Skip to main content
Erschienen in: Quantum Information Processing 10/2016

01.10.2016

Generation of atomic NOON states via shortcuts to adiabatic passage

verfasst von: Chong Song, Shi-Lei Su, Cheng-Hua Bai, Xin Ji, Shou Zhang

Erschienen in: Quantum Information Processing | Ausgabe 10/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Based on Lewis–Riesenfeld invariants and quantum Zeno dynamics, we propose an effective scheme for generating atomic NOON states via shortcuts to adiabatic passage. The photon losses are efficiently suppressed by engineering shortcuts to adiabatic passage in the scheme. The numerical simulation shows that the atomic NOON states can be generated with high fidelity.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Bennett, C.H., Wiesner, S.J.: Communication via one- and two-particle operators on Einstein–Podolsky–Rosen states. Phys. Rev. Lett. 69, 2881–2884 (1992)ADSMathSciNetCrossRefMATH Bennett, C.H., Wiesner, S.J.: Communication via one- and two-particle operators on Einstein–Podolsky–Rosen states. Phys. Rev. Lett. 69, 2881–2884 (1992)ADSMathSciNetCrossRefMATH
2.
Zurück zum Zitat Mattle, K., Weinfurter, H., Kwiat, P.G., Zeilinger, A.: Dense coding in experimental quantum communication. Phys. Rev. Lett. 76, 4656–4659 (1996)ADSCrossRef Mattle, K., Weinfurter, H., Kwiat, P.G., Zeilinger, A.: Dense coding in experimental quantum communication. Phys. Rev. Lett. 76, 4656–4659 (1996)ADSCrossRef
3.
Zurück zum Zitat Zheng, S.B., Guo, G.C.: Efficient scheme for two-atom entanglement and quantum information processing in cavity QED. Phys. Rev. Lett. 85, 2392 (2000)ADSCrossRef Zheng, S.B., Guo, G.C.: Efficient scheme for two-atom entanglement and quantum information processing in cavity QED. Phys. Rev. Lett. 85, 2392 (2000)ADSCrossRef
4.
Zurück zum Zitat Vidal, G.: Efficient classical simulation of slightly entangled quantum computations. Phys. Rev. Lett. 91, 147902 (2003)ADSCrossRef Vidal, G.: Efficient classical simulation of slightly entangled quantum computations. Phys. Rev. Lett. 91, 147902 (2003)ADSCrossRef
5.
Zurück zum Zitat Bell, J.S.: On the Einstein–Podolsky–Rosen paradox. Physics 1, 195–200 (1964) Bell, J.S.: On the Einstein–Podolsky–Rosen paradox. Physics 1, 195–200 (1964)
6.
7.
8.
9.
10.
Zurück zum Zitat Boto, A.N., Kok, P., Abrams, D.S., Braunstein, S.L., Williams, C.P., Dowling, J.P.: Quantum interferometric optical lithography: exploiting entanglement to beat the diffraction limit. Phys. Rev. Lett. 85, 2733 (2000)ADSCrossRef Boto, A.N., Kok, P., Abrams, D.S., Braunstein, S.L., Williams, C.P., Dowling, J.P.: Quantum interferometric optical lithography: exploiting entanglement to beat the diffraction limit. Phys. Rev. Lett. 85, 2733 (2000)ADSCrossRef
11.
Zurück zum Zitat Mitchell, M.W., Lundeen, J.S., Steinberg, A.M.: Super-resolving phase measurements with a multiphoton entangled state. Nature 429, 161–164 (2004)ADSCrossRef Mitchell, M.W., Lundeen, J.S., Steinberg, A.M.: Super-resolving phase measurements with a multiphoton entangled state. Nature 429, 161–164 (2004)ADSCrossRef
12.
Zurück zum Zitat Dowling, J.P.: Quantum optical metrology-the lowdown on high-NOON states. Contemp. Phys. 49, 125–143 (2008)ADSCrossRef Dowling, J.P.: Quantum optical metrology-the lowdown on high-NOON states. Contemp. Phys. 49, 125–143 (2008)ADSCrossRef
13.
Zurück zum Zitat Nikoghosyan, G., Hartmann, M.J., Plenio, M.B.: Generation of mesoscopic entangled states in a cavity coupled to an atomic ensemble. Phys. Rev. Lett. 108, 123603 (2012)ADSCrossRef Nikoghosyan, G., Hartmann, M.J., Plenio, M.B.: Generation of mesoscopic entangled states in a cavity coupled to an atomic ensemble. Phys. Rev. Lett. 108, 123603 (2012)ADSCrossRef
14.
