Skip to main content
Erschienen in: Journal of Nanoparticle Research 8/2017

01.08.2017 | Research Paper

In vitro and in vivo comparative study of the phototherapy anticancer activity of hyaluronic acid-modified single-walled carbon nanotubes, graphene oxide, and fullerene

verfasst von: Lin Hou, Yujie Yuan, Junxiao Ren, Yinling Zhang, Yongchao Wang, Xiaoning Shan, Qi Liu, Zhenzhong Zhang

Erschienen in: Journal of Nanoparticle Research | Ausgabe 8/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this work, carbon nanomaterials, single-walled carbon nanotubes (SWNT), graphene oxide (GO), and fullerene (C60) were modified by hyaluronic acid (HA) to obtain water-soluble and biocompatible nanomaterials with high tumor-targeting capacity and then the comparative study of these hyaluronic acid-modified carbon nanomaterials was made in vitro and in vivo. The conjugates of hyaluronic acid and carbon nanomaterials, namely, HA-SWNT, HA-GO, HA-C60, were confirmed by UV/Vis spectrum, Fourier transform infrared spectroscopy (FTIR), and a transmission electron microscope (TEM). After HA modification, the sizes of HA-SWNT, HA-GO, and HA-C60 were in a range of 70 to 300 nm, and all the three HA-modified materials were at negative potential, demonstrating that HA modification was in favor of extravasation of carbon materials into a tumor site due to enhanced permeability and retention effect of tumor. Photothermal conversion in vitro test demonstrated excellent photothermal sensitivity of HA-SWNT and HA-GO. But the reactive oxygen yield of HA-C60 was the highest compared with the others under visible light irradiation, which proved the good photodynamic therapy effect of HA-C60. In addition, cytotoxicity experiments exhibited that the inhibitory efficacy of HA-SWNT was the lowest, the second was HA-C60, and the highest was HA-GO, which was consistent with the uptake degree of them. While under the laser irradiation, the cell inhibition of the HA-SWNT was the highest, the second was HA-GO, and the last was HA-C60. In vivo evaluation of the three targeting carbon nanomaterials was consistent with the cytotoxicity assay results. Taken together, the results demonstrated that HA-SWNT and HA-GO were suited for photothermal therapy (PTT) agents for their good photothermal property, while HA-C60 was used as a kind of photodynamic therapy (PDT) agent for its photodynamic effect.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Afreen S, Muthoosamy K, Manickam S et al (2015) Functionalized fullerene (C60) as a potential nanomediator in the fabrication of highly sensitive biosensors. Biosens Bioelectron 63:354–364CrossRef Afreen S, Muthoosamy K, Manickam S et al (2015) Functionalized fullerene (C60) as a potential nanomediator in the fabrication of highly sensitive biosensors. Biosens Bioelectron 63:354–364CrossRef
Zurück zum Zitat Assanhou AG, Li WY, Zhang L et al (2015) Reversal of multidrug resistance by co-delivery of paclitaxel and lonidamine using a TPGS and hyaluronic acid dual-functionalized liposome for cancer treatment. Biomaterials 73:284–229CrossRef Assanhou AG, Li WY, Zhang L et al (2015) Reversal of multidrug resistance by co-delivery of paclitaxel and lonidamine using a TPGS and hyaluronic acid dual-functionalized liposome for cancer treatment. Biomaterials 73:284–229CrossRef
