Skip to main content
Erschienen in: Journal of Nanoparticle Research 6/2013

01.06.2013 | Research Paper

Characterization of dispersed and aggregated Al2O3 morphologies for predicting nanofluid thermal conductivities

verfasst von: Xuemei Feng, Drew W. Johnson

Erschienen in: Journal of Nanoparticle Research | Ausgabe 6/2013

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Nanofluids are reported to have enhanced thermal conductivities resulting from nanoparticle aggregation. The goal of this study was to explore through experimental measurements, dispersed and aggregated morphology effects on enhanced thermal conductivities for Al2O3 nanoparticles with a primary size of 54.2 ± 2.0 nm. Aggregation effects were investigated by measuring thermal conductivity of different particle morphologies that occurred under different aggregation conditions. Fractal dimensions and aspect ratios were used to quantify the aggregation morphologies. Fractal dimensions were measured using static light scattering and imaging techniques. Aspect ratios were measured using dynamic light scattering, scanning electron microscopy, and atomic force microscopy. Results showed that the enhancements in thermal conductivity can be predicted with effective medium theory when aspect ratio was considered.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Berne BJ, Pecora R (1976) Dynamic light scattering: with applications to chemistry, biology, and physics. Wiley–Interscience, New York Berne BJ, Pecora R (1976) Dynamic light scattering: with applications to chemistry, biology, and physics. Wiley–Interscience, New York
Zurück zum Zitat Bhattacharya P, Saha SK, Yadav A, Phelan PE, Prasher RS (2004) Brownian dynamics simulation to determine the effective thermal conductivity of nanofluids. J Appl Phys 95(11):6492–6494CrossRef Bhattacharya P, Saha SK, Yadav A, Phelan PE, Prasher RS (2004) Brownian dynamics simulation to determine the effective thermal conductivity of nanofluids. J Appl Phys 95(11):6492–6494CrossRef
Zurück zum Zitat Buongiorno J, Hu LW, Apostolakis G, Hannink R, Lucas T, Chupin A (2009a) A feasibility assessment of the use of nanofluids to enhance the in-vessel retention capability in light-water reactors. Nucl Eng Des 239(5):941–948CrossRef Buongiorno J, Hu LW, Apostolakis G, Hannink R, Lucas T, Chupin A (2009a) A feasibility assessment of the use of nanofluids to enhance the in-vessel retention capability in light-water reactors. Nucl Eng Des 239(5):941–948CrossRef
Zurück zum Zitat Buongiorno J, Venerus DC, Prabhat N, McKrell T, Townsend J, Christianson R, Tolmachev YV, Keblinski P, Hu L-W, Alvarado JL, Bang IC, Bishnoi SW, Bonetti M, Botz F, Cecere A, Chang Y, Chen G, Chen H, Chung SJ, Chyu MK, Das KS, Di Paola R, Ding Y, Dubois F, Dzido G, Eapen J, Escher W, Funfschilling D, Galand Q, Gao J, Gharagozloo PE, Goodson KE, Gutierrez JG, Hong H, Horton M, Hwang KS, Iorio CS, Jang SP, Jarzebski AB, Jiang Y, Jin L, Kabelac S, Kamath A, Kedzierski MA, Kieng LG, Kim C, Kim J-H, Kim S, Lee SH, Leong KC, Manna I, Michel B, Ni R, Patel HE, Philip J, Poulikakos D, Reynaud C, Savino R, Singh PK, Song P, Sundararajan T, Timofeeva E, Tritcak T, Turanov AN, Van Vaerenbergh S, Wen D, Witharana S, Yang C, Yeh W-H, Zhao X-Z, Zhou S-Q (2009b) A benchmark study on the thermal conductivity of nanofluids. J Appl Phys 106(9):094312–094314CrossRef Buongiorno J, Venerus DC, Prabhat N, McKrell T, Townsend J, Christianson R, Tolmachev YV, Keblinski P, Hu L-W, Alvarado JL, Bang IC, Bishnoi