Zurück zum Zitat D’Angelo, M., Chekhova, M.V., Shih, Y.: Two-photon diffraction and quantum lithography. Phys. Rev. Lett. 87, 013602 (2001)ADSCrossRef D’Angelo, M., Chekhova, M.V., Shih, Y.: Two-photon diffraction and quantum lithography. Phys. Rev. Lett. 87, 013602 (2001)ADSCrossRef
15.
Zurück zum Zitat Edamatsu, K., Shimizu, R., Itoh, T.: Measurement of the photonic de Broglie wavelength of entangled photon pairs generated by spontaneous parametric down-conversion. Phys. Rev. Lett. 89, 213601 (2002)ADSCrossRef Edamatsu, K., Shimizu, R., Itoh, T.: Measurement of the photonic de Broglie wavelength of entangled photon pairs generated by spontaneous parametric down-conversion. Phys. Rev. Lett. 89, 213601 (2002)ADSCrossRef
16.
Zurück zum Zitat Glasser, R.T., Cable, H., Dowling, J.P.: Entanglement-seeded, dual, optical parametric amplification: applications to quantum imaging and metrology. Phys. Rev. A 78, 012339 (2008)ADSCrossRef Glasser, R.T., Cable, H., Dowling, J.P.: Entanglement-seeded, dual, optical parametric amplification: applications to quantum imaging and metrology. Phys. Rev. A 78, 012339 (2008)ADSCrossRef
17.
Zurück zum Zitat Kok, P., Lee, H., Dowling, J.P.: Creation of large-photon-number path entanglement conditioned on photodetection. Phys. Rev. A 65, 052104 (2002)ADSCrossRef Kok, P., Lee, H., Dowling, J.P.: Creation of large-photon-number path entanglement conditioned on photodetection. Phys. Rev. A 65, 052104 (2002)ADSCrossRef
18.
Zurück zum Zitat Harris, S.E., Yamamoto, Y.: Photon switching by quantum interference. Phys. Rev. Lett. 81, 3611 (1998)ADSCrossRef Harris, S.E., Yamamoto, Y.: Photon switching by quantum interference. Phys. Rev. Lett. 81, 3611 (1998)ADSCrossRef
19.
Zurück zum Zitat Parkins, A.S., Marte, P., Zoller, P., Carnal, O., Kimble, H.J.: Quantum-state mapping between multilevel atoms and cavity light fields. Phys. Rev. A 51, 1578 (1995)ADSCrossRef Parkins, A.S., Marte, P., Zoller, P., Carnal, O., Kimble, H.J.: Quantum-state mapping between multilevel atoms and cavity light fields. Phys. Rev. A 51, 1578 (1995)ADSCrossRef
20.
Zurück zum Zitat Raimond, J.M., Brune, M., Haroche, S.: Manipulating quantum entanglement with atoms and photons in a cavity. Rev. Mod. Phys. 73, 565 (2001)ADSMathSciNetCrossRefMATH Raimond, J.M., Brune, M., Haroche, S.: Manipulating quantum entanglement with atoms and photons in a cavity. Rev. Mod. Phys. 73, 565 (2001)ADSMathSciNetCrossRefMATH
21.
Zurück zum Zitat Zhong, Z.R.: A simplified scheme for realizing multi-atom NOON state. Opt. Commun. 283, 189–191 (2010)ADSCrossRef Zhong, Z.R.: A simplified scheme for realizing multi-atom NOON state. Opt. Commun. 283, 189–191 (2010)ADSCrossRef
22.
Zurück zum Zitat Bertet, P., Osnaghi, S., Milman, P., Auffeves, A., Maioli, P., Brune, M., Haroche, S.: Generating and probing a two-photon Fock state with a single atom in a cavity. Phys. Rev. Lett. 88, 143601 (2002)ADSCrossRef Bertet, P., Osnaghi, S., Milman, P., Auffeves, A., Maioli, P., Brune, M., Haroche, S.: Generating and probing a two-photon Fock state with a single atom in a cavity. Phys. Rev. Lett. 88, 143601 (2002)ADSCrossRef
23.
