Skip to main content
Erschienen in: Journal of Nanoparticle Research 7/2014

01.07.2014 | Perspectives

Recyclable magnetic nanoparticle grafted with pH-responsive polymer for adsorption with DNA

verfasst von: Pawinee Theamdee, Boonjira Rutnakornpituk, Uthai Wichai, Metha Rutnakornpituk

Erschienen in: Journal of Nanoparticle Research | Ausgabe 7/2014

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Magnetite nanoparticles (MNPs) grafted with positively charged poly(2-(diethylamino) ethyl methacrylate (PDEAEMA) were prepared via a combination of atom transfer radical polymerization (ATRP) and “click” reaction and used as recyclable nanosupports for adsorption with DNA. Alkyne-terminated PDEAEMA was synthesized via ATRP and then “grafted to” azide-functionalized MNPs. Quaternized PDEAEMA-grafted MNPs were used as recyclable nanosupports for adsorption with negatively charged DNA via electrostatic interactions. The particles with the size of 3–8 nm in diameter were well dispersible in water. They responded to the change in their solution pH as observed by a consistent decrease in hydrodynamic size when solution pH changed from basic to acidic pH. Recycling efficiency of the MNPs was investigated by determining the percent adsorption of the particles after multiple cycles of the adsorption–separation–desorption process. Adsorption ability of the MNPs to T9 DNA tagged with fluorescein at 5′-position (FAM-dT9) retained higher than 80 % after 5-recycling process, indicating that these novel positively charged MNPs might be efficiently used as magnetic nanosupports for any negative biomolecules with good recycling efficiency.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Amiri H, Mahmoudi M, Lascialfari A (2011) Superparamagnetic colloidal nanocrystal clusters coated with polyethylene glycol fumarate: a possible novel theranostic agent. Nanoscale 3:1022–1030CrossRef Amiri H, Mahmoudi M, Lascialfari A (2011) Superparamagnetic colloidal nanocrystal clusters coated with polyethylene glycol fumarate: a possible novel theranostic agent. Nanoscale 3:1022–1030CrossRef
Zurück zum Zitat Asayama S, Maruyama A, Cho CS, Akaike T (1997) Design of Comb-type polyamine copolymers for a novel pH-sensitive DNA carrier. Bioconjug Chem 8:833–838CrossRef Asayama S, Maruyama A, Cho CS, Akaike T (1997) Design of Comb-type polyamine copolymers for a novel pH-sensitive DNA carrier. Bioconjug Chem 8:833–838CrossRef
Zurück zum Zitat Beyaz S, Tanrisever T, Kockar H (2010) Emulsifier-free emulsion polymerization of methyl methacrylate containing hydrophilic magnetite nanoparticles. Macromol Res 18:1154–1159CrossRef Beyaz S, Tanrisever T, Kockar H (2010) Emulsifier-free emulsion polymerization of methyl methacrylate containing hydrophilic magnetite nanoparticles. Macromol Res 18:1154–1159CrossRef
Zurück zum Zitat Cai J, Guo J, Ji M, Yang W, Wang C, Fu S (2007) Preparation and characterization of multiresponsive polymer composite microspheres with core–shell structure. Colloid Polym Sci 285:1607–1615CrossRef Cai J, Guo J, Ji M, Yang W, Wang C, Fu S (2007) Preparation and characterization of multiresponsive polymer composite microspheres with core–shell structure. Colloid Polym Sci 285:1607–1615CrossRef
Zurück zum Zitat Garcia I, Zafeiropoulos NE, Janke A et al (2007) Functionalization of iron oxide magnetic nanoparticles with poly(methyl methacrylate) brushes via grafting-from atom transfer radical polymerization. J Polym Sci Part A: Polym Chem 45:925–932CrossRef Garcia I, Zafeiropoulos NE, Janke A et al (2007) Functionalization of iron oxide magnetic nanoparticles with poly(methyl methacrylate) brushes via grafting-from atom transfer radical polymerization. J Polym Sci Part A: Polym Chem 45:925–932CrossRef