SW, Bonetti M, Botz F, Cecere A, Chang Y, Chen G, Chen H, Chung SJ, Chyu MK, Das KS, Di Paola R, Ding Y, Dubois F, Dzido G, Eapen J, Escher W, Funfschilling D, Galand Q, Gao J, Gharagozloo PE, Goodson KE, Gutierrez JG, Hong H, Horton M, Hwang KS, Iorio CS, Jang SP, Jarzebski AB, Jiang Y, Jin L, Kabelac S, Kamath A, Kedzierski MA, Kieng LG, Kim C, Kim J-H, Kim S, Lee SH, Leong KC, Manna I, Michel B, Ni R, Patel HE, Philip J, Poulikakos D, Reynaud C, Savino R, Singh PK, Song P, Sundararajan T, Timofeeva E, Tritcak T, Turanov AN, Van Vaerenbergh S, Wen D, Witharana S, Yang C, Yeh W-H, Zhao X-Z, Zhou S-Q (2009b) A benchmark study on the thermal conductivity of nanofluids. J Appl Phys 106(9):094312–094314CrossRef
Zurück zum Zitat Bushell GC, Yan YD, Woodfield D, Raper J, Amal R (2002) On techniques for the measurement of the mass fractal dimension of aggregates. Adv Colloid Interface Sci 95(1):1–50CrossRef Bushell GC, Yan YD, Woodfield D, Raper J, Amal R (2002) On techniques for the measurement of the mass fractal dimension of aggregates. Adv Colloid Interface Sci 95(1):1–50CrossRef
Zurück zum Zitat Chen KL, Mylon SE, Elimelech M (2006) Aggregation kinetics of alginate-coated hematite nanoparticles in monovalent and divalent electrolytes. Environ Sci Technol 40(5):1516–1523. doi:10.1021/es0518068 CrossRef Chen KL, Mylon SE, Elimelech M (2006) Aggregation kinetics of alginate-coated hematite nanoparticles in monovalent and divalent electrolytes. Environ Sci Technol 40(5):1516–1523. doi:10.​1021/​es0518068 CrossRef
Zurück zum Zitat Cherkasova AS, Shan JW (2008) Particle aspect-ratio effects on the thermal conductivity of micro- and nanoparticle suspensions. J Heat Transf 130(8):082406–082407CrossRef Cherkasova AS, Shan JW (2008) Particle aspect-ratio effects on the thermal conductivity of micro- and nanoparticle suspensions. J Heat Transf 130(8):082406–082407CrossRef
Zurück zum Zitat Choi C, Yoo HS, Oh JM (2008) Preparation and heat transfer properties of nanoparticle-in-transformer oil dispersions as advanced energy-efficient coolants. Curr Appl Phys 8(6):710–712CrossRef Choi C, Yoo HS, Oh JM (2008) Preparation and heat transfer properties of nanoparticle-in-transformer oil dispersions as advanced energy-efficient coolants. Curr Appl Phys 8(6):710–712CrossRef
Zurück zum Zitat Das S, Choi S, Patel H (2006) Heat transfer in nanofluids a review. Heat Transf Eng 27(10):3–19CrossRef Das S, Choi S, Patel H (2006) Heat transfer in nanofluids a review. Heat Transf Eng 27(10):3–19CrossRef
Zurück zum Zitat Das KS, Choi SU, Wenhua Yu, Pradeep T (2007) Nanofluids: science and technology. Wiley, New JerseyCrossRef Das KS, Choi SU, Wenhua Yu, Pradeep T (2007) Nanofluids: science and technology. Wiley, New JerseyCrossRef
Zurück zum Zitat Eastman JA, Choi SUS, Li S, Yu W, Thompson LJ (2001) Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles. Appl Phys Lett 78(6):718–720CrossRef Eastman JA, Choi SUS, Li S, Yu W, Thompson LJ (2001) Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles. Appl Phys Lett 78(6):718–720CrossRef
Zurück zum Zitat Einstein A (1905) Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen. Ann Phys 322(8):549–560. doi:10.1002/andp.19053220806 CrossRef Einstein A (1905) Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen. Ann Phys 322(8):549–560. doi:10.​1002/​andp.​19053220806 CrossRef
