Skip to main content
Erschienen in: Strength of Materials 3/2014

01.05.2014

Relationship Between the Threshold Stress Intensity Factor Ranges of the Material and the Transition From Short to Long Fatigue Crack

verfasst von: O. M. Herasymchuk

Erschienen in: Strength of Materials | Ausgabe 3/2014

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A relationship between the threshold stress intensity factor ranges of the material is established for microstructurally short, physically small and long fatigue cracks depending on the microstructure at a symmetrical loading cycle. The threshold stress intensity factor ranges calculated by the proposed concept for titanium alloy VT3-1 in different structural states agree well with those determined experimentally. The criteria are proposed for the transition from a small to a long fatigue crack depending on the level of the applied load amplitude. In the whole range of the load amplitudes, the condition when a reversible plastic zone at the crack tip reaches the grain size is taken as a criterion for the transition from a physically small to a long fatigue crack. In the high cycle fatigue region, the physically small crack growth range is to be divided into two areas because of a change in the mechanisms of the physically small crack growth upon the attainment by the stress intensity factor range of the threshold value for the long crack.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat V. V. Panasyuk (Ed.), Fracture Mechanics and Strength of Materials [in Russian], Handbook in 4 volumes, Vol. 4: O. N. Romaniv, S. Ya. Yarema, G. N. Nykyforchyn, et al., Fatigue and Cyclic Fracture Toughness of Structural Materials, Naukova Dumka, Kiev (1990). V. V. Panasyuk (Ed.), Fracture Mechanics and Strength of Materials [in Russian], Handbook in 4 volumes, Vol. 4: O. N. Romaniv, S. Ya. Yarema, G. N. Nykyforchyn, et al., Fatigue and Cyclic Fracture Toughness of Structural Materials, Naukova Dumka, Kiev (1990).
2.
Zurück zum Zitat Standard Test Method for Measurements of Fatigue Crack Growth Rates, ASTM STP E647-00 (2000). Standard Test Method for Measurements of Fatigue Crack Growth Rates, ASTM STP E647-00 (2000).
3.
Zurück zum Zitat Y. Akiniwa and K. Tanaka, “Statistical characteristics of propagation of small fatigue cracks in smooth specimens of aluminium alloy 2024-T3,” Mater. Sci. Eng. A, 104, 105–115 (1988).CrossRef Y. Akiniwa and K. Tanaka, “Statistical characteristics of propagation of small fatigue cracks in smooth specimens of aluminium alloy 2024-T3,” Mater. Sci. Eng. A, 104, 105–115 (1988).CrossRef
4.
Zurück zum Zitat Guide to Methods for Assessing the Acceptability of Flaws in Metallic Structures, British Standard BS 7910 (2005). Guide to Methods for Assessing the Acceptability of Flaws in Metallic Structures, British Standard BS 7910 (2005).
5.
Zurück zum Zitat K. Tanaka, “Fatigue crack propagation,” Comp. Struct. Integr., 4, 95–127 (2003).CrossRef K. Tanaka, “Fatigue crack propagation,” Comp. Struct. Integr., 4, 95–127 (2003).CrossRef
6.
Zurück zum Zitat D. Davidson, K. Chan, R.McClung, and S. Hudak, ”Small fatigue cracks,” Comp. Struct. Integr., 4, 129–164 (2003).CrossRef D. Davidson, K. Chan, R.McClung, and S. Hudak, ”Small fatigue cracks,” Comp. Struct. Integr., 4, 129–164 (2003).CrossRef
7.
Zurück zum Zitat K. J. Miller, “The behavior of short fatigue cracks and their initiation. Pt. II. General summary,” Fatigue Fract. Eng. Mater. Struct., 10, 93–113 (1987).CrossRef K. J. Miller, “The behavior of short fatigue cracks and their initiation. Pt. II. General summary,” Fatigue Fract. Eng. Mater. Struct., 10, 93–113 (1987).CrossRef
8.
Zurück zum Zitat K. Tanaka and Y. Akiniwa, “Modeling of fatigue crack growth: mechanistic models,” Comp. Struct. Integr., 4, 165–189 (2003).CrossRef K. Tanaka and Y. Akiniwa, “Modeling of fatigue crack growth: mechanistic models,” Comp. Struct. Integr., 4, 165–189 (2003).CrossRef
9.
Zurück zum Zitat C. Santus and D. Taylor, “Physically short crack propagation in metals during high cycle fatigue,” Int. J. Fatigue, 31, 1356–1365 (2009).CrossRef C. Santus and D. Taylor, “Physically short crack propagation in metals during high cycle fatigue,” Int. J. Fatigue, 31, 1356–1365 (2009).CrossRef
