Skip to main content
Erschienen in: Journal of Nanoparticle Research 1/2013

01.01.2013 | Research Paper

Persistence of commercial nanoscaled zero-valent iron (nZVI) and by-products

verfasst von: Adeyemi S. Adeleye, Arturo A. Keller, Robert J. Miller, Hunter S. Lenihan

Erschienen in: Journal of Nanoparticle Research | Ausgabe 1/2013

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The use of nanoscale zero-valent iron (nZVI) for in situ remediation of a wide scale of environmental pollutants is increasing. Bench and field pilot studies have recorded successful cleanup of many pollutants using nZVI and other iron-mediated nanoparticles. However, a major question remains unanswered: what is the long-term environmental fate of the iron nanoparticles used for remediation? We aged three types of commercial nZVI in different aqueous media, including a groundwater sample, under aerobic and anaerobic conditions for 28 days, and found that the bulk of the nZVI injected into polluted sites will end up in the sediment phase of the aquifer. This is mainly due to aggregation-induced sedimentation of the nZVI and the insoluble iron oxides formed when nZVI undergoes corrosion. Iron concentrations >500 g/kg were detected in sediment, a loading level of iron that may potentially affect some organisms and also reduce the permeability of aquifers. Dissolved and suspended iron concentrations initially surged when nZVI was applied, but iron decreased steadily in the supernatant and suspended sediment as the bulk of the iron partitioned into the sediment. Solution and surface chemistry of the iron species showed that nZVI remains reactive for more than 1 month, and that the reactivity of iron and its transformations are governed by environmental factors, including the presence of different ions, ionic strength, natural organic matter, and pH.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Auffan M, Achouak W, Rose J Jr, Roncato M-A, Chanéac C, Waite DT, Masion A, Woicik JC, Wiesner MR, Bottero J-Y (2008) Relation between the redox state of iron-based nanoparticles and their cytotoxicity toward Escherichia coli. Environ Sci Technol 42(17):6730–6735. doi:10.1021/es800086f CrossRef Auffan M, Achouak W, Rose J Jr, Roncato M-A, Chanéac C, Waite DT, Masion A, Woicik JC, Wiesner MR, Bottero J-Y (2008) Relation between the redox state of iron-based nanoparticles and their cytotoxicity toward Escherichia coli. Environ Sci Technol 42(17):6730–6735. doi:10.​1021/​es800086f CrossRef
Zurück zum Zitat Auset M, Keller AA (2006) Pore-scale visualization of colloid straining and filtration in saturated porous media using micromodels. Water Resour Res 42(12):W12S02. doi:10.1029/2005wr004639 CrossRef Auset M, Keller AA (2006) Pore-scale visualization of colloid straining and filtration in saturated porous media using micromodels. Water Resour Res 42(12):W12S02. doi:10.​1029/​2005wr004639 CrossRef
Zurück zum Zitat Buyukhatipoglu K, Clyne AM (2011) Superparamagnetic iron oxide nanoparticles change endothelial cell morphology and mechanics via reactive oxygen species formation. J Biomed Mater Res A 96A(1):186–195. doi:10.1002/jbm.a.32972 CrossRef Buyukhatipoglu K, Clyne AM (2011) Superparamagnetic iron oxide nanoparticles change endothelial cell morphology and mechanics via reactive oxygen species formation. J Biomed Mater Res A 96A(1):186–195. doi:10.​1002/​jbm.​a.​32972 CrossRef
