flow through poorly decomposed blanket peat. Water Resour Res 37:551–558CrossRef
Zurück zum Zitat Boelter DH (1969) Physical properties of peats as related to degree of decomposition. Soil Sci Soc Am Proc 33:606–609CrossRef Boelter DH (1969) Physical properties of peats as related to degree of decomposition. Soil Sci Soc Am Proc 33:606–609CrossRef
Zurück zum Zitat Bouwer H, Rice R (1976) A slug test for determining hydraulic conductivity of unconfined aquifers.Pdf. Water Resour Res 12:423–428 Bouwer H, Rice R (1976) A slug test for determining hydraulic conductivity of unconfined aquifers.Pdf. Water Resour Res 12:423–428
Zurück zum Zitat Burnham K, Anderson D (2002) Model selection and inference: an information-theoretic approach, 2nd edn. Springer-Verlag, New York Burnham K, Anderson D (2002) Model selection and inference: an information-theoretic approach, 2nd edn. Springer-Verlag, New York
Zurück zum Zitat Chambers FM, Beilman DW, Yu Z (2011) Methods for determining peat humification and for quantifying peat bulk density, organic matter and carbon content for palaeostudies of climate and peatland carbon dynamics. Mires Peat 7:1–10 Chambers FM, Beilman DW, Yu Z (2011) Methods for determining peat humification and for quantifying peat bulk density, organic matter and carbon content for palaeostudies of climate and peatland carbon dynamics. Mires Peat 7:1–10
Zurück zum Zitat Chason D, Siegel DI (1986) Hydraulic conductiviy and related physical properties of peat, lost river peatland, northern Minnesota. Soil Sci 142:91–99CrossRef Chason D, Siegel DI (1986) Hydraulic conductiviy and related physical properties of peat, lost river peatland, northern Minnesota. Soil Sci 142:91–99CrossRef
Zurück zum Zitat Couwenberg J, Hooijer A (2013) Towards robust subsidence-based soil carbon emission factors for peat soils in south-East Asia, with special reference to oil palm plantations. Mires Peat 12:1–13 Couwenberg J, Hooijer A (2013) Towards robust subsidence-based soil carbon emission factors for peat soils in south-East Asia, with special reference to oil palm plantations. Mires Peat 12:1–13
Zurück zum Zitat Dommain R, Couwenberg J, Joosten H (2010) Hydrological self-regulation of domed peatlands in south-East Asia and consequences for conservation and restoration. Mires Peat, Artic 6:1–17 Dommain R, Couwenberg J, Joosten H (2010) Hydrological self-regulation of domed peatlands in south-East Asia and consequences for conservation and restoration. Mires Peat, Artic 6:1–17
Zurück zum Zitat Könönen M, Jauhiainen J, Laiho R et al (2015) Physical and chemical properties of tropical peat under stabilised land uses. Mires Peat 16:1–13 Könönen M, Jauhiainen J, Laiho R et al (2015) Physical and chemical properties of tropical peat under stabilised land uses. Mires Peat 16:1–13
Zurück zum Zitat Kuhry P, Vitt DH (1996) Fossil carbon/nitrogen ratios as a measure of peat decomposition. Ecology 77:271–275CrossRef Kuhry P, Vitt DH (1996) Fossil carbon/nitrogen ratios as a measure of peat decomposition. Ecology 77:271–275CrossRef
Zurück zum Zitat Malmer N, Holm E (1984) Variation in the C/N-quotient of peat in relation to decomposition rate and age determination with 210 Pb. Oikos 43:171–182CrossRef Malmer N, Holm E (1984) Variation in the C/N-quotient of peat in relation to decomposition rate and age determination with 210 Pb. Oikos 43:171–182CrossRef