10.
Zurück zum Zitat O. M. Herasymchuk, “A generalized grain-size dependence of the fatigue limit,” Strength Mater., 43, No. 2, 205–216 (2011).CrossRef O. M. Herasymchuk, “A generalized grain-size dependence of the fatigue limit,” Strength Mater., 43, No. 2, 205–216 (2011).CrossRef
11.
Zurück zum Zitat R. W. Hertzberg, “A simple calculation of data in the near-threshold regime and above,” Int. J. Fract., 64, R53–R58 (1993).CrossRef R. W. Hertzberg, “A simple calculation of data in the near-threshold regime and above,” Int. J. Fract., 64, R53–R58 (1993).CrossRef
12.
Zurück zum Zitat K. S. Chan,“Variability of large-crack fatigue-crack-growth thresholds in structural alloys,” Met. Mater. Trans. A, 35A, 3721–3735 (2004).CrossRef K. S. Chan,“Variability of large-crack fatigue-crack-growth thresholds in structural alloys,” Met. Mater. Trans. A, 35A, 3721–3735 (2004).CrossRef
13.
Zurück zum Zitat Y. Murakami “Analysis of stress intensity factors of modes I, II, and III for inclined surface cracks of arbitrary shape,” Eng. Fract. Mech., 22, No. 1, 101–114 (1985).CrossRef Y. Murakami “Analysis of stress intensity factors of modes I, II, and III for inclined surface cracks of arbitrary shape,” Eng. Fract. Mech., 22, No. 1, 101–114 (1985).CrossRef
14.
Zurück zum Zitat A. J. McEvily, M. Endo, and Y. Murakami, “On the relationship and the short fatigue threshold,” Fatigue Fract. Eng. Mater. Struct., 26, 269–278 (2003).CrossRef A. J. McEvily, M. Endo, and Y. Murakami, “On the relationship and the short fatigue threshold,” Fatigue Fract. Eng. Mater. Struct., 26, 269–278 (2003).CrossRef
15.
Zurück zum Zitat Y. Murakami, “High and ultrahigh cycle fatigue,” Comp. Struct. Integr., 4, 41–76 (2003).CrossRef Y. Murakami, “High and ultrahigh cycle fatigue,” Comp. Struct. Integr., 4, 41–76 (2003).CrossRef
16.
Zurück zum Zitat V. T. Troshchenko, B. À. Gryaznov, Yu. S. Nalimov, et al., “Fatigue strength and cyclic crack resistance of titanium alloy VT3-1 in different structural states. Communication 1. Study procedure and experimental results,” Strength Mater., 27, No. 5-6, 3–11 (1995). V. T. Troshchenko, B. À. Gryaznov, Yu. S. Nalimov, et al., “Fatigue strength and cyclic crack resistance of titanium alloy VT3-1 in different structural states. Communication 1. Study procedure and experimental results,” Strength Mater., 27, No. 5-6, 3–11 (1995).
17.
Zurück zum Zitat O. M. Herasymchuk, “Nonlinear relationship between the fatigue limit and quantitative parameters of material microstructure,” Int. J. Fatigue, 33, 649–659 (2011).CrossRef O. M. Herasymchuk, “Nonlinear relationship between the fatigue limit and quantitative parameters of material microstructure,” Int. J. Fatigue, 33, 649–659 (2011).CrossRef
18.
Zurück zum Zitat O. M. Herasymchuk and O. V. Kononuchenko, “Model for fatigue life prediction of titanium alloys. Part 2. Model testing and analysis of obtained results,” Strength Mater., 45, No. 2, 163–170 (2013).CrossRef O. M. Herasymchuk and O. V. Kononuchenko, “Model for fatigue life prediction of titanium alloys. Part 2. Model testing and analysis of obtained results,” Strength Mater., 45, No. 2, 163–170 (2013).CrossRef
19.
Zurück zum Zitat O. M. Herasymchuk, Yu. S. Nalimov, P. E. Markovs’kyi, et al., “Effect of the microstructure of titanium alloys on the fatigue strength characteristics,” Strength Mater., 43, No. 3, 282–293 (2011).CrossRef O. M. Herasymchuk, Yu. S. Nalimov, P. E. Markovs’kyi, et al., “Effect of the microstructure of titanium alloys on the fatigue strength characteristics,” Strength Mater., 43, No. 3, 282–293 (2011).CrossRef
20.
Zurück zum Zitat R. K. Nalla, B. L. Boyce, J. P. Campbell, et al., “Influence of microstructure on high-cycle fatigue of Ti–6Al–V: bimodal vs lamellar structures,” Met. Mater. Trans. A, 33A, 899–918 (2002).CrossRef R. K. Nalla, B. L. Boyce, J. P. Campbell, et al., “Influence of microstructure on high-cycle fatigue of Ti–6Al–V: bimodal vs lamellar structures,” Met. Mater. Trans. A, 33A, 899–918 (2002).CrossRef
21.
Zurück zum Zitat G. Lütjering and J. C. Williams, Titanium, Springer, New York (2003). G. Lütjering and J. C. Williams, Titanium, Springer, New York (2003).
22.