Zurück zum Zitat Chang MC, Kang HY (2009) Remediation of pyrene-contaminated soil by synthesized nanoscale zero-valent iron particles. J Environ Sci Health A 44(6):576–582. doi:10.1080/10934520902784609 Chang MC, Kang HY (2009) Remediation of pyrene-contaminated soil by synthesized nanoscale zero-valent iron particles. J Environ Sci Health A 44(6):576–582. doi:10.​1080/​1093452090278460​9
Zurück zum Zitat Cornell RM, Schwertmann U (2003) The iron oxides: structure, properties, reactions, occurrences, and uses. Wiley-VCH, Weinheim Cornell RM, Schwertmann U (2003) The iron oxides: structure, properties, reactions, occurrences, and uses. Wiley-VCH, Weinheim
Zurück zum Zitat Dries J, Bastiaens L, Springael D, Kuypers S, Agathos SN, Diels L (2005) Effect of humic acids on heavy metal removal by zero-valent iron in batch and continuous flow column systems. Water Res 39(15):3531–3540. doi:10.1016/j.watres.2005.06.020 CrossRef Dries J, Bastiaens L, Springael D, Kuypers S, Agathos SN, Diels L (2005) Effect of humic acids on heavy metal removal by zero-valent iron in batch and continuous flow column systems. Water Res 39(15):3531–3540. doi:10.​1016/​j.​watres.​2005.​06.​020 CrossRef
Zurück zum Zitat Francis AJ, Dodge CJ (1998) Remediation of soils and wastes contaminated with uranium and toxic metals. Environ Sci Technol 32(24):3993–3998. doi:10.1021/es9803310 CrossRef Francis AJ, Dodge CJ (1998) Remediation of soils and wastes contaminated with uranium and toxic metals. Environ Sci Technol 32(24):3993–3998. doi:10.​1021/​es9803310 CrossRef
Zurück zum Zitat Giasuddin A, Kanel S, Choi H (2007) Adsorption of humic acid onto nanoscale zerovalent iron and its effect on arsenic removal. Environ Sci Technol 41(6):2022–2027. doi:10.1021/es0616534 CrossRef Giasuddin A, Kanel S, Choi H (2007) Adsorption of humic acid onto nanoscale zerovalent iron and its effect on arsenic removal. Environ Sci Technol 41(6):2022–2027. doi:10.​1021/​es0616534 CrossRef
Zurück zum Zitat Grieger KD, Fjordboge A, Hartmann NB, Eriksson E, Bjerg PL, Baun A (2010) Environmental benefits and risks of zero-valent iron nanoparticles (nZVI) for in situ remediation: risk mitigation or trade-off? J Contam Hydrol 118(3–4):165–183. doi:10.1016/j.jconhyd.2010.07.011 CrossRef Grieger KD, Fjordboge A, Hartmann NB, Eriksson E, Bjerg PL, Baun A (2010) Environmental benefits and risks of zero-valent iron nanoparticles (nZVI) for in situ remediation: risk mitigation or trade-off? J Contam Hydrol 118(3–4):165–183. doi:10.​1016/​j.​jconhyd.​2010.​07.​011 CrossRef
Zurück zum Zitat He F, Zhao DY (2005) Preparation and characterization of a new class of starch-stabilized bimetallic nanoparticles for degradation of chlorinated hydrocarbons in water. Environ Sci Technol 39(9):3314–3320. doi:10.1021/Es048743y CrossRef He F, Zhao DY (2005) Preparation and characterization of a new class of starch-stabilized bimetallic nanoparticles for degradation of chlorinated hydrocarbons in water. Environ Sci Technol 39(9):3314–3320. doi:10.​1021/​Es048743y CrossRef
