Skip to main content
Erschienen in: Metal Science and Heat Treatment 7-8/2017

11.11.2017

Martensitic Transformation in Low-Carbon Steels

verfasst von: S. K. Berezin, A. A. Shatsov, P. O. Bykova, D. M. Larinin

Erschienen in: Metal Science and Heat Treatment | Ausgabe 7-8/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Isothermal and thermokinetic martensitic transformations in low-carbon martensitic steels have been studied. Amodel is proposed that relates the mechanical state of the austenite, as dependent on the parameters of thermal treatment and the law of the grain size distribution, to the volume fraction of transformed martensite. Physical constants of the transformation are determined.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat G. V. Kurdyumov and B. Ya. Lyubov, Kinetic Theory of Phase Transformations [in Russian], Metallurgiya, Moscow (1966), 264 p. G. V. Kurdyumov and B. Ya. Lyubov, Kinetic Theory of Phase Transformations [in Russian], Metallurgiya, Moscow (1966), 264 p.
2.
Zurück zum Zitat Ya. S. Umanskii, B. N. Finkel’shtein, M. E. Blanter, et al., Physical Principles of Metallography [in Russian], GONTI, Moscow (1955), 724 p. Ya. S. Umanskii, B. N. Finkel’shtein, M. E. Blanter, et al., Physical Principles of Metallography [in Russian], GONTI, Moscow (1955), 724 p.
3.
Zurück zum Zitat M. P. Kashchenko and V. G. Chashchina, Dynamic Theory of γ – α Martensitic Transformation in Iron Alloys and Solution of the Problem of Critical Grain Size [in Russian], Regular and Chaotic Dynamics Research Center – Izhevsk Institute of Computer Investigations, Moscow – Izhevsk (2010), 132 p. M. P. Kashchenko and V. G. Chashchina, Dynamic Theory of γ – α Martensitic Transformation in Iron Alloys and Solution of the Problem of Critical Grain Size [in Russian], Regular and Chaotic Dynamics Research Center – Izhevsk Institute of Computer Investigations, Moscow – Izhevsk (2010), 132 p.
4.
Zurück zum Zitat V. I. Izotov, “Morphology and crystal geometry of lath (massive) martensite,” Fiz. Met. Metalloved., 34(1), 123 – 132 (1972). V. I. Izotov, “Morphology and crystal geometry of lath (massive) martensite,” Fiz. Met. Metalloved., 34(1), 123 – 132 (1972).
5.
Zurück zum Zitat V. M. Schastlivtsev, L. B. Blind, D. P. Rodionov, and I. L. Yakovleva, “Lath martensite structure in structural steels,” Fiz. Met. Metalloved., 66(4), 759 – 769 (1988). V. M. Schastlivtsev, L. B. Blind, D. P. Rodionov, and I. L. Yakovleva, “Lath martensite structure in structural steels,” Fiz. Met. Metalloved., 66(4), 759 – 769 (1988).
6.
Zurück zum Zitat Yu. G. Andreev, L. N. Devchenko, E. I. Zarkova, and M. A. Shtremel’, “Crystal geometry of martensitic shift in a large lath,” Fiz. Met. Metalloved., 56(4), 783 – 790 (1983). Yu. G. Andreev, L. N. Devchenko, E. I. Zarkova, and M. A. Shtremel’, “Crystal geometry of martensitic shift in a large lath,” Fiz. Met. Metalloved., 56(4), 783 – 790 (1983).
7.
Zurück zum Zitat M. A. Shtremel’, Yu. G. Andreev, and D. A. Kozlov, “Lath martensite structure and strength,” Metalloved. Term. Obrab. Met., No. 4, 10 – 15 (1999). M. A. Shtremel’, Yu. G. Andreev, and D. A. Kozlov, “Lath martensite structure and strength,” Metalloved. Term. Obrab. Met., No. 4, 10 – 15 (1999).
8.
