Skip to main content
Erschienen in: Strength of Materials 6/2016

08.02.2017

Analysis of Crack Coalescence in Concrete Using Neural Networks

verfasst von: H. Haeri, V. Sarfarazi, Z. Zhu

Erschienen in: Strength of Materials | Ausgabe 6/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Fractures in the forms of joints and microcracks are commonly found in concretes, and their failure mechanism strongly depends on the crack coalescence pattern between pre-existing flaws. The determination of the failure behavior of nonpersistent joints is an engineering problem that involves several parameters as mechanical properties of concrete, normal stress and the ratio of joint surface to total shear surface. The impact of these parameters on the crack coalescence is investigated through the use of computational tools called neural networks. A number of networks of threshold logic units were tested, with adjustable weights. The computational method for the training process was a back-propagation learning algorithm. In this paper, the input data for crack coalescence consists of values of geotechnical and geometrical parameters. As an output, the network estimates the crack type coalescence (i.e., mode I, mode II, or mixed mode I-II) that can be used for stability analysis of concrete structures. The performance of the network is measured and the results are compared to those obtained by means of the experimental method.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat E. Eberhardt, D. Stead, J. Coggan, and H. Willenberg, “An integrated numerical analysis approach to the Randa rockslide,” in: Proc. of the First European Conference on Landslides, Prague (2002), pp. 355–362. E. Eberhardt, D. Stead, J. Coggan, and H. Willenberg, “An integrated numerical analysis approach to the Randa rockslide,” in: Proc. of the First European Conference on Landslides, Prague (2002), pp. 355–362.
2.
Zurück zum Zitat Y. H. Hatzor, A. A. Arzi, Y. Zaslavsky, and A. Y., Shapira, “Dynamic stability analysis of jointed rock slopes using the DDA method: King Herod’s Palace, Masada, Israel,” Int. J. Rock Mech. Min. Sci., 41, No. 5, 813–832 (2004). Y. H. Hatzor, A. A. Arzi, Y. Zaslavsky, and A. Y., Shapira, “Dynamic stability analysis of jointed rock slopes using the DDA method: King Herod’s Palace, Masada, Israel,” Int. J. Rock Mech. Min. Sci., 41, No. 5, 813–832 (2004).
3.
Zurück zum Zitat Y. P. Li, L. Z. Chen, and Y. H. Wang, “Experimental research on pre-cracked marble under compression,” Int. J. Solids Struct., 42, Nos. 9-10, 2505–2516 (2005). Y. P. Li, L. Z. Chen, and Y. H. Wang, “Experimental research on pre-cracked marble under compression,” Int. J. Solids Struct., 42, Nos. 9-10, 2505–2516 (2005).
4.
Zurück zum Zitat E. Z. Lajtai, “Shear strength of weakness planes in rock,” Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 6, No. 5, 499–508, IN7–IN8, 509–515 (1969). E. Z. Lajtai, “Shear strength of weakness planes in rock,” Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 6, No. 5, 499–508, IN7–IN8, 509–515 (1969).
5.
Zurück zum Zitat E. Z. Lajtai, “Strength of discontinuous rocks in direct shear,” Géotechnique, 19, No. 2, 218–233 (1969). E. Z. Lajtai, “Strength of discontinuous rocks in direct shear,” Géotechnique, 19, No. 2, 218–233 (1969).
6.
Zurück zum Zitat T. Savilahti, Rock Bridges in Jointed Rock Masses – State-of-the-Art, Research Report, Tulea (1988). T. Savilahti, Rock Bridges in Jointed Rock Masses – State-of-the-Art, Research Report, Tulea (1988).
7.
Zurück zum Zitat T. Savilahti, E. Nordlund, and O. Stephansson, “Shear box testing and modelling of joint bridges,” in: N. Barton and O. Stephansson (Eds.), Rock Joints (Proc. of the Int. Symp. Rock Joints, June 4–6, 1990, Loen, Norway), Balkema, Rotterdam (1990), pp. 295–300. T. Savilahti, E. Nordlund, and O. Stephansson, “Shear box testing and modelling of joint bridges,” in: N. Barton and O. Stephansson (Eds.), Rock Joints (Proc. of the Int. Symp. Rock Joints, June 4–6, 1990, Loen, Norway), Balkema, Rotterdam (1990), pp. 295–300.
8.
Zurück zum Zitat C. Li, O. Stephansson, and T. Savilahti, “Behaviour of rock joints and rock bridges in shear testing,” in: N. Barton and O. Stephansson (Eds.), Rock Joints (Proc. of the Int. Symp. on Rock Joints, June 4–6, 1990, Loen, Norway), Balkema, Rotterdam (1990), pp. 259–266. C. Li, O. Stephansson, and T. Savilahti, “Behaviour of rock joints and rock bridges in shear testing,” in: N. Barton and O. Stephansson (Eds.), Rock Joints (Proc. of the Int. Symp. on Rock Joints, June 4–6, 1990, Loen, Norway), Balkema, Rotterdam (1990), pp. 259–266.