Zurück zum Zitat Bhana S, O’Connor R, Johnson J et al (2016) Photosensitizer-loaded gold nanorods for near infrared photodynamic and photothermal cancer therapy. J Colloid Interface Sci 469:8–16CrossRef Bhana S, O’Connor R, Johnson J et al (2016) Photosensitizer-loaded gold nanorods for near infrared photodynamic and photothermal cancer therapy. J Colloid Interface Sci 469:8–16CrossRef
Zurück zum Zitat Cao XY, Tao L, Wen SH et al (2015) Hyaluronic acid-modified multiwalled carbon nanotubes for targeted delivery of doxorubicin into cancer cells. Carbohydr Res 405:70–77CrossRef Cao XY, Tao L, Wen SH et al (2015) Hyaluronic acid-modified multiwalled carbon nanotubes for targeted delivery of doxorubicin into cancer cells. Carbohydr Res 405:70–77CrossRef
Zurück zum Zitat Chauhan G, Chopra V, Tyagi A et al (2017) “Gold nanoparticles composite-folic acid conjugated graphene oxide nanohybrids” for targeted chemo-thermal cancer ablation: in vitro screening and in vivo studies. Eur J Pharm Sci 96:351–361CrossRef Chauhan G, Chopra V, Tyagi A et al (2017) “Gold nanoparticles composite-folic acid conjugated graphene oxide nanohybrids” for targeted chemo-thermal cancer ablation: in vitro screening and in vivo studies. Eur J Pharm Sci 96:351–361CrossRef
Zurück zum Zitat Chen JQ, Liu HY, Zhao CB et al (2014) One-step reduction and PEGylation of graphene oxide for photothermally controlled drug delivery. Biomaterials 35:4986–4995CrossRef Chen JQ, Liu HY, Zhao CB et al (2014) One-step reduction and PEGylation of graphene oxide for photothermally controlled drug delivery. Biomaterials 35:4986–4995CrossRef
Zurück zum Zitat Choi KY, Min KH, Yoon HY et al (2011a) PEGylation of hyaluronic acid nanoparticles improves tumor targetability in vivo. Biomaterials 32:1880–1889CrossRef Choi KY, Min KH, Yoon HY et al (2011a) PEGylation of hyaluronic acid nanoparticles improves tumor targetability in vivo. Biomaterials 32:1880–1889CrossRef
Zurück zum Zitat Choi WI, Kim J-Y, Kang C et al (2011b) Tumor regression in vivo by photothermal therapy based on gold-nanorod-loaded functional nanocarriers. ACS Nano 5:1995–2003CrossRef Choi WI, Kim J-Y, Kang C et al (2011b) Tumor regression in vivo by photothermal therapy based on gold-nanorod-loaded functional nanocarriers. ACS Nano 5:1995–2003CrossRef
Zurück zum Zitat Datir SR, Das M, Singh RP et al (2012) Hyaluronate tethered, “smart” multiwalled carbon nanotubes for tumor-targeted delivery of doxorubicin. Bioconjug Chem 23:2201–2213CrossRef Datir SR, Das M, Singh RP et al (2012) Hyaluronate tethered, “smart” multiwalled carbon nanotubes for tumor-targeted delivery of doxorubicin. Bioconjug Chem 23:2201–2213CrossRef
Zurück zum Zitat Deni E, Zamarrón A, Bonaccorsi P et al (2016) Glucose-functionalized amino-OPEs as biocompatible photosensitizers in PDT. Eur J Med Chem 111:58–71CrossRef Deni E, Zamarrón A, Bonaccorsi P et al (2016) Glucose-functionalized amino-OPEs as biocompatible photosensitizers in PDT. Eur J Med Chem 111:58–71CrossRef
Zurück zum Zitat Feng QH, Zhang YY, Zhang WX et al (2016) Tumor-targeted and multi-stimuli responsive drug delivery system for near-infrared light induced chemo-phototherapy and photoacoustic tomography. Acta Biomater 38:129–142CrossRef Feng QH, Zhang YY, Zhang WX et al (2016) Tumor-targeted and multi-stimuli responsive drug delivery system for near-infrared light induced chemo-phototherapy and photoacoustic tomography. Acta Biomater 38:129–142CrossRef
