Skip to main content
Erschienen in: Quantum Information Processing 2/2016

01.02.2016

Performance of two different quantum annealing correction codes

verfasst von: Anurag Mishra, Tameem Albash, Daniel A. Lidar

Erschienen in: Quantum Information Processing | Ausgabe 2/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Quantum annealing is a promising approach for solving optimization problems, but like all other quantum information processing methods, it requires error correction to ensure scalability. In this work, we experimentally compare two quantum annealing correction (QAC) codes in the setting of antiferromagnetic chains, using two different quantum annealing processors. The lower-temperature processor gives rise to higher success probabilities. The two codes differ in a number of interesting and important ways, but both require four physical qubits per encoded qubit. We find significant performance differences, which we explain in terms of the effective energy boost provided by the respective redundantly encoded logical operators of the two codes. The code with the higher energy boost results in improved performance, at the expense of a lower-degree encoded graph. Therefore, we find that there exists an important trade-off between encoded connectivity and performance for quantum annealing correction codes.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Fußnoten
1
It was shown in Ref. [42] that in general this is related to the per-site percolation threshold of the encoded graph, though this is not relevant in the case of chains.
 
2
Both processors have meanwhile been dismantled.
 
3
See Ref. [41] for an analytically solvable model that exhibits an increased gap via this mechanism.
 
Literatur
1.
Zurück zum Zitat Kelly, J., Barends, R., Fowler, A.G., Megrant, A., Jeffrey, E., White, T.C., Sank, D., Mutus, J.Y., Campbell, B., Chen, Y., Chen, Z., Chiaro, B., Dunsworth, A., Hoi, I.C., Neill, C., O’Malley, P.J.J., Quintana, C., Roushan, P., Vainsencher, A., Wenner, J., Cleland, A.N., Martinis, J.M.: State preservation by repetitive error detection in a superconducting quantum circuit. Nature 519(7541), 66–69 (2015)CrossRefADS Kelly, J., Barends, R., Fowler, A.G., Megrant, A., Jeffrey, E., White, T.C., Sank, D., Mutus, J.Y., Campbell, B., Chen, Y., Chen, Z., Chiaro, B., Dunsworth, A., Hoi, I.C., Neill, C., O’Malley, P.J.J., Quintana, C., Roushan, P., Vainsencher, A., Wenner, J., Cleland, A.N., Martinis, J.M.: State preservation by repetitive error detection in a superconducting quantum circuit. Nature 519(7541), 66–69 (2015)CrossRefADS
2.
Zurück zum Zitat Corcoles, A.D., Magesan, E., Srinivasan, S.J., Cross, A.W., Steffen, M., Gambetta, J.M., Chow, J.M.: Demonstration of a quantum error detection code using a square lattice of four superconducting qubits. Nat. Commun. 6 (2015). doi:10.1038/ncomms7979 Corcoles, A.D., Magesan, E., Srinivasan, S.J., Cross, A.W., Steffen, M., Gambetta, J.M., Chow, J.M.: Demonstration of a quantum error detection code using a square lattice of four superconducting qubits. Nat. Commun. 6 (2015). doi:10.​1038/​ncomms7979
4.
5.
Zurück zum Zitat Barreiro, J.T., Muller, M., Schindler, P., Nigg, D., Monz, T., Chwalla, M., Hennrich, M., Roos, C.F., Zoller, P., Blatt, R.: An open-system quantum simulator with trapped ions. Nature 470(7335), 486–491 (2011)CrossRefADS Barreiro, J.T., Muller, M., Schindler, P., Nigg, D., Monz, T., Chwalla, M., Hennrich, M., Roos, C.F., Zoller, P., Blatt, R.: An open-system quantum simulator with trapped ions. Nature 470(7335), 486–491 (2011)CrossRefADS
