Skip to main content
Erschienen in: Neural Processing Letters 3/2018

02.02.2018

Automatic Tumor Segmentation with Deep Convolutional Neural Networks for Radiotherapy Applications

verfasst von: Yan Wang, Chen Zu, Guangliang Hu, Yong Luo, Zongqing Ma, Kun He, Xi Wu, Jiliu Zhou

Erschienen in: Neural Processing Letters | Ausgabe 3/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Accurate tumor delineation in medical images is of great importance in guiding radiotherapy. In nasopharyngeal carcinoma (NPC), due to its high variability, low contrast and discontinuous boundaries in magnetic resonance images (MRI), the margin of the tumor is especially difficult to be identified, making the radiotherapy planning a more challenging problem. The objective of this paper is to develop an automatic segmentation method of NPC in MRI for radiosurgery applications. To this end, we present to segment NPC using a deep convolutional neural network. Specifically, to obtain spatial consistency as well as accurate feature details for segmentation, multiple convolution kernel sizes are employed. The network contains a large number of trainable parameters which capture the relationship between the MRI intensity images and the corresponding label maps. When trained on subjects with pre-labeled MRI, the network can estimate the label class of each voxel for the testing subject which is only given the intensity image. To demonstrate the segmentation performance, we carry on our method on the T1-weighted images of 15 NPC patients, and compare the segmentation results against the radiologist’s reference outline. Experimental results show that the proposed method outperforms the traditional hand-crafted features based segmentation methods. The presented method in this paper could be useful for NPC diagnosis and helpful for guiding radiotherapy.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Stewart BWKP, Wild CP (2014) World cancer report Stewart BWKP, Wild CP (2014) World cancer report
2.
Zurück zum Zitat Chang ET, Adami HO (2006) The enigmatic epidemiology of nasopharyngeal carcinoma. Cancer Epidemiol Biomark Prev 15(10):1765–1777CrossRef Chang ET, Adami HO (2006) The enigmatic epidemiology of nasopharyngeal carcinoma. Cancer Epidemiol Biomark Prev 15(10):1765–1777CrossRef
3.
Zurück zum Zitat Parkin D, Bray F, Ferlay J, Pisani P (2005) Global cancer statistics. CA Cancer J Clin 55:74–108CrossRef Parkin D, Bray F, Ferlay J, Pisani P (2005) Global cancer statistics. CA Cancer J Clin 55:74–108CrossRef
4.
Zurück zum Zitat Bertolino A, Frye M, Callicott JH, Mattay VS, Rakow R, Shelton-Repella J et al (2003) Neuronal pathology in the hippocampal area of patients with bipolar disorder: a study with proton magnetic resonance spectroscopic imaging. Biol Psychiatry 53(10):1177–1194CrossRef Bertolino A, Frye M, Callicott JH, Mattay VS, Rakow R, Shelton-Repella J et al (2003) Neuronal pathology in the hippocampal area of patients with bipolar disorder: a study with proton magnetic resonance spectroscopic imaging. Biol Psychiatry 53(10):1177–1194CrossRef
5.
Zurück zum Zitat Lodi R, Tonon PC, Manners D, Capellari S, Strammiello R, Rinaldi R et al (2009) Magnetic resonance diagnostic markers in clinically sporadic prion disease: a combined brain magnetic resonance imaging and spectroscopy study. Brain 132(Pt10):2669–79CrossRef Lodi R, Tonon PC, Manners D, Capellari S, Strammiello R, Rinaldi R et al (2009) Magnetic resonance diagnostic markers in clinically sporadic prion disease: a combined brain magnetic resonance imaging and spectroscopy study. Brain 132(Pt10):2669–79CrossRef
6.