Zurück zum Zitat V. M. Schastlivtsev, “Martensite structure peculiarities in structural steels,” Fiz. Met. Metalloved., 33(2), 326 – 334 (1972). V. M. Schastlivtsev, “Martensite structure peculiarities in structural steels,” Fiz. Met. Metalloved., 33(2), 326 – 334 (1972).
9.
Zurück zum Zitat L. V. Karabasova, M. N. Spasskii, and M. A. Shtremel’, ”Hierarchy of low-carbon martensite structures,” Fiz. Met. Metalloved., 37(6), 1238 – 1248 (1974). L. V. Karabasova, M. N. Spasskii, and M. A. Shtremel’, ”Hierarchy of low-carbon martensite structures,” Fiz. Met. Metalloved., 37(6), 1238 – 1248 (1974).
10.
Zurück zum Zitat A. F. Edneral, V. I. Izotov, L. M. Kleiner, et al., ”Low-carbon martensitic steels,” in: Problems of Metal Science and Physical Metallography [in Russian], Metallurgiya, Moscow (1972), pp. 123 – 134. A. F. Edneral, V. I. Izotov, L. M. Kleiner, et al., ”Low-carbon martensitic steels,” in: Problems of Metal Science and Physical Metallography [in Russian], Metallurgiya, Moscow (1972), pp. 123 – 134.
11.
Zurück zum Zitat L. M. Kleiner, A. A. Shatsov, D. M. Larinin, and M. G. Zakirova, ”Low-carbon martensite structure and structural strength of martensitic steels,” Perspekt. Mater., No. 1, 59 – 67 (2011). L. M. Kleiner, A. A. Shatsov, D. M. Larinin, and M. G. Zakirova, ”Low-carbon martensite structure and structural strength of martensitic steels,” Perspekt. Mater., No. 1, 59 – 67 (2011).
12.
Zurück zum Zitat Yu. F. Titovets, N. Yu. Zolotarevskii, A. N. Samoilov, et al., “Modeling the influence of austenite grain size change on the kinetics of γ → α transformation,” Metalloved. Term. Obrab. Met., No. 2, 29 – 36 (2010). Yu. F. Titovets, N. Yu. Zolotarevskii, A. N. Samoilov, et al., “Modeling the influence of austenite grain size change on the kinetics of γ → α transformation,” Metalloved. Term. Obrab. Met., No. 2, 29 – 36 (2010).
13.
Zurück zum Zitat M. Umemoto, E. Yoshitake, and I. Taniura, “The morphology of martensite in Fe – C, Fe – Ni – C, and Fe – Cr – C alloys,” J. Mater. Sci., 18(10), 2893 – 2904 (1983).CrossRef M. Umemoto, E. Yoshitake, and I. Taniura, “The morphology of martensite in Fe – C, Fe – Ni – C, and Fe – Cr – C alloys,” J. Mater. Sci., 18(10), 2893 – 2904 (1983).CrossRef
14.
Zurück zum Zitat D. A. Mirzaev and K. Yu. Okishev, “Kinetic theory of lath martensite formation,” Vestn. Yuzh. Ural. Gos. Univ., No. 21, 9 – 14 (2007). D. A. Mirzaev and K. Yu. Okishev, “Kinetic theory of lath martensite formation,” Vestn. Yuzh. Ural. Gos. Univ., No. 21, 9 – 14 (2007).
15.
Zurück zum Zitat D. A. Mirzaev, K. Yu. Okishev, V. M. Schastlivtsev, and I. L. Yakovleva, “Kinetics of bainite and lath martensite formation: I. Effect of lath structure,” Fiz. Met. Metalloved., 90(5), 55 – 65 (2000). D. A. Mirzaev, K. Yu. Okishev, V. M. Schastlivtsev, and I. L. Yakovleva, “Kinetics of bainite and lath martensite formation: I. Effect of lath structure,” Fiz. Met. Metalloved., 90(5), 55 – 65 (2000).
16.