Zurück zum Zitat Evans W, Prasher R, Fish J, Meakin P, Phelan P, Keblinski P (2008) Effect of aggregation and interfacial thermal resistance on thermal conductivity of nanocomposites and colloidal nanofluids. Int J Heat Mass Transf 51(5–6):1431–1438CrossRef Evans W, Prasher R, Fish J, Meakin P, Phelan P, Keblinski P (2008) Effect of aggregation and interfacial thermal resistance on thermal conductivity of nanocomposites and colloidal nanofluids. Int J Heat Mass Transf 51(5–6):1431–1438CrossRef
Zurück zum Zitat Fan J, Wang L (2011) Review of heat conduction in nanofluids. J Heat Transfer 133(4):040801–040814CrossRef Fan J, Wang L (2011) Review of heat conduction in nanofluids. J Heat Transfer 133(4):040801–040814CrossRef
Zurück zum Zitat Feng X, Johnson DW (2012) Mass transfer in SiO2 nanofluids: a case against purported nanoparticle convection effects. Int J Heat Mass Transf 55(13–14):3447–3453CrossRef Feng X, Johnson DW (2012) Mass transfer in SiO2 nanofluids: a case against purported nanoparticle convection effects. Int J Heat Mass Transf 55(13–14):3447–3453CrossRef
Zurück zum Zitat Fricke H (1924) A mathematical treatment of the electric conductivity and capacity of disperse systems I. the electric conductivity of a suspension of homogeneous spheroids. physical. Review 24(5):575–587CrossRef Fricke H (1924) A mathematical treatment of the electric conductivity and capacity of disperse systems I. the electric conductivity of a suspension of homogeneous spheroids. physical. Review 24(5):575–587CrossRef
Zurück zum Zitat Gao JW, Zheng RT, Ohtani H, Zhu DS, Chen G (2009) Experimental investigation of heat conduction mechanisms in nanofluids. Clue Clust Nano Lett 9(12):4128–4132. doi:10.1021/nl902358m CrossRef Gao JW, Zheng RT, Ohtani H, Zhu DS, Chen G (2009) Experimental investigation of heat conduction mechanisms in nanofluids. Clue Clust Nano Lett 9(12):4128–4132. doi:10.​1021/​nl902358m CrossRef
Zurück zum Zitat Garg J, Poudel B, Chiesa M, Gordon JB, Ma JJ, Wang JB, Ren ZF, Kang YT, Ohtani H, Nanda J, McKinley GH, Chen G (2008) Enhanced thermal conductivity and viscosity of copper nanoparticles in ethylene glycol nanofluid. J Appl Phys 103(7):074301–074306CrossRef Garg J, Poudel B, Chiesa M, Gordon JB, Ma JJ, Wang JB, Ren ZF, Kang YT, Ohtani H, Nanda J, McKinley GH, Chen G (2008) Enhanced thermal conductivity and viscosity of copper nanoparticles in ethylene glycol nanofluid. J Appl Phys 103(7):074301–074306CrossRef
Zurück zum Zitat Godson L, Raja B, Mohan Lal D, Wongwises S (2010) Enhancement of heat transfer using nanofluids—an overview. Renew Sustain Energy Rev 14(2):629–641CrossRef Godson L, Raja B, Mohan Lal D, Wongwises S (2010) Enhancement of heat transfer using nanofluids—an overview. Renew Sustain Energy Rev 14(2):629–641CrossRef
Zurück zum Zitat Hashin Z, Shtrikman S (1962) A variational approach to the theory of the effective magnetic permeability of multiphase materials. J Appl Phys 33(10):7. doi:10.1063/1.1728579 CrossRef Hashin Z, Shtrikman S (1962) A variational approach to the theory of the effective magnetic permeability of multiphase materials. J Appl Phys 33(10):7. doi:10.​1063/​1.​1728579 CrossRef
Zurück zum Zitat Hassellöv M, Readman J, Ranville J, Tiede K (2008) Nanoparticle analysis and characterization methodologies in environmental risk assessment of engineered nanoparticles. Ecotoxicology 17(5):344–361. doi:10.1007/s10646-008-0225-x CrossRef Hassellöv M, Readman J, Ranville J, Tiede K (2008) Nanoparticle analysis and characterization methodologies in environmental risk assessment of engineered nanoparticles. Ecotoxicology 17(5):344–361. doi:10.​1007/​s10646-008-0225-x CrossRef