Zurück zum Zitat Satoh T, Omi M, Nabeshima M, Onoda K, Date I (2009) Severity analysis of neurovascular contact in patients with trigeminal neuralgia: assessment with the inner view of the 3D MR cisternogram and angiogram fusion imaging. Am J Neuroradiol 30(3):603–7CrossRef Satoh T, Omi M, Nabeshima M, Onoda K, Date I (2009) Severity analysis of neurovascular contact in patients with trigeminal neuralgia: assessment with the inner view of the 3D MR cisternogram and angiogram fusion imaging. Am J Neuroradiol 30(3):603–7CrossRef
7.
Zurück zum Zitat Wang Y, Zhang P, An L, Ma G, Kang J, Wu X et al (2016) Predicting standard-dose pet image from low-dose pet and multimodal MR images using mapping-based sparse representation. Phys Med Biol 61(2):791–812CrossRef Wang Y, Zhang P, An L, Ma G, Kang J, Wu X et al (2016) Predicting standard-dose pet image from low-dose pet and multimodal MR images using mapping-based sparse representation. Phys Med Biol 61(2):791–812CrossRef
8.
Zurück zum Zitat Huang KW, Zhao ZY, Gong Q, Zha J, Chen L, Yang R (2015) Nasopharyngeal carcinoma segmentation via HMRF-EM with maximum entropy. Eng Med Biol Soc 2015:2968 Huang KW, Zhao ZY, Gong Q, Zha J, Chen L, Yang R (2015) Nasopharyngeal carcinoma segmentation via HMRF-EM with maximum entropy. Eng Med Biol Soc 2015:2968
9.
Zurück zum Zitat Gao Y, Zhang H, Zhao X, Yan S (2017) Event classification in microblogs via social tracking. ACM Trans Intell Syst Technol (TIST) 8(3):35 Gao Y, Zhang H, Zhao X, Yan S (2017) Event classification in microblogs via social tracking. ACM Trans Intell Syst Technol (TIST) 8(3):35
10.
Zurück zum Zitat Zu C, Wang Z, Zhang D, Liang P, Shi Y, Shen D, Wu G (2017) Robust multi-atlas label propagation by deep sparse representation. Pattern Recogn 63:511–517CrossRef Zu C, Wang Z, Zhang D, Liang P, Shi Y, Shen D, Wu G (2017) Robust multi-atlas label propagation by deep sparse representation. Pattern Recogn 63:511–517CrossRef
11.
Zurück zum Zitat Gao Y, Wang M, Tao D, Ji R, Dai Q (2012) 3-D object retrieval and recognition with hypergraph analysis. IEEE Trans Image Process 21(9):4290–4303MathSciNetCrossRef Gao Y, Wang M, Tao D, Ji R, Dai Q (2012) 3-D object retrieval and recognition with hypergraph analysis. IEEE Trans Image Process 21(9):4290–4303MathSciNetCrossRef
12.
Zurück zum Zitat Chen L, Chen L, Cui L, Cui L, Huang R, Huang R, Ren Z (2016) Bio-inspired neural network with application to license plate recognition: hysteretic ELM approach. Assembly Autom 36(2):172–178CrossRef Chen L, Chen L, Cui L, Cui L, Huang R, Huang R, Ren Z (2016) Bio-inspired neural network with application to license plate recognition: hysteretic ELM approach. Assembly Autom 36(2):172–178CrossRef
13.
Zurück zum Zitat Shi J, Zheng X, Li Y, Zhang Q, Ying S (2017) Multimodal neuroimaging feature learning with multimodal stacked deep polynomial networks for diagnosis of Alzheimer’s disease. IEEE J Biomed Health Inform 22(1):173–183CrossRef Shi J, Zheng X, Li Y, Zhang Q, Ying S (2017) Multimodal neuroimaging feature learning with multimodal stacked deep polynomial networks for diagnosis of Alzheimer’s disease. IEEE J Biomed Health Inform 22(1):173–183CrossRef
14.
Zurück zum Zitat Shi J, Wu J, Li Y, Zhang Q, Ying S (2017) Histopathological image classification with color pattern random binary hashing based PCANet and matrix-form classifier. IEEE J Biomed Health Inform 21(5):1327–1337CrossRef Shi J, Wu J, Li Y, Zhang Q, Ying S (2017) Histopathological image classification with color pattern random binary hashing based PCANet and matrix-form classifier. IEEE J Biomed Health Inform 21(5):1327–1337CrossRef
16.
Zurück zum Zitat Ramirez-Quintana JA, Chacon-Murguia MI (2015) An adaptive unsupervised neural network based on perceptual mechanism for dynamic object detection in videos with real scenarios. Neural Process Lett 42(3):665–689CrossRef Ramirez-Quintana JA, Chacon-Murguia MI (2015) An adaptive unsupervised neural network based on perceptual mechanism for dynamic object detection in videos with real scenarios. Neural Process Lett 42(3):665–689CrossRef