Zurück zum Zitat Joo SH, Feitz AJ, Sedlak DL, Waite TD (2004) Quantification of the Oxidizing capacity of nanoparticulate zero-valent iron. Environ Sci Technol 39(5):1263–1268. doi:10.1021/es048983d CrossRef Joo SH, Feitz AJ, Sedlak DL, Waite TD (2004) Quantification of the Oxidizing capacity of nanoparticulate zero-valent iron. Environ Sci Technol 39(5):1263–1268. doi:10.​1021/​es048983d CrossRef
Zurück zum Zitat Kanel SR, Manning B, Charlet L, Choi H (2005) Removal of arsenic(III) from groundwater by nanoscale zero-valent iron. Environ Sci Technol 39(5):1291–1298. doi:10.1021/Es048991u CrossRef Kanel SR, Manning B, Charlet L, Choi H (2005) Removal of arsenic(III) from groundwater by nanoscale zero-valent iron. Environ Sci Technol 39(5):1291–1298. doi:10.​1021/​Es048991u CrossRef
Zurück zum Zitat Kanel SR, Grenèche J-M, Choi H (2006) Arsenic(V) Removal from groundwater using nano scale zero-valent iron as a colloidal reactive barrier material. Environ Sci Technol 40(6):2045–2050. doi:10.1021/es0520924 CrossRef Kanel SR, Grenèche J-M, Choi H (2006) Arsenic(V) Removal from groundwater using nano scale zero-valent iron as a colloidal reactive barrier material. Environ Sci Technol 40(6):2045–2050. doi:10.​1021/​es0520924 CrossRef
Zurück zum Zitat Karn B, Kuiken T, Otto M (2009) Nanotechnology and in situ remediation: a review of the benefits and potential risks. Environ Health Perspect 117(12):1823–1831. doi:10.1289/Ehp.0900793 Karn B, Kuiken T, Otto M (2009) Nanotechnology and in situ remediation: a review of the benefits and potential risks. Environ Health Perspect 117(12):1823–1831. doi:10.​1289/​Ehp.​0900793
Zurück zum Zitat Kirchner JW, Austin CM, Myers A, Whyte DC (2011) Quantifying remediation effectiveness under variable external forcing using contaminant rating curves. Environ Sci Technol 45(18):7874–7881. doi:10.1021/es2014874 CrossRef Kirchner JW, Austin CM, Myers A, Whyte DC (2011) Quantifying remediation effectiveness under variable external forcing using contaminant rating curves. Environ Sci Technol 45(18):7874–7881. doi:10.​1021/​es2014874 CrossRef
Zurück zum Zitat Kirschling TL, Gregory KB, Minkley EG, Lowry GV, Tilton RD (2010) Impact of nanoscale zero valent iron on geochemistry and microbial populations in trichloroethylene contaminated aquifer materials. Environ Sci Technol 44(9):3474–3480. doi:10.1021/Es903744f CrossRef Kirschling TL, Gregory KB, Minkley EG, Lowry GV, Tilton RD (2010) Impact of nanoscale zero valent iron on geochemistry and microbial populations in trichloroethylene contaminated aquifer materials. Environ Sci Technol 44(9):3474–3480. doi:10.​1021/​Es903744f CrossRef
Zurück zum Zitat Li XQ, Elliott DW, Zhang WX (2006) Zero-valent iron nanoparticles for abatement of environmental pollutants: materials and engineering aspects. Crit Rev Solid State 31(4):111–122. doi:10.1080/10408430601057611 CrossRef Li XQ, Elliott DW, Zhang WX (2006) Zero-valent iron nanoparticles for abatement of environmental pollutants: materials and engineering aspects. Crit Rev Solid State 31(4):111–122. doi:10.​1080/​1040843060105761​1 CrossRef
Zurück zum Zitat Liu Y, Phenrat T, Lowry GV (2007) Effect of TCE concentration and dissolved groundwater solutes on NZVI-promoted TCE dechlorination and H2 evolution. Environ Sci Technol 41(22):7881–7887. doi:10.1021/es0711967 CrossRef Liu Y, Phenrat T, Lowry GV (2007) Effect of TCE concentration and dissolved groundwater solutes on NZVI-promoted TCE dechlorination and H2 evolution. Environ Sci Technol 41(22):7881–7887. doi:10.​1021/​es0711967 CrossRef