Zurück zum Zitat Hou L, Feng QH, Wang YT et al (2015) Multifunctional nanosheets based on hyaluronic acid modified graphene oxide for tumor-targeting chemophotothermal therapy. J Nanopart Res 17:162–178CrossRef Hou L, Feng QH, Wang YT et al (2015) Multifunctional nanosheets based on hyaluronic acid modified graphene oxide for tumor-targeting chemophotothermal therapy. J Nanopart Res 17:162–178CrossRef
Zurück zum Zitat Kim S, Lee DJ, Kwag DS et al (2014) Acid pH-activated glycol chitosan/fullerene nanogels for efficient tumor therapy. Carbohydr Polym 101:692–698CrossRef Kim S, Lee DJ, Kwag DS et al (2014) Acid pH-activated glycol chitosan/fullerene nanogels for efficient tumor therapy. Carbohydr Polym 101:692–698CrossRef
Zurück zum Zitat Kwag DS, Park K, Oh KT et al (2012) Hyaluronated fullerenes with photoluminescent and antitumoral activity. Chem Commun 49:282–284CrossRef Kwag DS, Park K, Oh KT et al (2012) Hyaluronated fullerenes with photoluminescent and antitumoral activity. Chem Commun 49:282–284CrossRef
Zurück zum Zitat Lee J-Y, Termsarasab U, Park J-H et al (2016) Dual CD44 and folate receptor-targeted nanoparticles for cancer diagnosis and anticancer drug delivery. J Control Release 236:38–46CrossRef Lee J-Y, Termsarasab U, Park J-H et al (2016) Dual CD44 and folate receptor-targeted nanoparticles for cancer diagnosis and anticancer drug delivery. J Control Release 236:38–46CrossRef
Zurück zum Zitat Li J, Huo MR, Wang J et al (2012) Redox-sensitive micelles self-assembled from amphiphilic hyaluronic acid-deoxycholic acid conjugates for targeted intracellular delivery of paclitaxel. Biomaterials 33:2310–2320CrossRef Li J, Huo MR, Wang J et al (2012) Redox-sensitive micelles self-assembled from amphiphilic hyaluronic acid-deoxycholic acid conjugates for targeted intracellular delivery of paclitaxel. Biomaterials 33:2310–2320CrossRef
Zurück zum Zitat Li Q, Hong L, Li HG et al (2017) Graphene oxide-fullerene C60 (GO-C60) hybrid for photodynamic and photothermal therapy triggered by near-infrared light. Biosens Bioelectron 89:477–482CrossRef Li Q, Hong L, Li HG et al (2017) Graphene oxide-fullerene C60 (GO-C60) hybrid for photodynamic and photothermal therapy triggered by near-infrared light. Biosens Bioelectron 89:477–482CrossRef
Zurück zum Zitat Li WH, Yi XL, Liu X et al (2016) Hyaluronic acid ion-pairing nanoparticles for targeted tumor therapy. J Control Release 225:170–182CrossRef Li WH, Yi XL, Liu X et al (2016) Hyaluronic acid ion-pairing nanoparticles for targeted tumor therapy. J Control Release 225:170–182CrossRef
Zurück zum Zitat Li WM, Su CW, Chen YW et al (2015) In situ DOX-calcium phosphate mineralized CPT-amphiphilic gelatin nanoparticle for intracellular controlled sequential release of multiple drugs. Acta Biomater 15:191–199CrossRef Li WM, Su CW, Chen YW et al (2015) In situ DOX-calcium phosphate mineralized CPT-amphiphilic gelatin nanoparticle for intracellular controlled sequential release of multiple drugs. Acta Biomater 15:191–199CrossRef
Zurück zum Zitat Liang XY, Shang WT, Chi CW et al (2016) Dye-conjugated single-walled carbon nanotubes induce photothermal therapy under the guidance of near-infrared imaging. Cancer Lett 383:243–249CrossRef Liang XY, Shang WT, Chi CW et al (2016) Dye-conjugated single-walled carbon nanotubes induce photothermal therapy under the guidance of near-infrared imaging. Cancer Lett 383:243–249CrossRef