Zurück zum Zitat Healy JJ, de Groot JJ, Kestin J (1976) The theory of the transient hot-wire method for measuring thermal conductivity. Physica B+C 82(2):392–408CrossRef Healy JJ, de Groot JJ, Kestin J (1976) The theory of the transient hot-wire method for measuring thermal conductivity. Physica B+C 82(2):392–408CrossRef
Zurück zum Zitat Hong J, Kim D (2012) Effects of aggregation on the thermal conductivity of alumina/water nanofluids. Thermochim Acta 542:28–32CrossRef Hong J, Kim D (2012) Effects of aggregation on the thermal conductivity of alumina/water nanofluids. Thermochim Acta 542:28–32CrossRef
Zurück zum Zitat Keblinski P, Phillpot SR, Choi SUS, Eastman JA (2002) Mechanisms of heat flow in suspensions of nano-sized particles (nanofluids). Int J Heat Mass Transf 45(4):855–863CrossRef Keblinski P, Phillpot SR, Choi SUS, Eastman JA (2002) Mechanisms of heat flow in suspensions of nano-sized particles (nanofluids). Int J Heat Mass Transf 45(4):855–863CrossRef
Zurück zum Zitat Kulkarni DP, Das DK, Vajjha RS (2009) Application of nanofluids in heating buildings and reducing pollution. Appl Energy 86(12):2566–2573CrossRef Kulkarni DP, Das DK, Vajjha RS (2009) Application of nanofluids in heating buildings and reducing pollution. Appl Energy 86(12):2566–2573CrossRef
Zurück zum Zitat Lee C, Kramer TA (2004) Prediction of three-dimensional fractal dimensions using the two-dimensional properties of fractal aggregates. Adv Colloid Interface Sci 112(1–3):49–57CrossRef Lee C, Kramer TA (2004) Prediction of three-dimensional fractal dimensions using the two-dimensional properties of fractal aggregates. Adv Colloid Interface Sci 112(1–3):49–57CrossRef
Zurück zum Zitat Lee S, Choi SUS, Li S, Eastman JA (1999) Measuring thermal conductivity of fluids containing oxide nanoparticles. J Heat Transfer 121(2):280–289CrossRef Lee S, Choi SUS, Li S, Eastman JA (1999) Measuring thermal conductivity of fluids containing oxide nanoparticles. J Heat Transfer 121(2):280–289CrossRef
Zurück zum Zitat Leong KY, Saidur R, Kazi SN, Mamun AH (2010) Performance investigation of an automotive car radiator operated with nanofluid-based coolants (nanofluid as a coolant in a radiator). Appl Therm Eng 30(17–18):2685–2692CrossRef Leong KY, Saidur R, Kazi SN, Mamun AH (2010) Performance investigation of an automotive car radiator operated with nanofluid-based coolants (nanofluid as a coolant in a radiator). Appl Therm Eng 30(17–18):2685–2692CrossRef
Zurück zum Zitat Li Q, Xuan Y, Wang J (2005) Experimental investigations on transport properties of magnetic fluids. Exp Thermal Fluid Sci 30(2):109–116CrossRef Li Q, Xuan Y, Wang J (2005) Experimental investigations on transport properties of magnetic fluids. Exp Thermal Fluid Sci 30(2):109–116CrossRef
Zurück zum Zitat Li Y, Zhou Je, Tung S, Schneider E, Xi S (2009) A review on development of nanofluid preparation and characterization. Powder Technol 196(2):89–101CrossRef Li Y, Zhou Je, Tung S, Schneider E, Xi S (2009) A review on development of nanofluid preparation and characterization. Powder Technol 196(2):89–101CrossRef
Zurück zum Zitat Lin MY, Lindsay HM, Weitz DA, Klein RCBR, Meakin P (1990a) Universal diffusion-limited colloid aggregation. J Phys Condens Matter 2(23):5283CrossRef Lin MY, Lindsay HM, Weitz DA, Klein RCBR, Meakin P (1990a) Universal diffusion-limited colloid aggregation. J Phys Condens Matter 2(23):5283CrossRef