Zurück zum Zitat Auffeves, A., Maioli, P., Meunier, T., Gleyzes, S., Nogues, G., Brune, M., Haroche, S.: Entanglement of a mesoscopic field with an atom induced by photon graininess in a cavity. Phys. Rev. Lett. 91, 230405 (2003)ADSCrossRef Auffeves, A., Maioli, P., Meunier, T., Gleyzes, S., Nogues, G., Brune, M., Haroche, S.: Entanglement of a mesoscopic field with an atom induced by photon graininess in a cavity. Phys. Rev. Lett. 91, 230405 (2003)ADSCrossRef
24.
Zurück zum Zitat Meunier, T., Gleyzes, S., Maioli, P., Auffeves, A., Nogues, G., Brune, M., Haroche, S.: Rabi oscillations revival induced by time reversal: a test of mesoscopic quantum coherence. Phys. Rev. Lett. 94, 010401 (2005)ADSCrossRef Meunier, T., Gleyzes, S., Maioli, P., Auffeves, A., Nogues, G., Brune, M., Haroche, S.: Rabi oscillations revival induced by time reversal: a test of mesoscopic quantum coherence. Phys. Rev. Lett. 94, 010401 (2005)ADSCrossRef
25.
Zurück zum Zitat Osnaghi, S., Bertet, P., Auffeves, A., Maioli, P., Brune, M., Raimond, J.M., Haroche, S.: Coherent control of an atomic collision in a cavity. Phys. Rev. Lett. 87, 037902 (2001)ADSCrossRef Osnaghi, S., Bertet, P., Auffeves, A., Maioli, P., Brune, M., Raimond, J.M., Haroche, S.: Coherent control of an atomic collision in a cavity. Phys. Rev. Lett. 87, 037902 (2001)ADSCrossRef
26.
Zurück zum Zitat Haroche, S.: Entanglement experiments in cavity QED. Fortsch. Phys. 51, 388–395 (2003)ADSCrossRef Haroche, S.: Entanglement experiments in cavity QED. Fortsch. Phys. 51, 388–395 (2003)ADSCrossRef
27.
Zurück zum Zitat Vitanov, N.V., Suominen, K.A., Shore, B.W.: Creation of coherent atomic superpositions by fractional stimulated Raman adiabatic passage. J. Phys. B At. Mol. Opt. Phys. 32, 4535–4546 (1999)ADSCrossRef Vitanov, N.V., Suominen, K.A., Shore, B.W.: Creation of coherent atomic superpositions by fractional stimulated Raman adiabatic passage. J. Phys. B At. Mol. Opt. Phys. 32, 4535–4546 (1999)ADSCrossRef
28.
Zurück zum Zitat Gong, S.Q., Unanyan, R., Bergmann, K.: Preparation of Fock states and quantum entanglement via stimulated Raman adiabatic passage using a four-level atom. Eur. Phys. J. D 19, 257–262 (2002)ADS Gong, S.Q., Unanyan, R., Bergmann, K.: Preparation of Fock states and quantum entanglement via stimulated Raman adiabatic passage using a four-level atom. Eur. Phys. J. D 19, 257–262 (2002)ADS
29.
Zurück zum Zitat Chen, L.B., Ye, M.Y., Lin, G.W., Du, Q.H., Lin, X.M.: Generation of entanglement via adiabatic passage. Phys. Rev. A 76, 062304 (2007)ADSMathSciNetCrossRef Chen, L.B., Ye, M.Y., Lin, G.W., Du, Q.H., Lin, X.M.: Generation of entanglement via adiabatic passage. Phys. Rev. A 76, 062304 (2007)ADSMathSciNetCrossRef
30.
Zurück zum Zitat Liu, Q.G., Wu, Q.C., Leng, C.L., Liang, Y., Ji, X., Zhang, S.: Generation of atomic NOON states via adiabatic passage. Quantum Inf. Process. 13, 2801–2814 (2014)ADSMathSciNetCrossRefMATH Liu, Q.G., Wu, Q.C., Leng, C.L., Liang, Y., Ji, X., Zhang, S.: Generation of atomic NOON states via adiabatic passage. Quantum Inf. Process. 13, 2801–2814 (2014)ADSMathSciNetCrossRefMATH
31.
Zurück zum Zitat Song, P.J., Lü, X.Y., Si, L.G., Yang, X.X.: Deterministic generation of Greenberger–Horne–Zeilinger and W states for three distant atoms via adiabatic passage. Chin. Phys. B 20, 050308 (2011)ADSCrossRef Song, P.J., Lü, X.Y., Si, L.G., Yang, X.X.: Deterministic generation of Greenberger–Horne–Zeilinger and W states for three distant atoms via adiabatic passage. Chin. Phys. B 20, 050308 (2011)ADSCrossRef
32.