17.
Zurück zum Zitat Brendel M, Roska T, Bártfai G (2002) Gradient computation of continuous-time cellular neural/nonlinear networks with linear templates via the CNN universal machine. Neural Process Lett 16(2):111–120CrossRef Brendel M, Roska T, Bártfai G (2002) Gradient computation of continuous-time cellular neural/nonlinear networks with linear templates via the CNN universal machine. Neural Process Lett 16(2):111–120CrossRef
18.
Zurück zum Zitat Pereira S, Pinto A, Alves V, Silva CA (2016) Brain tumor segmentation using convolutional neural networks in MRI images. IEEE Trans Med Imaging 35(5):1240–1251CrossRef Pereira S, Pinto A, Alves V, Silva CA (2016) Brain tumor segmentation using convolutional neural networks in MRI images. IEEE Trans Med Imaging 35(5):1240–1251CrossRef
19.
Zurück zum Zitat Zhang Y, Zhao D, Sun J, Zou G, Li W (2016) Adaptive convolutional neural network and its application in face recognition. Neural Process Lett 43(2):389–399CrossRef Zhang Y, Zhao D, Sun J, Zou G, Li W (2016) Adaptive convolutional neural network and its application in face recognition. Neural Process Lett 43(2):389–399CrossRef
20.
Zurück zum Zitat Zhang W, Li R, Deng H, Wang L, Lin W, Ji S et al (2015) Deep convolutional neural networks for multi-modality isointense infant brain image segmentation. Neuroimage 108:214–224CrossRef Zhang W, Li R, Deng H, Wang L, Lin W, Ji S et al (2015) Deep convolutional neural networks for multi-modality isointense infant brain image segmentation. Neuroimage 108:214–224CrossRef
21.
Zurück zum Zitat Brebisson AD, Montana G (2015) Deep neural networks for anatomical brain segmentation. In: CVPR bioimage computing workshop, vol 35, pp 20–28 Brebisson AD, Montana G (2015) Deep neural networks for anatomical brain segmentation. In: CVPR bioimage computing workshop, vol 35, pp 20–28
22.
Zurück zum Zitat Zikic D, Ioannou Y, Brown M, Criminisi A (2014) Segmentation of brain tumor tissues with convolutional neural networks. In: MICCAI workshop on multimodal brain tumor segmentation challenge, pp 36–39 Zikic D, Ioannou Y, Brown M, Criminisi A (2014) Segmentation of brain tumor tissues with convolutional neural networks. In: MICCAI workshop on multimodal brain tumor segmentation challenge, pp 36–39
23.
Zurück zum Zitat Rao V, Sharifi M, Jaiswal A (2015) Brain tumor segmentation with deep learning. In: MICCAI multimodal brain tumor segmentation challenge, pp 56–59 Rao V, Sharifi M, Jaiswal A (2015) Brain tumor segmentation with deep learning. In: MICCAI multimodal brain tumor segmentation challenge, pp 56–59
24.
Zurück zum Zitat Fitton I, Cornelissen SAP, Duppen JC, Steenbakkers RJHM, Peeters STH, Hoebers FJP et al (2011) Semi- automatic delineation using weighted CT-MRI registered images for radiotherapy of nasopharyngeal cancer. Med Phys 38(8):4662–4666CrossRef Fitton I, Cornelissen SAP, Duppen JC, Steenbakkers RJHM, Peeters STH, Hoebers FJP et al (2011) Semi- automatic delineation using weighted CT-MRI registered images for radiotherapy of nasopharyngeal cancer. Med Phys 38(8):4662–4666CrossRef
25.
Zurück zum Zitat Huang KW, Zhao ZY, Gong Q, Zha J, Chen L, Yang R (2015) Nasopharyngeal carcinoma segmentation via HMRF-EM with maximum entropy. In: Engineering in Medicine and Biology Society, vol 2015, pp 2968 Huang KW, Zhao ZY, Gong Q, Zha J, Chen L, Yang R (2015) Nasopharyngeal carcinoma segmentation via HMRF-EM with maximum entropy. In: Engineering in Medicine and Biology Society, vol 2015, pp 2968
26.