Zurück zum Zitat Hayashi K, Ono K, Suzuki H, Sawada M, Moriya M, Sakamoto W, Yogo T (2010) One-pot biofunctionalization of magnetic nanoparticles via thiol-click reaction for magnetic hyperthermia and magnetic resonance imaging. Chem Mater 22:3768–3772CrossRef Hayashi K, Ono K, Suzuki H, Sawada M, Moriya M, Sakamoto W, Yogo T (2010) One-pot biofunctionalization of magnetic nanoparticles via thiol-click reaction for magnetic hyperthermia and magnetic resonance imaging. Chem Mater 22:3768–3772CrossRef
Zurück zum Zitat Hu Y, Atukorale PU, Lu JJ, Moon JJ, Um SH, Cho EC, Wang Y, Chen J, Irvine DJ (2009) Cytosolic delivery mediated via electrostatic surface binding of protein, virus, or siRNA cargos to pH-responsive core-shell gel particles. Biomacromolecules 10:756–765CrossRef Hu Y, Atukorale PU, Lu JJ, Moon JJ, Um SH, Cho EC, Wang Y, Chen J, Irvine DJ (2009) Cytosolic delivery mediated via electrostatic surface binding of protein, virus, or siRNA cargos to pH-responsive core-shell gel particles. Biomacromolecules 10:756–765CrossRef
Zurück zum Zitat Ito A, Matsuoka F, Honda H, Kobayashi T (2003) Heat shock protein 70 gene therapy combined with hyperthermia using magnetic nanoparticles. Cancer Gene Ther 10:918–925CrossRef Ito A, Matsuoka F, Honda H, Kobayashi T (2003) Heat shock protein 70 gene therapy combined with hyperthermia using magnetic nanoparticles. Cancer Gene Ther 10:918–925CrossRef
Zurück zum Zitat Johnson AK, Zawadzka AM, Deobald LA, Crawford RL, Paszczynski AJ (2008) Novel method for immobilization of enzymes to magnetic nanoparticles. J Nanopart Res 10:1009–1025CrossRef Johnson AK, Zawadzka AM, Deobald LA, Crawford RL, Paszczynski AJ (2008) Novel method for immobilization of enzymes to magnetic nanoparticles. J Nanopart Res 10:1009–1025CrossRef
Zurück zum Zitat Kang K, Choi J, Nam JH, Lee SC, Kim KJ, Lee SW, Chang JH (2009) Preparation and characterization of chemically functionalized silica-coated magnetic nanoparticles as a DNA separator. J Phys Chem B 113:536–543CrossRef Kang K, Choi J, Nam JH, Lee SC, Kim KJ, Lee SW, Chang JH (2009) Preparation and characterization of chemically functionalized silica-coated magnetic nanoparticles as a DNA separator. J Phys Chem B 113:536–543CrossRef
Zurück zum Zitat Ko SW, Hong MK, Choi HJ, Ryu BH (2009) Magnetorheological characteristics of polymer coated magnetite particle composites with carbon nanotube nanohybrid. IEEE Trans Magn 45:2503–2506CrossRef Ko SW, Hong MK, Choi HJ, Ryu BH (2009) Magnetorheological characteristics of polymer coated magnetite particle composites with carbon nanotube nanohybrid. IEEE Trans Magn 45:2503–2506CrossRef
Zurück zum Zitat Marutani E, Yamamoto S, Ninjbadgar T, Tsujii Y, Fukuda T, Takano M (2004) Surface-initiated atom transfer radical polymerization of methyl methacrylate on magnetite nanoparticles. Polymer 45:762–772CrossRef Marutani E, Yamamoto S, Ninjbadgar T, Tsujii Y, Fukuda T, Takano M (2004) Surface-initiated atom transfer radical polymerization of methyl methacrylate on magnetite nanoparticles. Polymer 45:762–772CrossRef
Zurück zum Zitat Matsuno R, Yamamoto K, Otsuka H, Atsushi Takahara (2004) Polystyrene- and poly(3-vinylpyridine)-grafted magnetite nanoparticles prepared through surface-initiated nitroxide-mediated radical polymerization. Macromolecules 37:2203–2209CrossRef Matsuno R, Yamamoto K, Otsuka H, Atsushi Takahara (2004) Polystyrene- and poly(3-vinylpyridine)-grafted magnetite nanoparticles prepared through surface-initiated nitroxide-mediated radical polymerization. Macromolecules 37:2203–2209CrossRef
