Skip to main content
Erschienen in: Journal of Nanoparticle Research 7/2014

01.07.2014 | Research Paper

Effects of grain boundary width and crystallite size on conductivity and magnetic properties of magnetite nanoparticles

verfasst von: K. L. Lopez Maldonado, P. de la Presa, M. A. de la Rubia, P. Crespo, J. de Frutos, A. Hernando, J. A. Matutes Aquino, J. T. Elizalde Galindo

Erschienen in: Journal of Nanoparticle Research | Ausgabe 7/2014

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The structural, electrical, and magnetic properties of magnetite nanoparticles, with crystallite sizes 30, 40, and 50 nm, are studied. These crystallite sizes correspond to average particle sizes of 33, 87, and 90 nm, respectively, as determined by TEM. By HRTEM images, it is observed that grain boundary widths decrease as crystallite size increases. Electrical and microstructural properties are correlated based on the theoretical definition of charging energy. Conduction phenomena are investigated as a function of grain boundaries widths, which in turn depend on crystallite size: the calculations suggest that charging energy has a strong dependence on crystallite size. By zero-field-cooling and susceptibility measurements, it is observed that Verwey transition is crystallite size dependent, with values ranging from 85 to 95 K. In addition, a kink at the out-phase susceptibility curves at 35 K, and a strong change in coercivity is associated to a spin-glass transition, which is independent of crystallite size but frequency dependent. The activation energy associated to this transition is calculated to be around 6–7 meV. Finally, magnetic saturation and coercivity are found to be not significantly affected by crystallite size, with saturation values close to fine powders values. A detailed knowledge on the effects of grain boundary width and crystallite size on conductivity and magnetic properties is relevant for optimization of materials that can be used in magnetoresistive devices.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Balanda M et al (2005) Magnetic AC susceptibility of stoichiometric and low zinc doped magnetite single crystal. Eur Phys J B 43:201–212CrossRef Balanda M et al (2005) Magnetic AC susceptibility of stoichiometric and low zinc doped magnetite single crystal. Eur Phys J B 43:201–212CrossRef
Zurück zum Zitat Batlle X, Labarta A (2002) Finite-size effects in fine particles: magnetic and transport properties. J Phys D Appl Phys 35:R15–R42CrossRef Batlle X, Labarta A (2002) Finite-size effects in fine particles: magnetic and transport properties. J Phys D Appl Phys 35:R15–R42CrossRef
Zurück zum Zitat Cabrera L, Gutierrez S, Menendez N, Morales MP, Herrasti P (2008) Magnetite nanoparticles: electrochemical synthesis and characterization. Electrochim Acta 53:3436–3441CrossRef Cabrera L, Gutierrez S, Menendez N, Morales MP, Herrasti P (2008) Magnetite nanoparticles: electrochemical synthesis and characterization. Electrochim Acta 53:3436–3441CrossRef
Zurück zum Zitat Coey JMD (2010) Magnetism and magnetic materials. Cambridge University Press, New YorkCrossRef Coey JMD (2010) Magnetism and magnetic materials. Cambridge University Press, New YorkCrossRef
Zurück zum Zitat Crespo P et al (2013) Magnetism in nanoparticles: tuning properties with coatings. J Phys Condens Matter 25:484006CrossRef Crespo P et al (2013) Magnetism in nanoparticles: tuning properties with coatings. J Phys Condens Matter 25:484006CrossRef
Zurück zum Zitat Cullity BD, Graham CD (2009) Introduction to magnetic materials, 2nd edn. IEEE Press; Wiley, Hoboken Cullity BD, Graham CD (2009) Introduction to magnetic materials, 2nd edn. IEEE Press; Wiley, Hoboken
Zurück zum Zitat Dézsi I, Fetzer C, Gombkoto A, Szucs I, Gubicza J, Ungar T (2008) Phase transition in nanomagnetite. J Appl Phys 103:104312CrossRef Dézsi I, Fetzer C, Gombkoto A, Szucs I, Gubicza J, Ungar T (2008) Phase transition in nanomagnetite. J Appl Phys 103:104312CrossRef
Zurück zum Zitat García J, Subías G (2004) The Verwey transition—a new perspective. J Phys Condens Matter 16:R145–R178CrossRef García J, Subías G (2004) The Verwey transition—a new perspective. J Phys Condens Matter 16:R145–R178CrossRef