Zurück zum Zitat Goto, H., Ichimura, K.: Population transfer via stimulated Raman adiabatic passage in a solid. Phys. Rev. A 74, 053410 (2006)ADSCrossRef Goto, H., Ichimura, K.: Population transfer via stimulated Raman adiabatic passage in a solid. Phys. Rev. A 74, 053410 (2006)ADSCrossRef
33.
Zurück zum Zitat Yan, D., Cui, C.L., Zhang, M., Wu, J.H.: Coherent population transfer and quantum entanglement generation involving a Rydberg state by stimulated Raman adiabatic passage. Phys. Rev. A 84, 043405 (2011)ADSCrossRef Yan, D., Cui, C.L., Zhang, M., Wu, J.H.: Coherent population transfer and quantum entanglement generation involving a Rydberg state by stimulated Raman adiabatic passage. Phys. Rev. A 84, 043405 (2011)ADSCrossRef
34.
Zurück zum Zitat Hou, Q.Z., Yang, W.L., Feng, M., Chen, C.Y.: Quantum state transfer using stimulated Raman adiabatic passage under a dissipative environment. Phys. Rev. A 88, 013807 (2013)ADSCrossRef Hou, Q.Z., Yang, W.L., Feng, M., Chen, C.Y.: Quantum state transfer using stimulated Raman adiabatic passage under a dissipative environment. Phys. Rev. A 88, 013807 (2013)ADSCrossRef
35.
Zurück zum Zitat Chen, X., Lizuain, I., Ruschhaupt, A., Guéry-Odelin, D., Muga, J.G.: Shortcut to adiabatic passage in two-and three-level atoms. Phys. Rev. Lett. 105, 123003 (2010)ADSCrossRef Chen, X., Lizuain, I., Ruschhaupt, A., Guéry-Odelin, D., Muga, J.G.: Shortcut to adiabatic passage in two-and three-level atoms. Phys. Rev. Lett. 105, 123003 (2010)ADSCrossRef
36.
Zurück zum Zitat Torrontegui, E., Ibáñez, S., Martínez-Garaot, S., Modugno, M., del Campo, A., Guéry-Odelin, D., Muga, J.G.: Shortcuts to adiabaticity. Adv. At. Mol. Opt. Phys. 62, 117–169 (2013)ADSCrossRef Torrontegui, E., Ibáñez, S., Martínez-Garaot, S., Modugno, M., del Campo, A., Guéry-Odelin, D., Muga, J.G.: Shortcuts to adiabaticity. Adv. At. Mol. Opt. Phys. 62, 117–169 (2013)ADSCrossRef
37.
Zurück zum Zitat Ibáñez, S., Chen, X., Torrontegui, E., Muga, J.G., Ruschhaupt, A.: Multiple Schrodinger pictures and dynamics in shortcuts to adiabaticity. Phys. Rev. Lett. 109, 100403–100403 (2012)ADSCrossRef Ibáñez, S., Chen, X., Torrontegui, E., Muga, J.G., Ruschhaupt, A.: Multiple Schrodinger pictures and dynamics in shortcuts to adiabaticity. Phys. Rev. Lett. 109, 100403–100403 (2012)ADSCrossRef
38.
Zurück zum Zitat Lu, M., Xia, Y., Shen, L.T., Song, J., An, N.B.: Shortcuts to adiabatic passage for population transfer and maximum entanglement creation between two atoms in a cavity. Phys. Rev. A 89, 012326 (2014)ADSCrossRef Lu, M., Xia, Y., Shen, L.T., Song, J., An, N.B.: Shortcuts to adiabatic passage for population transfer and maximum entanglement creation between two atoms in a cavity. Phys. Rev. A 89, 012326 (2014)ADSCrossRef
39.
Zurück zum Zitat Chen, Y.H., Xia, Y., Chen, Q.Q., Song, J.: Efficient shortcuts to adiabatic passage for fast population transfer in multiparticle systems. Phys. Rev. A 89, 033856 (2014)ADSCrossRef Chen, Y.H., Xia, Y., Chen, Q.Q., Song, J.: Efficient shortcuts to adiabatic passage for fast population transfer in multiparticle systems. Phys. Rev. A 89, 033856 (2014)ADSCrossRef
40.