Zurück zum Zitat Marsalek B, Jancula D, Marsalkova E, Mashlan M, Safarova K, Tucek J, Zboril R (2012) Multimodal Action and selective toxicity of zerovalent iron nanoparticles against cyanobacteria. Environ Sci Technol 46(4):2316–2323. doi:10.1021/es2031483 CrossRef Marsalek B, Jancula D, Marsalkova E, Mashlan M, Safarova K, Tucek J, Zboril R (2012) Multimodal Action and selective toxicity of zerovalent iron nanoparticles against cyanobacteria. Environ Sci Technol 46(4):2316–2323. doi:10.​1021/​es2031483 CrossRef
Zurück zum Zitat Matheson LJ, Tratnyek PG (1994) Reductive dehalogenation of chlorinated methanes by iron metal. Environ Sci Technol 28(12):2045–2053CrossRef Matheson LJ, Tratnyek PG (1994) Reductive dehalogenation of chlorinated methanes by iron metal. Environ Sci Technol 28(12):2045–2053CrossRef
Zurück zum Zitat Millero FJ (1985) The effect of ionic interactions on the oxidation of metals in natural-waters. Geochim Cosmochim Acta 49(2):547–553CrossRef Millero FJ (1985) The effect of ionic interactions on the oxidation of metals in natural-waters. Geochim Cosmochim Acta 49(2):547–553CrossRef
Zurück zum Zitat Mueller N, Braun J, Bruns J, Cernik M, Rissing P, Rickerby D, Nowack B (2012) Application of nanoscale zero valent iron (NZVI) for groundwater remediation in Europe. Environ Sci Pollut Res 19(2):550–558. doi:10.1007/s11356-011-0576-3 CrossRef Mueller N, Braun J, Bruns J, Cernik M, Rissing P, Rickerby D, Nowack B (2012) Application of nanoscale zero valent iron (NZVI) for groundwater remediation in Europe. Environ Sci Pollut Res 19(2):550–558. doi:10.​1007/​s11356-011-0576-3 CrossRef
Zurück zum Zitat Phenrat T, Saleh N, Sirk K, Tilton RD, Lowry GV (2007) Aggregation and sedimentation of aqueous nanoscale zerovalent iron dispersions. Environ Sci Technol 41(1):284–290. doi:10.1021/Es061349a CrossRef Phenrat T, Saleh N, Sirk K, Tilton RD, Lowry GV (2007) Aggregation and sedimentation of aqueous nanoscale zerovalent iron dispersions. Environ Sci Technol 41(1):284–290. doi:10.​1021/​Es061349a CrossRef
Zurück zum Zitat Phenrat T, Saleh N, Sirk K, Kim H-J, Tilton R, Lowry G (2008) Stabilization of aqueous nanoscale zerovalent iron dispersions by anionic polyelectrolytes: adsorbed anionic polyelectrolyte layer properties and their effect on aggregation and sedimentation. J Nanopart Res 10(5):795–814. doi:10.1007/s11051-007-9315-6 CrossRef Phenrat T, Saleh N, Sirk K, Kim H-J, Tilton R, Lowry G (2008) Stabilization of aqueous nanoscale zerovalent iron dispersions by anionic polyelectrolytes: adsorbed anionic polyelectrolyte layer properties and their effect on aggregation and sedimentation. J Nanopart Res 10(5):795–814. doi:10.​1007/​s11051-007-9315-6 CrossRef
Zurück zum Zitat Phenrat T, Cihan A, Kim H-J, Mital M, Illangasekare T, Lowry GV (2010) Transport and deposition of polymer-modified Fe0 nanoparticles in 2-D heterogeneous porous media: effects of particle concentration, Fe0 content, and coatings. Environ Sci Technol 44(23):9086–9093. doi:10.1021/es102398e CrossRef Phenrat T, Cihan A, Kim H-J, Mital M, Illangasekare T, Lowry GV (2010) Transport and deposition of polymer-modified Fe0 nanoparticles in 2-D heterogeneous porous media: effects of particle concentration, Fe0 content, and coatings. Environ Sci Technol 44(23):9086–9093. doi:10.​1021/​es102398e CrossRef