Zurück zum Zitat D. A. Mirzaev, K. Yu. Okishev, V. M. Schastlivtsev, and I. L. Yakovleva, “Kinetics of bainite and lath martensite formation: II. Effect of incomplete transformation,” Fiz. Met. Metalloved., 90(5), 66 – 74 (2000). D. A. Mirzaev, K. Yu. Okishev, V. M. Schastlivtsev, and I. L. Yakovleva, “Kinetics of bainite and lath martensite formation: II. Effect of incomplete transformation,” Fiz. Met. Metalloved., 90(5), 66 – 74 (2000).
17.
Zurück zum Zitat V. A. Lobodyuk and E. I. Éstrin, Martensitic Transformations [in Russian], Fizmatlit, Moscow (2009), 352 p. V. A. Lobodyuk and E. I. Éstrin, Martensitic Transformations [in Russian], Fizmatlit, Moscow (2009), 352 p.
18.
Zurück zum Zitat D. A. Mirzaev and K. Yu. Okishev, “Lath martensite formation in iron–nickel steels,” Metalloved. Term. Obrab. Met., No. 9, 7 – 14 (2014). D. A. Mirzaev and K. Yu. Okishev, “Lath martensite formation in iron–nickel steels,” Metalloved. Term. Obrab. Met., No. 9, 7 – 14 (2014).
19.
Zurück zum Zitat Donghwi Kim, Seok-Jae Lee, and Bruno C. de Cooman, “Microstructure of low-C steel isothermally transformed in the M s to M f temperature range,” Metall. Mater. Trans. A, 43, 4967 – 4983 (2012).CrossRef Donghwi Kim, Seok-Jae Lee, and Bruno C. de Cooman, “Microstructure of low-C steel isothermally transformed in the M s to M f temperature range,” Metall. Mater. Trans. A, 43, 4967 – 4983 (2012).CrossRef
20.
Zurück zum Zitat T. Y. Hsu (Xu Zuyao), “Carbon diffusion and kinetics during the lath martensite formation,” J. Phys. IV France, 5, C8-351 – C8-354 (1995). T. Y. Hsu (Xu Zuyao), “Carbon diffusion and kinetics during the lath martensite formation,” J. Phys. IV France, 5, C8-351 – C8-354 (1995).
21.
Zurück zum Zitat P. O. Bykova, L. M. Kleiner, A. A. Shatsov, and D. M. Larinin, “Modeling isothermal transformation of low-carbon austenite,” Meterialovedenie, No. 5, 10 – 14 (2013). P. O. Bykova, L. M. Kleiner, A. A. Shatsov, and D. M. Larinin, “Modeling isothermal transformation of low-carbon austenite,” Meterialovedenie, No. 5, 10 – 14 (2013).
22.
Zurück zum Zitat M. E. Blanter, Theory of Heat Treatment [in Russian], Metallurgiya, Moscow (1984), 328 p. M. E. Blanter, Theory of Heat Treatment [in Russian], Metallurgiya, Moscow (1984), 328 p.
23.
Zurück zum Zitat S. A. Saltykov, Stereometric Metallography [in Russian], Metallurgiya, Moscow (1976), 272 p. S. A. Saltykov, Stereometric Metallography [in Russian], Metallurgiya, Moscow (1976), 272 p.
24.
Zurück zum Zitat S. L. Alhnazarova and V. V. Kafarov, Methods of Experiment Organization in Chemical Technology [in Russian], Vysshaya Shkola, Moscow (1985), 319 p. S. L. Alhnazarova and V. V. Kafarov, Methods of Experiment Organization in Chemical Technology [in Russian], Vysshaya Shkola, Moscow (1985), 319 p.
25.
Zurück zum Zitat I. V. Ryaposov, L. M. Kleiner, A. A. Shatsov, and E. A. Noskova, “Grain and lath martensite structure formation by thermal cycling in low-carbon martensitic steels,” Metalloved. Term. Obrab. Met., No. 9, 33 – 39 (2008). I. V. Ryaposov, L. M. Kleiner, A. A. Shatsov, and E. A. Noskova, “Grain and lath martensite structure formation by thermal cycling in low-carbon martensitic steels,” Metalloved. Term. Obrab. Met., No. 9, 33 – 39 (2008).
26.