Zurück zum Zitat Päivänen J (1973) Hydraulic conductivity and water retention in peat soils Päivänen J (1973) Hydraulic conductivity and water retention in peat soils
Zurück zum Zitat Phillips VD (1998) Peatswamp ecology and sustainable development in Borneo. Biodivers Conserv 7:651–671CrossRef Phillips VD (1998) Peatswamp ecology and sustainable development in Borneo. Biodivers Conserv 7:651–671CrossRef
Zurück zum Zitat Raudenbush SW, Bryk AS (2002) Hierarchical linear models: applications and data analysis methods, 2nd editio. Sage Publications, Thousand Oaks Raudenbush SW, Bryk AS (2002) Hierarchical linear models: applications and data analysis methods, 2nd editio. Sage Publications, Thousand Oaks
Zurück zum Zitat Reynolds WD, Brown DA, Mathur SP, Overend RP (1992) Effect of in-situ gas accumulation on the hydraulic conductivity of peat. Soil Sci 135:397–408CrossRef Reynolds WD, Brown DA, Mathur SP, Overend RP (1992) Effect of in-situ gas accumulation on the hydraulic conductivity of peat. Soil Sci 135:397–408CrossRef
Zurück zum Zitat Rycroft DW, Williams DJA, Ingram HA (1975) The transmisiion of water through peat.Pdf. J Ecol 63:535–556CrossRef Rycroft DW, Williams DJA, Ingram HA (1975) The transmisiion of water through peat.Pdf. J Ecol 63:535–556CrossRef
Zurück zum Zitat Verry E, Boelter DH, Paivanen J et al (2011) Physical properties of organic soils. In: Kolka RK, Sebestyen S, Verry E, Brooks K (eds) Peatland biogeochemistry and watershed hydrology at the Marcell experimental forests. CRC Press, Boca Raton, FL, pp 135–176CrossRef Verry E, Boelter DH, Paivanen J et al (2011) Physical properties of organic soils. In: Kolka RK, Sebestyen S, Verry E, Brooks K (eds) Peatland biogeochemistry and watershed hydrology at the Marcell experimental forests. CRC Press, Boca Raton, FL, pp 135–176CrossRef
Zurück zum Zitat Warren MW, Kauffman JB, Murdiyarso D, Anshari G, Hergoualc'h K, Kurnianto S, Purbopuspito J, Gusmayanti E, Afifudin M, Rahajoe J, Alhamd L, Limin S, Iswandi A (2012) A cost-efficient method to assess carbon stocks in tropical peat soil. Biogeosciences 9:4477–4485. https://doi.org/10.5194/bg-9-4477-2012 CrossRef Warren MW, Kauffman JB, Murdiyarso D, Anshari G, Hergoualc'h K, Kurnianto S, Purbopuspito J, Gusmayanti E, Afifudin M, Rahajoe J, Alhamd L, Limin S, Iswandi A (2012) A cost-efficient method to assess carbon stocks in tropical peat soil. Biogeosciences 9:4477–4485. https://​doi.​org/​10.​5194/​bg-9-4477-2012 CrossRef
Zurück zum Zitat Wösten H, Hooijer A, Siderius C, Rais DS, Idris A, Rieley J (2006a) Tropical peatland water management modelling of the air Hitam Laut catchment in Indonesia. Int J River Basin Manag 4:233–244CrossRef Wösten H, Hooijer A, Siderius C, Rais DS, Idris A, Rieley J (2006a) Tropical peatland water management modelling of the air Hitam Laut catchment in Indonesia. Int J River Basin Manag 4:233–244CrossRef
Metadaten
Titel
The influence of land-cover changes on the variability of saturated hydraulic conductivity in tropical peatlands
verfasst von
Sofyan Kurnianto
John Selker
J. Boone Kauffman
Daniel Murdiyarso
James T. Peterson
Publikationsdatum
19.03.2018
Verlag
Springer Netherlands
Erschienen in
Mitigation and Adaptation Strategies for Global Change / Ausgabe 4/2019
Print ISSN: 1381-2386
Elektronische ISSN: 1573-1596
DOI
https://doi.org/10.1007/s11027-018-9802-3

Weitere Artikel der Ausgabe 4/2019

Mitigation and Adaptation Strategies for Global Change 4/2019 Zur Ausgabe