Zurück zum Zitat Lee FK, Yeung DK, King AD, Leung SF, Ahuja A (2005) Segmentation of nasopharyngeal carcinoma (NPC) lesions in MR images. Int J Radiat Oncol Biol Phys 61(2):608–620CrossRef Lee FK, Yeung DK, King AD, Leung SF, Ahuja A (2005) Segmentation of nasopharyngeal carcinoma (NPC) lesions in MR images. Int J Radiat Oncol Biol Phys 61(2):608–620CrossRef
27.
Zurück zum Zitat Ritthipravat P, Tatanun C, Bhongmakapat T, Tuntiyatorn L (2008) Automatic segmentation of nasopharyngeal carcinoma from CT images. Int Conf Biomed Eng Inform 2:18–22 Ritthipravat P, Tatanun C, Bhongmakapat T, Tuntiyatorn L (2008) Automatic segmentation of nasopharyngeal carcinoma from CT images. Int Conf Biomed Eng Inform 2:18–22
28.
Zurück zum Zitat Chanapai W, Bhongmakapat T, Tuntiyatorn L, Ritthipravat P (2012) Nasopharyngeal carcinoma segmentation using a region growing technique. Int J Comput Assist Radiol Surg 7(3):413–422CrossRef Chanapai W, Bhongmakapat T, Tuntiyatorn L, Ritthipravat P (2012) Nasopharyngeal carcinoma segmentation using a region growing technique. Int J Comput Assist Radiol Surg 7(3):413–422CrossRef
29.
Zurück zum Zitat Hong R, Ye S (2014) Segmentation of nasopharyngeal MR medical image base on improved region growing. J Fuzhou Univ (Nat Sci Edn) 42(5):683–688 Hong R, Ye S (2014) Segmentation of nasopharyngeal MR medical image base on improved region growing. J Fuzhou Univ (Nat Sci Edn) 42(5):683–688
30.
Zurück zum Zitat Zhang J, Ma KK, Meng HE, Chong V (2004) Tumor segmentation from magnetic resonance imaging by learning via one-class support vector machine. In: International workshop on advanced image technology, pp 207–211 Zhang J, Ma KK, Meng HE, Chong V (2004) Tumor segmentation from magnetic resonance imaging by learning via one-class support vector machine. In: International workshop on advanced image technology, pp 207–211
31.
Zurück zum Zitat Zhou J, Chan KL, Xu P, Chong VFH (2006) Nasopharyngeal carcinoma lesion segmentation from MR images by support vector machine. In: IEEE international symposium on biomedical imaging: nano to macro, pp 1364–1367 Zhou J, Chan KL, Xu P, Chong VFH (2006) Nasopharyngeal carcinoma lesion segmentation from MR images by support vector machine. In: IEEE international symposium on biomedical imaging: nano to macro, pp 1364–1367
32.
Zurück zum Zitat Zhou J, Chong V, Lim TK, Houng J (2002) MRI tumor segmentation for nasopharyngeal carcinoma using knowledge-based fuzzy clustering. Int J Inf Technol 8(2):36–45 Zhou J, Chong V, Lim TK, Houng J (2002) MRI tumor segmentation for nasopharyngeal carcinoma using knowledge-based fuzzy clustering. Int J Inf Technol 8(2):36–45
33.
Zurück zum Zitat Huang W, Chan KL, Zhou J (2013) Region-based nasopharyngeal carcinoma lesion segmentation from MRI using clustering-and classification-based methods with learning. J Digit Imaging 26(3):472–482CrossRef Huang W, Chan KL, Zhou J (2013) Region-based nasopharyngeal carcinoma lesion segmentation from MRI using clustering-and classification-based methods with learning. J Digit Imaging 26(3):472–482CrossRef
34.
Zurück zum Zitat Tustison NJ, Avants BB, Cook PA, Zheng Y, Egan A, Yushkevich PA et al (2010) N4ITK: improved N3 bias correction. IEEE Trans Med Imaging 29(6):1310–20CrossRef Tustison NJ, Avants BB, Cook PA, Zheng Y, Egan A, Yushkevich PA et al (2010) N4ITK: improved N3 bias correction. IEEE Trans Med Imaging 29(6):1310–20CrossRef
Metadaten
Titel
Automatic Tumor Segmentation with Deep Convolutional Neural Networks for Radiotherapy Applications
verfasst von
Yan Wang
Chen Zu
Guangliang Hu
Yong Luo
Zongqing Ma
Kun He
Xi Wu
Jiliu Zhou
Publikationsdatum
02.02.2018
Verlag
Springer US
Erschienen in
Neural Processing Letters / Ausgabe 3/2018
Print ISSN: 1370-4621
Elektronische ISSN: 1573-773X
DOI
https://doi.org/10.1007/s11063-017-9759-3

Weitere Artikel der Ausgabe 3/2018

Neural Processing Letters 3/2018 Zur Ausgabe

Neuer Inhalt