Zurück zum Zitat Ponder SM, Darab JG, Mallouk TE (2000) Remediation of Cr(VI) and Pb(II) aqueous solutions using supported, nanoscale zero-valent iron. Environ Sci Technol 34(12):2564–2569. doi:10.1021/Es9911420 CrossRef Ponder SM, Darab JG, Mallouk TE (2000) Remediation of Cr(VI) and Pb(II) aqueous solutions using supported, nanoscale zero-valent iron. Environ Sci Technol 34(12):2564–2569. doi:10.​1021/​Es9911420 CrossRef
Zurück zum Zitat Sakthivadivel R (1969) Clogging of a granular porous medium by sediment. Hydraulic Engineering Laboratory, College of Engineering, University of California, Berkeley Sakthivadivel R (1969) Clogging of a granular porous medium by sediment. Hydraulic Engineering Laboratory, College of Engineering, University of California, Berkeley
Zurück zum Zitat Saleh N, Sirk K, Liu YQ, Phenrat T, Dufour B, Matyjaszewski K, Tilton RD, Lowry GV (2007) Surface modifications enhance nanoiron transport and NAPL targeting in saturated porous media. Environ Eng Sci 24(1):45–57CrossRef Saleh N, Sirk K, Liu YQ, Phenrat T, Dufour B, Matyjaszewski K, Tilton RD, Lowry GV (2007) Surface modifications enhance nanoiron transport and NAPL targeting in saturated porous media. Environ Eng Sci 24(1):45–57CrossRef
Zurück zum Zitat Saleh N, Kim HJ, Phenrat T, Matyjaszewski K, Tilton RD, Lowry GV (2008) Ionic strength and composition affect the mobility of surface-modified Fe-0 nanoparticles in water-saturated sand columns. Environ Sci Technol 42(9):3349–3355. doi:10.1021/Es071936b CrossRef Saleh N, Kim HJ, Phenrat T, Matyjaszewski K, Tilton RD, Lowry GV (2008) Ionic strength and composition affect the mobility of surface-modified Fe-0 nanoparticles in water-saturated sand columns. Environ Sci Technol 42(9):3349–3355. doi:10.​1021/​Es071936b CrossRef
Zurück zum Zitat Schrick B, Hydutsky BW, Blough JL, Mallouk TE (2004) Delivery vehicles for zerovalent metal nanoparticles in soil and groundwater. Chem Mater 16(11):2187–2193. doi:10.1021/Cm0218108 CrossRef Schrick B, Hydutsky BW, Blough JL, Mallouk TE (2004) Delivery vehicles for zerovalent metal nanoparticles in soil and groundwater. Chem Mater 16(11):2187–2193. doi:10.​1021/​Cm0218108 CrossRef
Zurück zum Zitat Shi ZQ, Nurmi JT, Tratnyek PG (2011) Effects of nano zero-valent iron on oxidation-reduction potential. Environ Sci Technol 45(4):1586–1592CrossRef Shi ZQ, Nurmi JT, Tratnyek PG (2011) Effects of nano zero-valent iron on oxidation-reduction potential. Environ Sci Technol 45(4):1586–1592CrossRef
Zurück zum Zitat Tee YH, Bachas L, Bhattacharyya D (2009) Degradation of trichloroethylene and dichlorobiphenyls by iron-based bimetallic nanoparticles. J Phys Chem C 113(22):9454–9464. doi:10.1021/Jp809098z CrossRef Tee YH, Bachas L, Bhattacharyya D (2009) Degradation of trichloroethylene and dichlorobiphenyls by iron-based bimetallic nanoparticles. J Phys Chem C 113(22):9454–9464. doi:10.​1021/​Jp809098z CrossRef
Zurück zum Zitat Tratnyek PG, Johnson RL (2006) Nanotechnologies for environmental cleanup. Nano Today 1(2):44–48CrossRef Tratnyek PG, Johnson RL (2006) Nanotechnologies for environmental cleanup. Nano Today 1(2):44–48CrossRef