Zurück zum Zitat Guéry-Odelin, D., Muga, J.G., Ruiz-Montero, M.J., Trizac, E.: Nonequilibrium solutions of the Boltzmann equation under the action of an external force. Phys. Rev. Lett. 112, 180602 (2014)ADSCrossRef Guéry-Odelin, D., Muga, J.G., Ruiz-Montero, M.J., Trizac, E.: Nonequilibrium solutions of the Boltzmann equation under the action of an external force. Phys. Rev. Lett. 112, 180602 (2014)ADSCrossRef
41.
Zurück zum Zitat Liang, Y., Ji, X., Wang, H.F., Zhang, S.: Deterministic SWAP gate using shortcuts to adiabatic passage. Laser Phys. Lett. 12, 115201 (2015)ADSCrossRef Liang, Y., Ji, X., Wang, H.F., Zhang, S.: Deterministic SWAP gate using shortcuts to adiabatic passage. Laser Phys. Lett. 12, 115201 (2015)ADSCrossRef
42.
Zurück zum Zitat Liang, Y., Wu, Q.C., Su, S.L., Ji, X., Zhang, S.: Shortcuts to adiabatic passage for multiqubit controlled-phase gate. Phys. Rev. A 91, 032304 (2015)ADSCrossRef Liang, Y., Wu, Q.C., Su, S.L., Ji, X., Zhang, S.: Shortcuts to adiabatic passage for multiqubit controlled-phase gate. Phys. Rev. A 91, 032304 (2015)ADSCrossRef
43.
Zurück zum Zitat Liang, Y., Song, C., Ji, X., Zhang, S.: Fast CNOT gate between two spatially separated atoms via shortcuts to adiabatic passage. Opt. Express 23, 23798–23810 (2015)ADSCrossRef Liang, Y., Song, C., Ji, X., Zhang, S.: Fast CNOT gate between two spatially separated atoms via shortcuts to adiabatic passage. Opt. Express 23, 23798–23810 (2015)ADSCrossRef
44.
Zurück zum Zitat Schloss, J., Benseny, A., Gillet, J., Swain, J., Busch, T.: Non-adiabatic generation of NOON states in a Tonks–Girardeau gas. 1601, 00369 (2016) Schloss, J., Benseny, A., Gillet, J., Swain, J., Busch, T.: Non-adiabatic generation of NOON states in a Tonks–Girardeau gas. 1601, 00369 (2016)
45.
Zurück zum Zitat Lewis Jr., H.R., Riesenfeld, W.B.: An exact quantum theory of the time-dependent harmonic oscillator and of a charged particle in a time-dependent electromagnetic field. J. Math. Phys. 10, 1458 (1969)ADSMathSciNetCrossRefMATH Lewis Jr., H.R., Riesenfeld, W.B.: An exact quantum theory of the time-dependent harmonic oscillator and of a charged particle in a time-dependent electromagnetic field. J. Math. Phys. 10, 1458 (1969)ADSMathSciNetCrossRefMATH
46.
48.
Zurück zum Zitat Facchi, P., Marmo, G., Pascazio, S.: Quantum Zeno dynamics and quantum Zeno subspaces. J. Phys Conf. Ser. 196, 012017 (2009)ADSCrossRefMATH Facchi, P., Marmo, G., Pascazio, S.: Quantum Zeno dynamics and quantum Zeno subspaces. J. Phys Conf. Ser. 196, 012017 (2009)ADSCrossRefMATH
49.
Zurück zum Zitat Kwiat, P., Weinfurter, H., Herzog, T., Zeilinger, A., Kasevich, M.A.: Interaction-free measurement. Phys. Rev. Lett. 74, 4763 (1995)ADSCrossRef Kwiat, P., Weinfurter, H., Herzog, T., Zeilinger, A., Kasevich, M.A.: Interaction-free measurement. Phys. Rev. Lett. 74, 4763 (1995)ADSCrossRef
51.
Zurück zum Zitat Sauer, J.A., Fortier, K.M., Chang, M.S., Hamley, C.D., Chapman, M.S.: Cavity QED with optically transported atoms. Phys. Rev. A 69, 051804 (2004)ADSCrossRef Sauer, J.A., Fortier, K.M., Chang, M.S., Hamley, C.D., Chapman, M.S.: Cavity QED with optically transported atoms. Phys. Rev. A 69, 051804 (2004)ADSCrossRef
52.
Zurück zum Zitat Xue, P., Xiao, Y.F.: Universal quantum computation in decoherence-free subspace with neutral atoms. Phys. Rev. Lett. 97, 140501 (2006)ADSCrossRef Xue, P., Xiao, Y.F.: Universal quantum computation in decoherence-free subspace with neutral atoms. Phys. Rev. Lett. 97, 140501 (2006)ADSCrossRef
53.