9.
Zurück zum Zitat H. H. Einstein, D. Veneziano, G. B. Baecher, and K. J. O’Reilly, “The effect of discontinuity persistence on rock slope stability,” Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 20, No. 5, 227–236 (1983).CrossRef H. H. Einstein, D. Veneziano, G. B. Baecher, and K. J. O’Reilly, “The effect of discontinuity persistence on rock slope stability,” Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 20, No. 5, 227–236 (1983).CrossRef
10.
Zurück zum Zitat O. Reyes and H. H. Einstein, “Failure mechanisms of fractured rock-a fracture coalescence model,” in: Proc. of the Seventh Int. Congr. on Rock Mechanics (Sept. 16–20, 1991, Aachen, Germany), Vol. 1 (1991), pp. 333–340. O. Reyes and H. H. Einstein, “Failure mechanisms of fractured rock-a fracture coalescence model,” in: Proc. of the Seventh Int. Congr. on Rock Mechanics (Sept. 16–20, 1991, Aachen, Germany), Vol. 1 (1991), pp. 333–340.
11.
Zurück zum Zitat B. Shen, O. Stephansson, H. H. Einstein, and B. Ghahreman, “Coalescence of fractures under shear stress experiments,” J. Geophys. Res., 6, 5975–5990 (1996). B. Shen, O. Stephansson, H. H. Einstein, and B. Ghahreman, “Coalescence of fractures under shear stress experiments,” J. Geophys. Res., 6, 5975–5990 (1996).
12.
Zurück zum Zitat A. Bobet, and H. H. Einstein, “Fracture coalescence in rock-type materials under uniaxial and biaxial compression,” Int. J. Rock Mech. Min. Sci., 35, 863–888 (1998).CrossRef A. Bobet, and H. H. Einstein, “Fracture coalescence in rock-type materials under uniaxial and biaxial compression,” Int. J. Rock Mech. Min. Sci., 35, 863–888 (1998).CrossRef
13.
Zurück zum Zitat R. H. C. Wong and K. T. Chau, “Crack coalescence in rock-like material containing two cracks,” Int. J. Rock Mech. Min. Sci., 35, 147–164 (1998).CrossRef R. H. C. Wong and K. T. Chau, “Crack coalescence in rock-like material containing two cracks,” Int. J. Rock Mech. Min. Sci., 35, 147–164 (1998).CrossRef
14.
Zurück zum Zitat R. H. C. Wong, K. T. Chau, C. A. Tang, and P. Lin, “Analysis of crack coalescence in rock-like materials containing three flaws – Part I: Experimental approach,” Int. J. Rock Mech. Min. Sci., 38, 909–924 (2001).CrossRef R. H. C. Wong, K. T. Chau, C. A. Tang, and P. Lin, “Analysis of crack coalescence in rock-like materials containing three flaws – Part I: Experimental approach,” Int. J. Rock Mech. Min. Sci., 38, 909–924 (2001).CrossRef
15.
Zurück zum Zitat M. Sagong and A. Bobet, “Coalescence of multiple flaws in a rock-model material in uniaxial compression,” Int. J. Rock Mech. Min. Sci., 39, 229–241 (2002).CrossRef M. Sagong and A. Bobet, “Coalescence of multiple flaws in a rock-model material in uniaxial compression,” Int. J. Rock Mech. Min. Sci., 39, 229–241 (2002).CrossRef
16.
Zurück zum Zitat O. S. Mughieda and I. Khawaldeh, “Coalescence of offset rock joints under biaxial loading,” Geotech. Geol. Eng., 24, 985–999 (2006).CrossRef O. S. Mughieda and I. Khawaldeh, “Coalescence of offset rock joints under biaxial loading,” Geotech. Geol. Eng., 24, 985–999 (2006).CrossRef
17.
Zurück zum Zitat H. Haeri, K. Shahriar, M. F. Marji, and P. Moarefvand, “Experimental and numerical study of crack propagation and coalescence in pre-cracked rock-like disks,” Int. J. Rock Mech. Min. Sci., 67, 20–28 (2013). H. Haeri, K. Shahriar, M. F. Marji, and P. Moarefvand, “Experimental and numerical study of crack propagation and coalescence in pre-cracked rock-like disks,” Int. J. Rock Mech. Min. Sci., 67, 20–28 (2013).
18.
Zurück zum Zitat H. Haeri, K. Shahriar, M. F. Marji, and P. Moarefvand, “On the cracks coalescence mechanism and cracks propagation paths in rock-like specimens containing pre-existing random cracks under compression,” J. Central South Univ., 21, No. 6, 2404–2414 (2014).CrossRef H. Haeri, K. Shahriar, M. F. Marji, and P. Moarefvand, “On the cracks coalescence mechanism and cracks propagation paths in rock-like specimens containing pre-existing random cracks under compression,” J. Central South Univ., 21, No. 6, 2404–2414 (2014).CrossRef
19.