Zurück zum Zitat J. P. Hirth and J. Lothe, Theory of Dislocations, 2nd edition, Wiley, New York (1982). J. P. Hirth and J. Lothe, Theory of Dislocations, 2nd edition, Wiley, New York (1982).
23.
Zurück zum Zitat J. Schijve, Fatigue of Structures and Materials, Springer, New York (2009).CrossRef J. Schijve, Fatigue of Structures and Materials, Springer, New York (2009).CrossRef
24.
Zurück zum Zitat O. M. Herasymchuk and O. V. Kononuchenko, “Model for fatigue life prediction of titanium alloys. Part 1. Elaboration of a model of fatigue life prior to initiation of microstructurally short crack and a propagation model for physically short and long cracks,” Strength Mater., 45, No. 1, 44–55 (2013).CrossRef O. M. Herasymchuk and O. V. Kononuchenko, “Model for fatigue life prediction of titanium alloys. Part 1. Elaboration of a model of fatigue life prior to initiation of microstructurally short crack and a propagation model for physically short and long cracks,” Strength Mater., 45, No. 1, 44–55 (2013).CrossRef
25.
Zurück zum Zitat H. Kitagawa and S. Takahashi, “Applicability of fracture mechanics to very small cracks or the cracks in the early stage,” in: Proc. of the Second Int. Conf. on Mechanical Behavior of Materials, ASM, Metals Park, OH (1976), pp. 627–631. H. Kitagawa and S. Takahashi, “Applicability of fracture mechanics to very small cracks or the cracks in the early stage,” in: Proc. of the Second Int. Conf. on Mechanical Behavior of Materials, ASM, Metals Park, OH (1976), pp. 627–631.
26.
Zurück zum Zitat M. M. El Haddad, K. N. Smith, and T. U. Topper, “Fatigue crack propagation of short cracks,” J. Eng. Mater. Technol., 101, No. 1, 42–46 (1979).CrossRef M. M. El Haddad, K. N. Smith, and T. U. Topper, “Fatigue crack propagation of short cracks,” J. Eng. Mater. Technol., 101, No. 1, 42–46 (1979).CrossRef
27.
Zurück zum Zitat V. T. Troshchenkî and L. À. Khamaza, “Conditions for the transition from nonlocalized to localized damage in metals and alloys. Part 1. Crack sizes at fatigue limit,” Strength Mater., 46, No. 3, 303–314 (2014). V. T. Troshchenkî and L. À. Khamaza, “Conditions for the transition from nonlocalized to localized damage in metals and alloys. Part 1. Crack sizes at fatigue limit,” Strength Mater., 46, No. 3, 303–314 (2014).
28.
Zurück zum Zitat J. P. Lukas and W. W. Gerberich, “A proposed criterion for fatigue threshold: dislocation substructure approach,” Fatigue Fract. Eng. Mater. Struct., 6, 271–280 (1983).CrossRef J. P. Lukas and W. W. Gerberich, “A proposed criterion for fatigue threshold: dislocation substructure approach,” Fatigue Fract. Eng. Mater. Struct., 6, 271–280 (1983).CrossRef
29.
Zurück zum Zitat Yu. G. Matvienko, Models and Criteria of Fracture Mechanics [in Russian], Fizmatlit, Moscow (2006). Yu. G. Matvienko, Models and Criteria of Fracture Mechanics [in Russian], Fizmatlit, Moscow (2006).
30.
Zurück zum Zitat G. R. Yoder, L. A. Cooley, and T. W. Crooker, “Quantitative analysis of microstructural effects on fatigue crack growth in widmanstatten Ti–6Al–4 V and Ti–8Al–1Mo–1 V,” Eng. Fract. Mech., 11, 805–816 (1979).CrossRef G. R. Yoder, L. A. Cooley, and T. W. Crooker, “Quantitative analysis of microstructural effects on fatigue crack growth in widmanstatten Ti–6Al–4 V and Ti–8Al–1Mo–1 V,” Eng. Fract. Mech., 11, 805–816 (1979).CrossRef
31.
Zurück zum Zitat G. R. Yoder, L. A. Cooley, and T. W. Crooker, “On microstructural control of near-threshold fatigue crack growth in 7000-series aluminum alloys,” Scr. Met., 16, 1021–1025 (1982).CrossRef G. R. Yoder, L. A. Cooley, and T. W. Crooker, “On microstructural control of near-threshold fatigue crack growth in 7000-series aluminum alloys,” Scr. Met., 16, 1021–1025 (1982).CrossRef
Metadaten
Titel
Relationship Between the Threshold Stress Intensity Factor Ranges of the Material and the Transition From Short to Long Fatigue Crack
verfasst von
O. M. Herasymchuk
Publikationsdatum
01.05.2014
Verlag
Springer US
Erschienen in
Strength of Materials / Ausgabe 3/2014
Print ISSN: 0039-2316
Elektronische ISSN: 1573-9325
DOI
https://doi.org/10.1007/s11223-014-9558-2

Weitere Artikel der Ausgabe 3/2014

Strength of Materials 3/2014 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.