Zurück zum Zitat Lin CW, Lu KY, Wang SY et al (2016) CD44-specific nanoparticles for redox-triggered reactive oxygen species production and doxorubicin release. Acta Biomater 35:280–292CrossRef Lin CW, Lu KY, Wang SY et al (2016) CD44-specific nanoparticles for redox-triggered reactive oxygen species production and doxorubicin release. Acta Biomater 35:280–292CrossRef
Zurück zum Zitat Lin WJ, Lee WC, Shieh MJ (2017) Hyaluronic acid conjugated micelles possessing CD44 targeting potential for gene delivery. Carbohydr Polym 155:101–108CrossRef Lin WJ, Lee WC, Shieh MJ (2017) Hyaluronic acid conjugated micelles possessing CD44 targeting potential for gene delivery. Carbohydr Polym 155:101–108CrossRef
Zurück zum Zitat Miao WJ, Shim G, Lee S et al (2014) Structure-dependent photothermal anticancer effects of carbon-based photoresponsive nanomaterials. Biomaterials 35:4058–4065CrossRef Miao WJ, Shim G, Lee S et al (2014) Structure-dependent photothermal anticancer effects of carbon-based photoresponsive nanomaterials. Biomaterials 35:4058–4065CrossRef
Zurück zum Zitat Neelgund GM, Oki AR (2016) Influence of carbon nanotubes and graphene nanosheets on photothermal effect of hydroxyapatite. J Colloid Interface Sci 484:135–145CrossRef Neelgund GM, Oki AR (2016) Influence of carbon nanotubes and graphene nanosheets on photothermal effect of hydroxyapatite. J Colloid Interface Sci 484:135–145CrossRef
Zurück zum Zitat Riehemann K, Schneider SW, Luger TA et al (2009) Nanomedicine-challenge and perspectives. Angew Chem Int Ed Engl 48:872–897CrossRef Riehemann K, Schneider SW, Luger TA et al (2009) Nanomedicine-challenge and perspectives. Angew Chem Int Ed Engl 48:872–897CrossRef
Zurück zum Zitat Sahu A, Choi WI, Lee JH et al (2013) Graphene oxide mediated delivery of methylene blue for combined photodynamic and photothermal therapy. Biomaterials 34:6239–6248CrossRef Sahu A, Choi WI, Lee JH et al (2013) Graphene oxide mediated delivery of methylene blue for combined photodynamic and photothermal therapy. Biomaterials 34:6239–6248CrossRef
Zurück zum Zitat Shams M, Owczarczak B, Manderscheid-Kern P (2015) Development of photodynamic therapy regimens that control primary tumor growth and inhibit secondary disease. Cancer Immunol Immunother 64:287–297CrossRef Shams M, Owczarczak B, Manderscheid-Kern P (2015) Development of photodynamic therapy regimens that control primary tumor growth and inhibit secondary disease. Cancer Immunol Immunother 64:287–297CrossRef
Zurück zum Zitat Sheng ZH, Song L, Zheng JX et al (2013) Protein-assisted fabrication of nano-reduced graphene oxide for combined in vivo photoacoustic imaging and photothermal therapy. Biomaterials 34:5236–5243CrossRef Sheng ZH, Song L, Zheng JX et al (2013) Protein-assisted fabrication of nano-reduced graphene oxide for combined in vivo photoacoustic imaging and photothermal therapy. Biomaterials 34:5236–5243CrossRef
Zurück zum Zitat Shi JJ, Wang BH, Wang L et al (2016) Fullerene (C60)-based tumor-targeting nanoparticles with “off-on” state for enhanced treatment of cancer. J Control Release 235:245–258CrossRef Shi JJ, Wang BH, Wang L et al (2016) Fullerene (C60)-based tumor-targeting nanoparticles with “off-on” state for enhanced treatment of cancer. J Control Release 235:245–258CrossRef