Zurück zum Zitat Lin MY, Lindsay HM, Weitz DA, Ball RC, Klein R, Meakin P (1990b) Universal reaction-limited colloid aggregation. Phys Rev A 41(4):2005CrossRef Lin MY, Lindsay HM, Weitz DA, Ball RC, Klein R, Meakin P (1990b) Universal reaction-limited colloid aggregation. Phys Rev A 41(4):2005CrossRef
Zurück zum Zitat Liu M-S, Ching-Cheng Lin M, Huang IT, Wang C-C (2005) Enhancement of thermal conductivity with carbon nanotube for nanofluids. Int Commun Heat Mass Transf 32(9):1202–1210CrossRef Liu M-S, Ching-Cheng Lin M, Huang IT, Wang C-C (2005) Enhancement of thermal conductivity with carbon nanotube for nanofluids. Int Commun Heat Mass Transf 32(9):1202–1210CrossRef
Zurück zum Zitat Liu M-S, Lin MC-C, Tsai CY, Wang C-C (2006) Enhancement of thermal conductivity with Cu for nanofluids using chemical reduction method. Int J Heat Mass Transf 49(17–18):3028–3033CrossRef Liu M-S, Lin MC-C, Tsai CY, Wang C-C (2006) Enhancement of thermal conductivity with Cu for nanofluids using chemical reduction method. Int J Heat Mass Transf 49(17–18):3028–3033CrossRef
Zurück zum Zitat Maxwell JC (1904) A treatise on electricity and magnetism (2nd edn). Oxford University Press, Cambridge Maxwell JC (1904) A treatise on electricity and magnetism (2nd edn). Oxford University Press, Cambridge
Zurück zum Zitat Murshed SMS, Leong KC, Yang C (2005) Enhanced thermal conductivity of TiO2-water based nanofluids. Int J Therm Sci 44(4):367–373CrossRef Murshed SMS, Leong KC, Yang C (2005) Enhanced thermal conductivity of TiO2-water based nanofluids. Int J Therm Sci 44(4):367–373CrossRef
Zurück zum Zitat Nguyen CT, Roy G, Gauthier C, Galanis N (2007) Heat transfer enhancement using Al2O3-water nanofluid for an electronic liquid cooling system. Appl Therm Eng 27(8–9):1501–1506CrossRef Nguyen CT, Roy G, Gauthier C, Galanis N (2007) Heat transfer enhancement using Al2O3-water nanofluid for an electronic liquid cooling system. Appl Therm Eng 27(8–9):1501–1506CrossRef
Zurück zum Zitat Özerinç S, Kakaç S, Yazıcıoğlu A (2009) Enhanced thermal conductivity of nanofluids: a state-of-the-art review. Microfluid Nanofluid 8(2):145–170CrossRef Özerinç S, Kakaç S, Yazıcıoğlu A (2009) Enhanced thermal conductivity of nanofluids: a state-of-the-art review. Microfluid Nanofluid 8(2):145–170CrossRef
Zurück zum Zitat Perrin F (1934) Mouvement brownien d’un ellipsoide-I. Dispersion diélectrique pour des molécules ellipsoidales. J Phys Paris 5:497–511CrossRef Perrin F (1934) Mouvement brownien d’un ellipsoide-I. Dispersion diélectrique pour des molécules ellipsoidales. J Phys Paris 5:497–511CrossRef
Zurück zum Zitat Perrin F (1936) Mouvement Brownien d’un ellipsoide (II). Rotation libre et dépolarisation des fluorescences. Translation et diffusion de molécules ellipsoidales. J Phys Radium 7 (1) Perrin F (1936) Mouvement Brownien d’un ellipsoide (II). Rotation libre et dépolarisation des fluorescences. Translation et diffusion de molécules ellipsoidales. J Phys Radium 7 (1)
Zurück zum Zitat Philip J, Shima PD, Raj B (2007) Enhancement of thermal conductivity in magnetite based nanofluid due to chain like structures. Appl Phys Lett 91(20):203103–203108CrossRef Philip J, Shima PD, Raj B (2007) Enhancement of thermal conductivity in magnetite based nanofluid due to chain like structures. Appl Phys Lett 91(20):203103–203108CrossRef
Zurück zum Zitat Prasher R, Bhattacharya P, Phelan PE (2005) Thermal conductivity of nanoscale colloidal solutions (nanofluids). Phys Rev Lett 94(2):025901CrossRef Prasher R, Bhattacharya P, Phelan PE (2005) Thermal conductivity of nanoscale colloidal solutions (nanofluids). Phys Rev Lett 94(2):025901CrossRef