Zurück zum Zitat Gonzalez-Fernandez MA et al (2009) Magnetic nanoparticles for power absorption: optimizing size, shape and magnetic properties. J Solid State Chem 182:2779–2784CrossRef Gonzalez-Fernandez MA et al (2009) Magnetic nanoparticles for power absorption: optimizing size, shape and magnetic properties. J Solid State Chem 182:2779–2784CrossRef
Zurück zum Zitat Goya GF, Berquo TS, Fonseca FC, Morales MP (2003) Static and dynamic magnetic properties of spherical magnetite nanoparticles. J Appl Phys 94:3520–3528CrossRef Goya GF, Berquo TS, Fonseca FC, Morales MP (2003) Static and dynamic magnetic properties of spherical magnetite nanoparticles. J Appl Phys 94:3520–3528CrossRef
Zurück zum Zitat Hernando A (1999) Magnetic properties and spin disorder in nanocrystalline materials. J Phys Condes Matter 11:9455–9482CrossRef Hernando A (1999) Magnetic properties and spin disorder in nanocrystalline materials. J Phys Condes Matter 11:9455–9482CrossRef
Zurück zum Zitat Holland TJB, Redfern SAT (1997) Unit cell refinement from powder diffraction data: the use of regression diagnostics. Mineral Mag 61:65–77CrossRef Holland TJB, Redfern SAT (1997) Unit cell refinement from powder diffraction data: the use of regression diagnostics. Mineral Mag 61:65–77CrossRef
Zurück zum Zitat Inoue J (2009) GMR, TMR and BMR. In: Shinjo T (ed) Nanomagnetism and spintronics. Elsevier, Oxford, pp 15–92CrossRef Inoue J (2009) GMR, TMR and BMR. In: Shinjo T (ed) Nanomagnetism and spintronics. Elsevier, Oxford, pp 15–92CrossRef
Zurück zum Zitat Janů Z, Hadač J, Švindrych Z (2007) Glass-like and Verwey transitions in magnetite in details. J Magn Magn Mater 310:e203–e205CrossRef Janů Z, Hadač J, Švindrych Z (2007) Glass-like and Verwey transitions in magnetite in details. J Magn Magn Mater 310:e203–e205CrossRef
Zurück zum Zitat Knobel M, Nunes WC, Socolovsky LM, De Biasi E, Vargas JM, Denardin JC (2008) Superparamagnetism and other magnetic features in granular materials: a review on ideal and real systems. J Nanosci Nanotechnol 8:2836–2857 Knobel M, Nunes WC, Socolovsky LM, De Biasi E, Vargas JM, Denardin JC (2008) Superparamagnetism and other magnetic features in granular materials: a review on ideal and real systems. J Nanosci Nanotechnol 8:2836–2857
Zurück zum Zitat Kodama RH, Berkowitz AE, McNiff EJJ, Foner S (1997) Surface spin disorder in ferrite nanoparticles. J Appl Phys 81:5552CrossRef Kodama RH, Berkowitz AE, McNiff EJJ, Foner S (1997) Surface spin disorder in ferrite nanoparticles. J Appl Phys 81:5552CrossRef
Zurück zum Zitat Koksharov YA (2009) Magnetism of nanoparticles: effects of size, shape, and interactions. In: Gubin SP (ed) Magnetic nanoparticles. Wiley, Weinheim, pp 197–254CrossRef Koksharov YA (2009) Magnetism of nanoparticles: effects of size, shape, and interactions. In: Gubin SP (ed) Magnetic nanoparticles. Wiley, Weinheim, pp 197–254CrossRef
Zurück zum Zitat Kolesnichenko VL (2009) Synthesis of nanoparticulate magnetic materials. In: Gubin SP (ed) Magnetic nanoparticles. Wiley, Weinheim, pp 25–58CrossRef Kolesnichenko VL (2009) Synthesis of nanoparticulate magnetic materials. In: Gubin SP (ed) Magnetic nanoparticles. Wiley, Weinheim, pp 25–58CrossRef
Zurück zum Zitat Lopez Maldonado KL, de la Presa P, Flores Tavizon E, Farias Mancilla JR, Matutes Aquino JA, Hernando Grande A, Elizalde Galindo JT (2013) Magnetic susceptibility studies of the spin-glass and Verwey transitions in magnetite nanoparticles. J Appl Phys 113:17E132CrossRef Lopez Maldonado KL, de la Presa P, Flores Tavizon E, Farias Mancilla JR, Matutes Aquino JA, Hernando Grande A, Elizalde Galindo JT (2013) Magnetic susceptibility studies of the spin-glass and Verwey transitions in magnetite nanoparticles. J Appl Phys 113:17E132CrossRef
Zurück zum Zitat Lu ZL et al (2006) Large low-field magnetoresistance in nanocrystalline magnetite prepared by sol–gel method. J Phys Chem B 110:23817–23820CrossRef Lu ZL et al (2006) Large low-field magnetoresistance in nanocrystalline magnetite prepared by sol–gel method. J Phys Chem B 110:23817–23820CrossRef
Zurück zum Zitat Macdonal JR, Johnson WB (2005) Fundamentals of impedance spectroscopy. Wiley, Hoboken Macdonal JR, Johnson WB (2005) Fundamentals of impedance spectroscopy. Wiley, Hoboken