Zurück zum Zitat Wang H, Kou X, Pei Z, Xiao J, Shan X, Xing B (2011) Physiological effects of magnetite (Fe3O4) nanoparticles on perennial ryegrass (Lolium perenne L.) and pumpkin (Cucurbita mixta) plants. Nanotoxicology 5(1):30–42. doi:10.3109/17435390.2010.489206 CrossRef Wang H, Kou X, Pei Z, Xiao J, Shan X, Xing B (2011) Physiological effects of magnetite (Fe3O4) nanoparticles on perennial ryegrass (Lolium perenne L.) and pumpkin (Cucurbita mixta) plants. Nanotoxicology 5(1):30–42. doi:10.​3109/​17435390.​2010.​489206 CrossRef
Zurück zum Zitat Wei Y-T, Wu S-C, Chou C-M, Che C-H, Tsai S-M, Lien H-L (2010) Influence of nanoscale zero-valent iron on geochemical properties of groundwater and vinyl chloride degradation: a field case study. Water Res 44(1):131–140. doi:10.1016/j.watres.2009.09.012 CrossRef Wei Y-T, Wu S-C, Chou C-M, Che C-H, Tsai S-M, Lien H-L (2010) Influence of nanoscale zero-valent iron on geochemical properties of groundwater and vinyl chloride degradation: a field case study. Water Res 44(1):131–140. doi:10.​1016/​j.​watres.​2009.​09.​012 CrossRef
Zurück zum Zitat Wei Y-T, S-c Wu, Yang S-W, Che C-H, Lien H-L, Huang D-H (2012) Biodegradable surfactant stabilized nanoscale zero-valent iron for in situ treatment of vinyl chloride and 1,2-dichloroethane. J Hazard Mater 211–212:373–380. doi:10.1016/j.jhazmat.2011.11.018 CrossRef Wei Y-T, S-c Wu, Yang S-W, Che C-H, Lien H-L, Huang D-H (2012) Biodegradable surfactant stabilized nanoscale zero-valent iron for in situ treatment of vinyl chloride and 1,2-dichloroethane. J Hazard Mater 211–212:373–380. doi:10.​1016/​j.​jhazmat.​2011.​11.​018 CrossRef
Zurück zum Zitat Yan W, Vasic R, Frenkel AI, Koel BE (2012) Intraparticle reduction of arsenite (As(III)) by nanoscale zerovalent iron (nZVI) investigated with in situ X-ray absorption spectroscopy. Environ Sci Technol 46(13):7018–7026. doi:10.1021/es2039695 CrossRef Yan W, Vasic R, Frenkel AI, Koel BE (2012) Intraparticle reduction of arsenite (As(III)) by nanoscale zerovalent iron (nZVI) investigated with in situ X-ray absorption spectroscopy. Environ Sci Technol 46(13):7018–7026. doi:10.​1021/​es2039695 CrossRef
Zurück zum Zitat Zhang M, He F, Zhao DY, Hao XD (2011) Degradation of soil-sorbed trichloroethylene by stabilized zero valent iron nanoparticles: effects of sorption, surfactants, and natural organic matter. Water Res 45(7):2401–2414. doi:10.1016/j.watres.2011.01.028 CrossRef Zhang M, He F, Zhao DY, Hao XD (2011) Degradation of soil-sorbed trichloroethylene by stabilized zero valent iron nanoparticles: effects of sorption, surfactants, and natural organic matter. Water Res 45(7):2401–2414. doi:10.​1016/​j.​watres.​2011.​01.​028 CrossRef
Metadaten
Titel
Persistence of commercial nanoscaled zero-valent iron (nZVI) and by-products
verfasst von
Adeyemi S. Adeleye
Arturo A. Keller
Robert J. Miller
Hunter S. Lenihan
Publikationsdatum
01.01.2013
Verlag
Springer Netherlands
Erschienen in
Journal of Nanoparticle Research / Ausgabe 1/2013
Print ISSN: 1388-0764
Elektronische ISSN: 1572-896X
DOI
https://doi.org/10.1007/s11051-013-1418-7

Weitere Artikel der Ausgabe 1/2013

Journal of Nanoparticle Research 1/2013 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.