Zurück zum Zitat Prasher R, Phelan PE, Bhattacharya P (2006) Effect of aggregation kinetics on the thermal conductivity of nanoscale colloidal solutions (nanofluid). Nano Lett 6(7):1529–1534. doi:10.1021/nl060992s CrossRef Prasher R, Phelan PE, Bhattacharya P (2006) Effect of aggregation kinetics on the thermal conductivity of nanoscale colloidal solutions (nanofluid). Nano Lett 6(7):1529–1534. doi:10.​1021/​nl060992s CrossRef
Zurück zum Zitat Ramires MLV, Nieto de Castro CA, Fareleira JMNA, Wakeham WA (1994) Thermal conductivity of aqueous sodium chloride solutions. J Chem Eng Data 39(1):186–190. doi:10.1021/je00013a053 CrossRef Ramires MLV, Nieto de Castro CA, Fareleira JMNA, Wakeham WA (1994) Thermal conductivity of aqueous sodium chloride solutions. J Chem Eng Data 39(1):186–190. doi:10.​1021/​je00013a053 CrossRef
Zurück zum Zitat Sergis A, Hardalupas Y (2011) Anomalous heat transfer modes of nanofluids: a review based on statistical analysis. Nanoscale Res Lett 6(1):391CrossRef Sergis A, Hardalupas Y (2011) Anomalous heat transfer modes of nanofluids: a review based on statistical analysis. Nanoscale Res Lett 6(1):391CrossRef
Zurück zum Zitat Shalkevich N, Shalkevich A, Buˆrgi T (2010) Thermal conductivity of concentrated colloids in different states. J Phys Chem C 114(21):9568–9572. doi:10.1021/jp910722j CrossRef Shalkevich N, Shalkevich A, Buˆrgi T (2010) Thermal conductivity of concentrated colloids in different states. J Phys Chem C 114(21):9568–9572. doi:10.​1021/​jp910722j CrossRef
Zurück zum Zitat Shen B, Shih A, Tung S (2007) Application of nanofluids in minimum quantity lubrication grinding. ASME Conf Proc 48108:725–731 Shen B, Shih A, Tung S (2007) Application of nanofluids in minimum quantity lubrication grinding. ASME Conf Proc 48108:725–731
Zurück zum Zitat Shima PD, Philip J, Raj B (2009) Role of microconvection induced by Brownian motion of nanoparticles in the enhanced thermal conductivity of stable nanofluids. Appl Phys Lett 94(22):223101–223103. doi:10.1063/1.3147855 CrossRef Shima PD, Philip J, Raj B (2009) Role of microconvection induced by Brownian motion of nanoparticles in the enhanced thermal conductivity of stable nanofluids. Appl Phys Lett 94(22):223101–223103. doi:10.​1063/​1.​3147855 CrossRef
Zurück zum Zitat Smoluchowski M (1917) Versuch einer mathematischen Theorie der Koagulationskinetik kolloider lösungen. Z Phys Chem 92(215):557–585 Smoluchowski M (1917) Versuch einer mathematischen Theorie der Koagulationskinetik kolloider lösungen. Z Phys Chem 92(215):557–585
Zurück zum Zitat Suleimanov BA, Ismailov FS, Veliyev EF (2011) Nanofluid for enhanced oil recovery. J Petrol Sci Eng 78(2):431–437CrossRef Suleimanov BA, Ismailov FS, Veliyev EF (2011) Nanofluid for enhanced oil recovery. J Petrol Sci Eng 78(2):431–437CrossRef
Zurück zum Zitat Tawerghi E, Yi Y-B (2009) A computational study on the effective properties of heterogeneous random media containing particulate inclusions. J Phys D 42(17):181–230CrossRef Tawerghi E, Yi Y-B (2009) A computational study on the effective properties of heterogeneous random media containing particulate inclusions. J Phys D 42(17):181–230CrossRef
Zurück zum Zitat Thomson GH, Friend DG, Rowley RL, Wilding WV, Poling BE (2008) Physical and chemical data section 2. In: Green DW (ed) Perry’s chemical engineer’s handbook. McGraw-Hill, New york, pp 2–48 Thomson GH, Friend DG, Rowley RL, Wilding WV, Poling BE (2008) Physical and chemical data section 2. In: Green DW (ed) Perry’s chemical engineer’s handbook. McGraw-Hill, New york, pp 2–48