Zurück zum Zitat Mi WB, Shen JJ, Jiang EY, Bai HL (2007) Microstructure, magnetic and magneto-transport properties of polycrystalline Fe3O4 films. Acta Mater 55:1919–1926CrossRef Mi WB, Shen JJ, Jiang EY, Bai HL (2007) Microstructure, magnetic and magneto-transport properties of polycrystalline Fe3O4 films. Acta Mater 55:1919–1926CrossRef
Zurück zum Zitat Ogale SB, Ghosh K, Sharma RP, Greene RL, Ramesh R, Venkatesan T (1998) Magnetotransport anisotropy effects in epitaxial magnetite (Fe3O4) thin films. Phys Rev B 57:7823–7828CrossRef Ogale SB, Ghosh K, Sharma RP, Greene RL, Ramesh R, Venkatesan T (1998) Magnetotransport anisotropy effects in epitaxial magnetite (Fe3O4) thin films. Phys Rev B 57:7823–7828CrossRef
Zurück zum Zitat Psarras GC, Manolakaki E, Tsangaris GM (2003) Dielectric dispersion and ac conductivity in-iron particles loaded-polymer composites. Compos A Appl Sci Manuf 34:1187–1198CrossRef Psarras GC, Manolakaki E, Tsangaris GM (2003) Dielectric dispersion and ac conductivity in-iron particles loaded-polymer composites. Compos A Appl Sci Manuf 34:1187–1198CrossRef
Zurück zum Zitat Sarkar D, Mandal M, Mandal K (2012) Domain controlled magnetic and electric properties of variable sized magnetite nano-hollow spheres. J Appl Phys 112:064318CrossRef Sarkar D, Mandal M, Mandal K (2012) Domain controlled magnetic and electric properties of variable sized magnetite nano-hollow spheres. J Appl Phys 112:064318CrossRef
Zurück zum Zitat Team GS (1999) Digital micrograph (TM), 3.7.1 edn. Gatan Inc, Pleasanton Team GS (1999) Digital micrograph (TM), 3.7.1 edn. Gatan Inc, Pleasanton
Zurück zum Zitat Venkatesan M, Nawka S, Pillai SC, Coey JMD (2003) Enhanced magnetoresistance in nanocrystalline magnetite. J Appl Phys 93:8023CrossRef Venkatesan M, Nawka S, Pillai SC, Coey JMD (2003) Enhanced magnetoresistance in nanocrystalline magnetite. J Appl Phys 93:8023CrossRef
Zurück zum Zitat Vergés A, Costo R, Roca AG, Marco JF, Goya GF, Serna CJ, Morales MP (2008) Uniform and water stable magnetite nanoparticles with diameters around the monodomain–multidomain limit. J Phys D Appl Phys 41:134003CrossRef Vergés A, Costo R, Roca AG, Marco JF, Goya GF, Serna CJ, Morales MP (2008) Uniform and water stable magnetite nanoparticles with diameters around the monodomain–multidomain limit. J Phys D Appl Phys 41:134003CrossRef
Zurück zum Zitat Walz F (2002) The Verwey transition—a topical review. J Phys Condes Matter 14:R285–R340CrossRef Walz F (2002) The Verwey transition—a topical review. J Phys Condes Matter 14:R285–R340CrossRef
Zurück zum Zitat Zeleňáková A, Kováč J, Zeleňák V (2010) Magnetic properties of Fe2O3 nanoparticles embedded in hollows of periodic nanoporous silica. J Appl Phys 108:034323CrossRef Zeleňáková A, Kováč J, Zeleňák V (2010) Magnetic properties of Fe2O3 nanoparticles embedded in hollows of periodic nanoporous silica. J Appl Phys 108:034323CrossRef
Zurück zum Zitat Zhang X-Y, Chen Y, Li Z-Y (2007) AC magnetotransport property enhancement of Fe3O4 particles by modifying tunnelling barrier. J Phys D Appl Phys 40:326–330CrossRef Zhang X-Y, Chen Y, Li Z-Y (2007) AC magnetotransport property enhancement of Fe3O4 particles by modifying tunnelling barrier. J Phys D Appl Phys 40:326–330CrossRef
Zurück zum Zitat Zhou H, Yi R, Li J, Su Y, Liu X (2010) Microwave-assisted synthesis and characterization of hexagonal Fe3O4 nanoplates. Solid State Sci 12:99–104CrossRef Zhou H, Yi R, Li J, Su Y, Liu X (2010) Microwave-assisted synthesis and characterization of hexagonal Fe3O4 nanoplates. Solid State Sci 12:99–104CrossRef
Metadaten
Titel
Effects of grain boundary width and crystallite size on conductivity and magnetic properties of magnetite nanoparticles
verfasst von
K. L. Lopez Maldonado
P. de la Presa
M. A. de la Rubia
P. Crespo
J. de Frutos
A. Hernando
J. A. Matutes Aquino
J. T. Elizalde Galindo
Publikationsdatum
01.07.2014
Verlag
Springer Netherlands
Erschienen in
Journal of Nanoparticle Research / Ausgabe 7/2014
Print ISSN: 1388-0764
Elektronische ISSN: 1572-896X
DOI
https://doi.org/10.1007/s11051-014-2482-3

Weitere Artikel der Ausgabe 7/2014

Journal of Nanoparticle Research 7/2014 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.