Zurück zum Zitat Kuklinski, J.R., Gaubatz, U., Hioe, F.T., Bergmann, K.: Adiabatic population transfer in a three-level system driven by delayed laser pulse. Phys. Rev. A 40, 6741–6744 (1989)ADSCrossRef Kuklinski, J.R., Gaubatz, U., Hioe, F.T., Bergmann, K.: Adiabatic population transfer in a three-level system driven by delayed laser pulse. Phys. Rev. A 40, 6741–6744 (1989)ADSCrossRef
54.
Zurück zum Zitat Bergmann, K., Theuer, H., Shore, B.W.: Coherent population transfer among quantum states of atoms and molecules. Rev. Mod. Phys. 70, 1003–1025 (1998)ADSCrossRef Bergmann, K., Theuer, H., Shore, B.W.: Coherent population transfer among quantum states of atoms and molecules. Rev. Mod. Phys. 70, 1003–1025 (1998)ADSCrossRef
55.
Zurück zum Zitat Liu, K., Chen, L.B., Shi, P., Zhang, W.Z., Gu, Y.J.: Generation of NOON states via Raman transitions in a bimodal cavity. Quantum Inf. Process. 12, 3057–3066 (2013)ADSMathSciNetCrossRefMATH Liu, K., Chen, L.B., Shi, P., Zhang, W.Z., Gu, Y.J.: Generation of NOON states via Raman transitions in a bimodal cavity. Quantum Inf. Process. 12, 3057–3066 (2013)ADSMathSciNetCrossRefMATH
56.
Zurück zum Zitat Zheng, S.B., Guo, G.C.: Tunable phase gate for two atoms with an immunity to decoherence. Phys. Rev. A 73, 052328 (2006)ADSCrossRef Zheng, S.B., Guo, G.C.: Tunable phase gate for two atoms with an immunity to decoherence. Phys. Rev. A 73, 052328 (2006)ADSCrossRef
57.
Zurück zum Zitat Chwalla, M., Benhelm, J., Kim, K., Kirchmair, G., Monz, T., Riebe, M., Laurent, P.: Absolute frequency measurement of the \(^{40}C_{a}^{+}4_{S}^{2}S_{1/2}-3d^{2}D_{3/2}\) clock transition. Phys. Rev. Lett. 102, 023002 (2009)ADSCrossRef Chwalla, M., Benhelm, J., Kim, K., Kirchmair, G., Monz, T., Riebe, M., Laurent, P.: Absolute frequency measurement of the \(^{40}C_{a}^{+}4_{S}^{2}S_{1/2}-3d^{2}D_{3/2}\) clock transition. Phys. Rev. Lett. 102, 023002 (2009)ADSCrossRef
58.
Zurück zum Zitat Biswas, A., Agarwal, G.S.: Quantum logic gates using Stark-shifted Raman transitions in a cavity. Phys. Rev. A 69, 062306 (2004)ADSCrossRef Biswas, A., Agarwal, G.S.: Quantum logic gates using Stark-shifted Raman transitions in a cavity. Phys. Rev. A 69, 062306 (2004)ADSCrossRef
59.
Zurück zum Zitat Pellizzari, T.: Quantum networking with optical fibres. Phys. Rev. Lett. 79, 5242–5245 (1997)ADSCrossRef Pellizzari, T.: Quantum networking with optical fibres. Phys. Rev. Lett. 79, 5242–5245 (1997)ADSCrossRef
60.
Zurück zum Zitat Serafini, A., Mancini, S., Bose, S.: Distributed quantum computation via optical fibers. Phys. Rev. Lett. 96, 010503 (2006)ADSCrossRef Serafini, A., Mancini, S., Bose, S.: Distributed quantum computation via optical fibers. Phys. Rev. Lett. 96, 010503 (2006)ADSCrossRef
Metadaten
Titel
Generation of atomic NOON states via shortcuts to adiabatic passage
verfasst von
Chong Song
Shi-Lei Su
Cheng-Hua Bai
Xin Ji
Shou Zhang
Publikationsdatum
01.10.2016
Verlag
Springer US
Erschienen in
Quantum Information Processing / Ausgabe 10/2016
Print ISSN: 1570-0755
Elektronische ISSN: 1573-1332
DOI
https://doi.org/10.1007/s11128-016-1372-2

Weitere Artikel der Ausgabe 10/2016

Quantum Information Processing 10/2016 Zur Ausgabe

Neuer Inhalt