Zurück zum Zitat Trisaksri V, Wongwises S (2007) Critical review of heat transfer characteristics of nanofluids. Renew Sustain Energy Rev 11(3):512–523CrossRef Trisaksri V, Wongwises S (2007) Critical review of heat transfer characteristics of nanofluids. Renew Sustain Energy Rev 11(3):512–523CrossRef
Zurück zum Zitat Vicsek T (1999) Fractal growth phenomena, 2nd edn. World Scientific, Singapore Vicsek T (1999) Fractal growth phenomena, 2nd edn. World Scientific, Singapore
Zurück zum Zitat Virden JW, Berg JC (1992) The use of photon correlation spectroscopy for estimating the rate constant for doublet formation in an aggregating colloidal dispersion. J Colloid Interface Sci 149(2):528–535. doi:10.1016/0021-9797(92)90439-S CrossRef Virden JW, Berg JC (1992) The use of photon correlation spectroscopy for estimating the rate constant for doublet formation in an aggregating colloidal dispersion. J Colloid Interface Sci 149(2):528–535. doi:10.​1016/​0021-9797(92)90439-S CrossRef
Zurück zum Zitat Wang W, Chau Y (2009) Self-assembled peptide nanorods as building blocks of fractal patterns. Soft Matter 5(24):4893–4898CrossRef Wang W, Chau Y (2009) Self-assembled peptide nanorods as building blocks of fractal patterns. Soft Matter 5(24):4893–4898CrossRef
Zurück zum Zitat Wang X-Q, Mujumdar AS (2007) Heat transfer characteristics of nanofluids: a review. Int J Therm Sci 46(1):1–19CrossRef Wang X-Q, Mujumdar AS (2007) Heat transfer characteristics of nanofluids: a review. Int J Therm Sci 46(1):1–19CrossRef
Zurück zum Zitat Wang X, Xu X, Choi SUS (1999) Thermal conductivity of nanoparticle-fluid mixture. J Thermophys Heat Transfer 13(4):474–480CrossRef Wang X, Xu X, Choi SUS (1999) Thermal conductivity of nanoparticle-fluid mixture. J Thermophys Heat Transfer 13(4):474–480CrossRef
Zurück zum Zitat Yoo D-H, Hong KS, Hong TE, Eastman JA, Yang H-S (2007) Thermal conductivity of Al2O3/water nanofluids. J Korean Phys Soc 51:S84–S87CrossRef Yoo D-H, Hong KS, Hong TE, Eastman JA, Yang H-S (2007) Thermal conductivity of Al2O3/water nanofluids. J Korean Phys Soc 51:S84–S87CrossRef
Zurück zum Zitat Yu W, France DM, Routbort JL, Choi SUS (2008) Review and comparison of nanofluid thermal conductivity and heat transfer enhancements. Heat Transf Eng 29(5):432–460CrossRef Yu W, France DM, Routbort JL, Choi SUS (2008) Review and comparison of nanofluid thermal conductivity and heat transfer enhancements. Heat Transf Eng 29(5):432–460CrossRef
Zurück zum Zitat Zhou XF, Gao L (2006) Effective thermal conductivity in nanofluids of nonspherical particles with interfacial thermal resistance: differential effective medium theory. J Appl Phys 100(2):024913–024916CrossRef Zhou XF, Gao L (2006) Effective thermal conductivity in nanofluids of nonspherical particles with interfacial thermal resistance: differential effective medium theory. J Appl Phys 100(2):024913–024916CrossRef
Metadaten
Titel
Characterization of dispersed and aggregated Al2O3 morphologies for predicting nanofluid thermal conductivities
verfasst von
Xuemei Feng
Drew W. Johnson
Publikationsdatum
01.06.2013
Verlag
Springer Netherlands
Erschienen in
Journal of Nanoparticle Research / Ausgabe 6/2013
Print ISSN: 1388-0764
Elektronische ISSN: 1572-896X
DOI
https://doi.org/10.1007/s11051-013-1718-y

Weitere Artikel der Ausgabe 6/2013

Journal of Nanoparticle Research 6/2013 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.