Zurück zum Zitat I. V. Ryaposov, L. M. Kleiner, and A. A. Shatsov, “Volume nanostructurization of low-carbon martensitic steels by heat treatment,” Metalloved. Term. Obrab. Met., No. 9, 9 – 14 (2012). I. V. Ryaposov, L. M. Kleiner, and A. A. Shatsov, “Volume nanostructurization of low-carbon martensitic steels by heat treatment,” Metalloved. Term. Obrab. Met., No. 9, 9 – 14 (2012).
27.
Zurück zum Zitat J. Christian, The Theory of Transformations in Metals and Alloys, Part I: Equilibrium and General Kinetic Theory, Pergamon Press, Oxford (1978). J. Christian, The Theory of Transformations in Metals and Alloys, Part I: Equilibrium and General Kinetic Theory, Pergamon Press, Oxford (1978).
28.
Zurück zum Zitat H. K. Bhadeshia, Bainite in Steels, Cambridge University Press, London (2001), 454 p. H. K. Bhadeshia, Bainite in Steels, Cambridge University Press, London (2001), 454 p.
29.
Zurück zum Zitat L. M. Kleiner, D. M. Larinin, L. V. Spivak, and A. A. Shatsov, “Phase and structure transformations in low-carbon martensitic steels,” Fiz. Met. Metalloved., 108(2), 161 – 168 (2009). L. M. Kleiner, D. M. Larinin, L. V. Spivak, and A. A. Shatsov, “Phase and structure transformations in low-carbon martensitic steels,” Fiz. Met. Metalloved., 108(2), 161 – 168 (2009).
30.
Zurück zum Zitat D. L. Merson (ed.), Advanced Materials: Structure and Methods of Investigation (Learning Aid) [in Russian], TGU – MISiS, Togliatti – Moscow (2006), 536 p. D. L. Merson (ed.), Advanced Materials: Structure and Methods of Investigation (Learning Aid) [in Russian], TGU – MISiS, Togliatti – Moscow (2006), 536 p.
31.
Zurück zum Zitat N. J. Petch, in: Proc. Int. Conf. on Atomic Mechanisms of Fracture (April 12 – 16, 1959, Swampscott, MA, United States). N. J. Petch, in: Proc. Int. Conf. on Atomic Mechanisms of Fracture (April 12 – 16, 1959, Swampscott, MA, United States).
32.
Zurück zum Zitat V. N. Arzamasov, V. A. Brostrem, N. A. Bushe, et al. (eds.), Construction Materials (A Handbook) [in Russian], Mashinostroenie, Moscow (1990). 688 p. V. N. Arzamasov, V. A. Brostrem, N. A. Bushe, et al. (eds.), Construction Materials (A Handbook) [in Russian], Mashinostroenie, Moscow (1990). 688 p.
33.
Zurück zum Zitat W. Dahl and W. Anton (eds.), Static Strength and Fracture Mechanics of Steels [in German], Verlag Stahleisen GmbH, Dusseldorf (1983). W. Dahl and W. Anton (eds.), Static Strength and Fracture Mechanics of Steels [in German], Verlag Stahleisen GmbH, Dusseldorf (1983).
34.
Zurück zum Zitat A. M. Borzdyka and L. B. Gertsov, Stress Relaxation in Metals and Alloys [in Russian], Metallurgiya, Moscow (1978), 272 p. A. M. Borzdyka and L. B. Gertsov, Stress Relaxation in Metals and Alloys [in Russian], Metallurgiya, Moscow (1978), 272 p.
Metadaten
Titel
Martensitic Transformation in Low-Carbon Steels
verfasst von
S. K. Berezin
A. A. Shatsov
P. O. Bykova
D. M. Larinin
Publikationsdatum
11.11.2017
Verlag
Springer US
Erschienen in
Metal Science and Heat Treatment / Ausgabe 7-8/2017
Print ISSN: 0026-0673
Elektronische ISSN: 1573-8973
DOI
https://doi.org/10.1007/s11041-017-0175-0

Weitere Artikel der Ausgabe 7-8/2017

Metal Science and Heat Treatment 7-8/2017 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.