Zurück zum Zitat Pan BF, Gao F, Gu HC (2005) Dendrimer modified MNP for protein immobilization. J Colloid Interface Sci 284:1–6CrossRef Pan BF, Gao F, Gu HC (2005) Dendrimer modified MNP for protein immobilization. J Colloid Interface Sci 284:1–6CrossRef
Zurück zum Zitat Park HJ, McConnell JT, Boddohi S, Kipper MJ, Johnson PA (2011a) Synthesis and characterization of enzyme–magnetic nanoparticle complexes: effect of size on activity and recovery. Colloids Surf B 83:198–203CrossRef Park HJ, McConnell JT, Boddohi S, Kipper MJ, Johnson PA (2011a) Synthesis and characterization of enzyme–magnetic nanoparticle complexes: effect of size on activity and recovery. Colloids Surf B 83:198–203CrossRef
Zurück zum Zitat Park JW, Bae KH, Kim C, Park TG (2011b) Clustered magnetite nanocrystals cross-linked with PEI for efficient siRNA delivery. Biomacromolecules 12:457–465CrossRef Park JW, Bae KH, Kim C, Park TG (2011b) Clustered magnetite nanocrystals cross-linked with PEI for efficient siRNA delivery. Biomacromolecules 12:457–465CrossRef
Zurück zum Zitat Ponvel KM, Lee DG, Woo EJ, Ahn IS, Lee CH (2009) Immobilization of lipase on surface modified magnetic nanoparticles using alkyl benzenesulfonate. Korean J Chem Eng 26:127–130CrossRef Ponvel KM, Lee DG, Woo EJ, Ahn IS, Lee CH (2009) Immobilization of lipase on surface modified magnetic nanoparticles using alkyl benzenesulfonate. Korean J Chem Eng 26:127–130CrossRef
Zurück zum Zitat Sarkar TR, Irudayaraj J (2008) Carboxyl-coated magnetic nanoparticles for mRNA isolation and extraction of supercoiled plasmid DNA. Anal Biochem 379:130–132CrossRef Sarkar TR, Irudayaraj J (2008) Carboxyl-coated magnetic nanoparticles for mRNA isolation and extraction of supercoiled plasmid DNA. Anal Biochem 379:130–132CrossRef
Zurück zum Zitat Sen T, Bruce IJ (2009) Mesoporous silica–magnetite nanocomposites: fabrication, characterisation and applications in biosciences. Microporous Mesoporous Mater 120:246–251CrossRef Sen T, Bruce IJ (2009) Mesoporous silica–magnetite nanocomposites: fabrication, characterisation and applications in biosciences. Microporous Mesoporous Mater 120:246–251CrossRef
Zurück zum Zitat Singh A, Dilnawaz F, Mewar S, Sharma U, Jagannathan NR, Sahoo SK (2010) Composite polymeric magnetic nanoparticles for co-delivery of hydrophobic and hydrophilic anticancer drugs and MRI imaging for cancer therapy. Appl Mater Interfaces 3:842–856CrossRef Singh A, Dilnawaz F, Mewar S, Sharma U, Jagannathan NR, Sahoo SK (2010) Composite polymeric magnetic nanoparticles for co-delivery of hydrophobic and hydrophilic anticancer drugs and MRI imaging for cancer therapy. Appl Mater Interfaces 3:842–856CrossRef
Zurück zum Zitat Sun Y, Ding X, Zheng Z, Cheng X, Hu X, Peng Y (2007) Surface initiated ATRP in the synthesis of iron oxide/polystyrene core/shell nanoparticles. Eur Polym J 43:762–772CrossRef Sun Y, Ding X, Zheng Z, Cheng X, Hu X, Peng Y (2007) Surface initiated ATRP in the synthesis of iron oxide/polystyrene core/shell nanoparticles. Eur Polym J 43:762–772CrossRef
Zurück zum Zitat Sun JT, Hong CY, Pan CY (2010) Fabrication of PDEAEMA-coated mesoporous silica nanoparticles and pH-responsive controlled release. J Phys Chem C 114:12481–12486CrossRef Sun JT, Hong CY, Pan CY (2010) Fabrication of PDEAEMA-coated mesoporous silica nanoparticles and pH-responsive controlled release. J Phys Chem C 114:12481–12486CrossRef
Zurück zum Zitat Tan JF, Too HP, Hatton TA, Tam KC (2006) Aggregation behavior and thermodynamics of binding between poly(ethylene oxide)-block-poly(2-(diethylamino)ethyl methacrylate) and plasmid DNA. Langmuir 22:3744–3750CrossRef Tan JF, Too HP, Hatton TA, Tam KC (2006) Aggregation behavior and thermodynamics of binding between poly(ethylene oxide)-block-poly(2-(diethylamino)ethyl methacrylate) and plasmid DNA. Langmuir 22:3744–3750CrossRef