Zurück zum Zitat Tian B, Wang C, Zhang S (2011) Photothermally enhanced photodynamic therapy delivered by nano-graphene oxide. ACS Nano 5:7000–7009CrossRef Tian B, Wang C, Zhang S (2011) Photothermally enhanced photodynamic therapy delivered by nano-graphene oxide. ACS Nano 5:7000–7009CrossRef
Zurück zum Zitat Veiseh M, Breadner D, Ma J et al (2012) Imaging of homeostatic, neoplastic, and injured tissues by HA-based probes. Biomacromolecules 13:12–22CrossRef Veiseh M, Breadner D, Ma J et al (2012) Imaging of homeostatic, neoplastic, and injured tissues by HA-based probes. Biomacromolecules 13:12–22CrossRef
Zurück zum Zitat Wang AT, Liang DS, Liu YJ et al (2015) Roles of ligand and TPGS of micelles in regulating internalization, penetration and accumulation against sensitive or resistant tumor and therapy for multidrug resistant tumors. Biomaterials 53:160–172CrossRef Wang AT, Liang DS, Liu YJ et al (2015) Roles of ligand and TPGS of micelles in regulating internalization, penetration and accumulation against sensitive or resistant tumor and therapy for multidrug resistant tumors. Biomaterials 53:160–172CrossRef
Zurück zum Zitat Wong BS, Yoong SL, Jagusiak A et al (2013) Carbon nanotubes for delivery of small molecule drugs. Adv Drug Deliv Rev 65:1964–2015CrossRef Wong BS, Yoong SL, Jagusiak A et al (2013) Carbon nanotubes for delivery of small molecule drugs. Adv Drug Deliv Rev 65:1964–2015CrossRef
Zurück zum Zitat Yang DZ, Feng LZ, Dougherty CA et al (2016) In vivo targeting of metastatic breast cancer via tumor vasculature-specific nano-graphene oxide. Biomaterials 104:361–371CrossRef Yang DZ, Feng LZ, Dougherty CA et al (2016) In vivo targeting of metastatic breast cancer via tumor vasculature-specific nano-graphene oxide. Biomaterials 104:361–371CrossRef
Zurück zum Zitat Zhang HJ, Hou L, Jiao XJ et al (2015) Transferrin-mediated fullerenes nanoparticles as Fe2+-dependent drug vehicles for synergistic anti-tumor efficacy. Biomaterials 37:353–366CrossRef Zhang HJ, Hou L, Jiao XJ et al (2015) Transferrin-mediated fullerenes nanoparticles as Fe2+-dependent drug vehicles for synergistic anti-tumor efficacy. Biomaterials 37:353–366CrossRef
Zurück zum Zitat Zhang YF, He LY, Wu J et al (2016) Switchable PDT for reducing skin photosensitization by a NIR dye inducing self-assembled and photo-disassembled nanoparticles. Biomaterials 107:23–32CrossRef Zhang YF, He LY, Wu J et al (2016) Switchable PDT for reducing skin photosensitization by a NIR dye inducing self-assembled and photo-disassembled nanoparticles. Biomaterials 107:23–32CrossRef
Zurück zum Zitat Zhou MJ, Zhang XJ, Yang YL et al (2013) Carrier-free functionalized multidrug nanorods for synergistic cancer therapy. Biomaterials 34:8960–8967CrossRef Zhou MJ, Zhang XJ, Yang YL et al (2013) Carrier-free functionalized multidrug nanorods for synergistic cancer therapy. Biomaterials 34:8960–8967CrossRef
Metadaten
Titel
In vitro and in vivo comparative study of the phototherapy anticancer activity of hyaluronic acid-modified single-walled carbon nanotubes, graphene oxide, and fullerene
verfasst von
Lin Hou
Yujie Yuan
Junxiao Ren
Yinling Zhang
Yongchao Wang
Xiaoning Shan
Qi Liu
Zhenzhong Zhang
Publikationsdatum
01.08.2017
Verlag
Springer Netherlands
Erschienen in
Journal of Nanoparticle Research / Ausgabe 8/2017
Print ISSN: 1388-0764
Elektronische ISSN: 1572-896X
DOI
https://doi.org/10.1007/s11051-017-3977-5

Weitere Artikel der Ausgabe 8/2017

Journal of Nanoparticle Research 8/2017 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.