10.
Zurück zum Zitat Kaminsky, W.M., Lloyd, S.: Scalable architecture for adiabatic quantum computing of NP-hard problems. In: Leggett, A., Ruggiero, B., Silvestrini, P. (eds.) Quantum Computing and Quantum Bits in Mesoscopic Systems. Kluwer Academic Publishers (2004). arXiv:quant-ph/0211152 Kaminsky, W.M., Lloyd, S.: Scalable architecture for adiabatic quantum computing of NP-hard problems. In: Leggett, A., Ruggiero, B., Silvestrini, P. (eds.) Quantum Computing and Quantum Bits in Mesoscopic Systems. Kluwer Academic Publishers (2004). arXiv:​quant-ph/​0211152
11.
Zurück zum Zitat Johnson, M.W., Amin, M.H.S., Gildert, S., Lanting, T., Hamze, F., Dickson, N., Harris, R., Berkley, A.J., Johansson, J., Bunyk, P., Chapple, E.M., Enderud, C., Hilton, J.P., Karimi, K., Ladizinsky, E., Ladizinsky, N., Oh, T., Perminov, I., Rich, C., Thom, M.C., Tolkacheva, E., Truncik, C.J.S., Uchaikin, S., Wang, J., Wilson, B., Rose, G.: Quantum annealing with manufactured spins. Nature 473(7346), 194–198 (2011). doi:10.1038/nature10012 CrossRefADS Johnson, M.W., Amin, M.H.S., Gildert, S., Lanting, T., Hamze, F., Dickson, N., Harris, R., Berkley, A.J., Johansson, J., Bunyk, P., Chapple, E.M., Enderud, C., Hilton, J.P., Karimi, K., Ladizinsky, E., Ladizinsky, N., Oh, T., Perminov, I., Rich, C., Thom, M.C., Tolkacheva, E., Truncik, C.J.S., Uchaikin, S., Wang, J., Wilson, B., Rose, G.: Quantum annealing with manufactured spins. Nature 473(7346), 194–198 (2011). doi:10.​1038/​nature10012 CrossRefADS
14.
Zurück zum Zitat Barahona, F.: On the computational complexity of Ising spin glass models. J. Phys. A Math. Gen. 15(10), 3241–3253 (1982)CrossRefADSMathSciNet Barahona, F.: On the computational complexity of Ising spin glass models. J. Phys. A Math. Gen. 15(10), 3241–3253 (1982)CrossRefADSMathSciNet
25.
Zurück zum Zitat Lidar, D., Brun, T. (eds.): Quantum Error Correction. Cambridge University Press, Cambridge (2013) Lidar, D., Brun, T. (eds.): Quantum Error Correction. Cambridge University Press, Cambridge (2013)
31.
Zurück zum Zitat Young, K.C., Sarovar, M., Blume-Kohout, R.: Error suppression and error correction in adiabatic quantum computation: techniques and challenges. Phys. Rev. X 3(4), 041013 (2013). doi:10.1103/PhysRevX.3.041013 Young, K.C., Sarovar, M., Blume-Kohout, R.: Error suppression and error correction in adiabatic quantum computation: techniques and challenges. Phys. Rev. X 3(4), 041013 (2013). doi:10.​1103/​PhysRevX.​3.​041013
34.
Zurück zum Zitat Aliferis, P., Gottesman, D., Preskill, J.: Quantum accuracy threshold for concatenated distance-3 codes. Quantum Inf. Comput. 6, 097–165 (2006)MathSciNet Aliferis, P., Gottesman, D., Preskill, J.: Quantum accuracy threshold for concatenated distance-3 codes. Quantum Inf. Comput. 6, 097–165 (2006)MathSciNet
35.
Zurück zum Zitat Knill, E.: Quantum computing with realistically noisy devices. Nature 434(7029), 39–44 (2005)CrossRefADS Knill, E.: Quantum computing with realistically noisy devices. Nature 434(7029), 39–44 (2005)CrossRefADS
37.
Zurück zum Zitat Johnson, M.W., Bunyk, P., Maibaum, F., Tolkacheva, E., Berkley, A.J., Chapple, E.M., Harris, R., Johansson, J., Lanting, T., Perminov, I., Ladizinsky, E., Oh, T., Rose, G.: A scalable control system for a superconducting adiabatic quantum optimization processor. Supercond. Sci. Technol. 23(6), 065004 (2010). doi:10.1088/0953-2048/23/6/065004 CrossRefADS Johnson, M.W., Bunyk, P., Maibaum, F., Tolkacheva, E., Berkley, A.J., Chapple, E.M., Harris, R., Johansson, J., Lanting, T., Perminov, I., Ladizinsky, E., Oh, T., Rose, G.: A scalable control system for a superconducting adiabatic quantum optimization processor. Supercond. Sci. Technol. 23(6), 065004 (2010). doi:10.​1088/​0953-2048/​23/​6/​065004 CrossRefADS