Zurück zum Zitat Theamdee P, Traiphol R, Rutnakornpituk B, Wichai U, Rutnakornpituk M (2011) Surface modification of magnetite nanoparticle with azobenzene-containing water dispersible polymer. J Nanopart Res 13:4463–4477CrossRef Theamdee P, Traiphol R, Rutnakornpituk B, Wichai U, Rutnakornpituk M (2011) Surface modification of magnetite nanoparticle with azobenzene-containing water dispersible polymer. J Nanopart Res 13:4463–4477CrossRef
Zurück zum Zitat Theppaleak T, Rutnakornpituk B, Wichai U, Vilaivan T, Rutnakornpituk M (2013) Magnetite nanoparticle with positively charged surface for immobilization of peptide nucleic acid and deoxyribonucleic acid. J Biomed Nanotechnol 9:1–12CrossRef Theppaleak T, Rutnakornpituk B, Wichai U, Vilaivan T, Rutnakornpituk M (2013) Magnetite nanoparticle with positively charged surface for immobilization of peptide nucleic acid and deoxyribonucleic acid. J Biomed Nanotechnol 9:1–12CrossRef
Zurück zum Zitat Togashi T, Naka T, Asahina S, Sato K, Takami S, Adschiri T (2011) Surfactant-assisted one-pot synthesis of superparamagnetic magnetite nanoparticle clusters with tunable cluster size and magnetic field sensitivity. J Chem Soc Dalton Trans 40:1073–1078CrossRef Togashi T, Naka T, Asahina S, Sato K, Takami S, Adschiri T (2011) Surfactant-assisted one-pot synthesis of superparamagnetic magnetite nanoparticle clusters with tunable cluster size and magnetic field sensitivity. J Chem Soc Dalton Trans 40:1073–1078CrossRef
Zurück zum Zitat Wan S, Huang J, Yan H, Liu KJ (2006) Size-controlled preparation of magnetite nanoparticles in the presence of graft copolymers. J Mater Chem 16:298–303CrossRef Wan S, Huang J, Yan H, Liu KJ (2006) Size-controlled preparation of magnetite nanoparticles in the presence of graft copolymers. J Mater Chem 16:298–303CrossRef
Zurück zum Zitat Wang D, Tan J, Kang H, Maa L, Jin X (2011) Synthesis, self-assembly and drug release behaviors of pH-responsive copolymers ethyl cellulose-graft-PDEAEMA through ATRP. Carbohydr Polym 84:195–202CrossRef Wang D, Tan J, Kang H, Maa L, Jin X (2011) Synthesis, self-assembly and drug release behaviors of pH-responsive copolymers ethyl cellulose-graft-PDEAEMA through ATRP. Carbohydr Polym 84:195–202CrossRef
Zurück zum Zitat Yu C, YunPeng B, Bao T, ZhaoLong L (2009) A new drug carrier: magnetite nanoparticles coated with amphiphilic block copolymer. Chin Sci Bull 54:1190–1196CrossRef Yu C, YunPeng B, Bao T, ZhaoLong L (2009) A new drug carrier: magnetite nanoparticles coated with amphiphilic block copolymer. Chin Sci Bull 54:1190–1196CrossRef
Zurück zum Zitat Zhou Y, Wang S, Ding B, Yang Z (2008) Modification of magnetite nanoparticles via surface-initiated atom transfer radical polymerization (ATRP). Chem Eng J 138:578–585CrossRef Zhou Y, Wang S, Ding B, Yang Z (2008) Modification of magnetite nanoparticles via surface-initiated atom transfer radical polymerization (ATRP). Chem Eng J 138:578–585CrossRef
Metadaten
Titel
Recyclable magnetic nanoparticle grafted with pH-responsive polymer for adsorption with DNA
verfasst von
Pawinee Theamdee
Boonjira Rutnakornpituk
Uthai Wichai
Metha Rutnakornpituk
Publikationsdatum
01.07.2014
Verlag
Springer Netherlands
Erschienen in
Journal of Nanoparticle Research / Ausgabe 7/2014
Print ISSN: 1388-0764
Elektronische ISSN: 1572-896X
DOI
https://doi.org/10.1007/s11051-014-2494-z

Weitere Artikel der Ausgabe 7/2014

Journal of Nanoparticle Research 7/2014 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.