38.
Zurück zum Zitat Berkley, A.J., Johnson, M.W., Bunyk, P., Harris, R., Johansson, J., Lanting, T., Ladizinsky, E., Tolkacheva, E., Amin, M.H.S., Rose, G.: A scalable readout system for a superconducting adiabatic quantum optimization system. Supercond. Sci. Technol. 23(10), 105014 (2010). doi:10.1088/0953-2048/23/10/105014 CrossRefADS Berkley, A.J., Johnson, M.W., Bunyk, P., Harris, R., Johansson, J., Lanting, T., Ladizinsky, E., Tolkacheva, E., Amin, M.H.S., Rose, G.: A scalable readout system for a superconducting adiabatic quantum optimization system. Supercond. Sci. Technol. 23(10), 105014 (2010). doi:10.​1088/​0953-2048/​23/​10/​105014 CrossRefADS
39.
Zurück zum Zitat Harris, R., Johnson, M.W., Lanting, T., Berkley, A.J., Johansson, J., Bunyk, P., Tolkacheva, E., Ladizinsky, E., Ladizinsky, N., Oh, T., Cioata, F., Perminov, I., Spear, P., Enderud, C., Rich, C., Uchaikin, S., Thom, M.C., Chapple, E.M., Wang, J., Wilson, B., Amin, M.H.S., Dickson, N., Karimi, K., Macready, B., Truncik, C.J.S., Rose, G.: Experimental investigation of an eight-qubit unit cell in a superconducting optimization processor. Phys. Rev. B 82, 024511 (2010). doi:10.1103/PhysRevB.82.024511 CrossRefADS Harris, R., Johnson, M.W., Lanting, T., Berkley, A.J., Johansson, J., Bunyk, P., Tolkacheva, E., Ladizinsky, E., Ladizinsky, N., Oh, T., Cioata, F., Perminov, I., Spear, P., Enderud, C., Rich, C., Uchaikin, S., Thom, M.C., Chapple, E.M., Wang, J., Wilson, B., Amin, M.H.S., Dickson, N., Karimi, K., Macready, B., Truncik, C.J.S., Rose, G.: Experimental investigation of an eight-qubit unit cell in a superconducting optimization processor. Phys. Rev. B 82, 024511 (2010). doi:10.​1103/​PhysRevB.​82.​024511 CrossRefADS
44.
Zurück zum Zitat Rønnow, T.F., Wang, Z., Job, J., Boixo, S., Isakov, S.V., Wecker, D., Martinis, J.M., Lidar, D.A., Troyer, M.: Defining and detecting quantum speedup. Science 345(6195), 420–424 (2014). doi:10.1126/science.1252319 CrossRefADS Rønnow, T.F., Wang, Z., Job, J., Boixo, S., Isakov, S.V., Wecker, D., Martinis, J.M., Lidar, D.A., Troyer, M.: Defining and detecting quantum speedup. Science 345(6195), 420–424 (2014). doi:10.​1126/​science.​1252319 CrossRefADS
45.
47.
Zurück zum Zitat Reed, M.D., Dicarlo, L., Nigg, S.E., Sun, L., Frunzio, L., Girvin, S.M., Schoelkopf, R.J.: Realization of three-qubit quantum error correction with superconducting circuits. Nature 482, 382–385 (2012). doi:10.1038/nature10786 CrossRefADS Reed, M.D., Dicarlo, L., Nigg, S.E., Sun, L., Frunzio, L., Girvin, S.M., Schoelkopf, R.J.: Realization of three-qubit quantum error correction with superconducting circuits. Nature 482, 382–385 (2012). doi:10.​1038/​nature10786 CrossRefADS
Metadaten
Titel
Performance of two different quantum annealing correction codes
verfasst von
Anurag Mishra
Tameem Albash
Daniel A. Lidar
Publikationsdatum
01.02.2016
Verlag
Springer US
Erschienen in
Quantum Information Processing / Ausgabe 2/2016
Print ISSN: 1570-0755
Elektronische ISSN: 1573-1332
DOI
https://doi.org/10.1007/s11128-015-1201-z

Weitere Artikel der Ausgabe 2/2016

Quantum Information Processing 2/2016 Zur Ausgabe

Neuer Inhalt