Zurück zum Zitat H. Haeri, K. Shahriar, M. F. Marji, and P. Moarefvand, “Investigation of fracturing process of rock-like Brazilian disks containing three parallel cracks under compressive line loading,” Strength Mater., 46, No. 3, 404–416 (2014).CrossRef H. Haeri, K. Shahriar, M. F. Marji, and P. Moarefvand, “Investigation of fracturing process of rock-like Brazilian disks containing three parallel cracks under compressive line loading,” Strength Mater., 46, No. 3, 404–416 (2014).CrossRef
20.
Zurück zum Zitat H. Haeri, K. Shahriar, M. F. Marji, and P. Moarefvand, “On the HDD analysis of micro crack initiation, propagation, and coalescence in brittle substances,” Arab. J. Geosci., 8, No. 5, 2841–2852 (2015).CrossRef H. Haeri, K. Shahriar, M. F. Marji, and P. Moarefvand, “On the HDD analysis of micro crack initiation, propagation, and coalescence in brittle substances,” Arab. J. Geosci., 8, No. 5, 2841–2852 (2015).CrossRef
21.
Zurück zum Zitat H. Haeri, M. F. Marji, and K. Shahriar, “Simulating the effect of disc erosion in TBM disc cutters by a semi-infinite DDM,” Arab. J. Geosci., 8, No. 6, 3915–3927 (2015).CrossRef H. Haeri, M. F. Marji, and K. Shahriar, “Simulating the effect of disc erosion in TBM disc cutters by a semi-infinite DDM,” Arab. J. Geosci., 8, No. 6, 3915–3927 (2015).CrossRef
22.
Zurück zum Zitat H. Haeri, “Propagation mechanism of neighboring cracks in rock-like cylindrical specimens under uniaxial compression,” J. Min. Sci., 51, No. 3, 487–496 (2015).CrossRef H. Haeri, “Propagation mechanism of neighboring cracks in rock-like cylindrical specimens under uniaxial compression,” J. Min. Sci., 51, No. 3, 487–496 (2015).CrossRef
23.
Zurück zum Zitat H. Haeri, “Simulating the crack propagation mechanism of pre-cracked concrete specimens under shear loading conditions,” Strength Mater., 47, No. 4, 618–632 (2015).CrossRef H. Haeri, “Simulating the crack propagation mechanism of pre-cracked concrete specimens under shear loading conditions,” Strength Mater., 47, No. 4, 618–632 (2015).CrossRef
24.
Zurück zum Zitat H. Haeri, A. Khaloo, and M. F. Marji, “Experimental and numerical simulation of the microcrack coalescence mechanism in rock-like materials,” Strength Mater., 47, No. 5, 740–754 (2015).CrossRef H. Haeri, A. Khaloo, and M. F. Marji, “Experimental and numerical simulation of the microcrack coalescence mechanism in rock-like materials,” Strength Mater., 47, No. 5, 740–754 (2015).CrossRef
25.
Zurück zum Zitat H. Haeri, A. Khaloo, and M. F. Marji, “Experimental and numerical analysis of Brazilian discs with multiple parallel cracks,” Arab. J. Geosci., 8, No. 8, 5897–5908 (2015).CrossRef H. Haeri, A. Khaloo, and M. F. Marji, “Experimental and numerical analysis of Brazilian discs with multiple parallel cracks,” Arab. J. Geosci., 8, No. 8, 5897–5908 (2015).CrossRef
26.
Zurück zum Zitat L. Jing and J. A. Hudson, “Numerical methods in rock mechanics,” Int. J. Rock Mech. Min. Sci., 39, 409–427 (2002).CrossRef L. Jing and J. A. Hudson, “Numerical methods in rock mechanics,” Int. J. Rock Mech. Min. Sci., 39, 409–427 (2002).CrossRef
27.
Zurück zum Zitat L. Jing, “A review of techniques, advances and outstanding issues in numerical modeling for rock mechanics and rock engineering,” Int. J. Rock Mech. Min. Sci., 40, 283–353 (2003).CrossRef L. Jing, “A review of techniques, advances and outstanding issues in numerical modeling for rock mechanics and rock engineering,” Int. J. Rock Mech. Min. Sci., 40, 283–353 (2003).CrossRef
28.
Zurück zum Zitat D. L. Millar and J. A. Hudson, “Performance monitoring of rock engineering systems utilizing neural networks,” Trans. Inst. Min. Metal. A – Min. Ind., 103, A13–A16 (1994). D. L. Millar and J. A. Hudson, “Performance monitoring of rock engineering systems utilizing neural networks,” Trans. Inst. Min. Metal. A – Min. Ind., 103, A13–A16 (1994).
29.
Zurück zum Zitat A. T. C. Goh, “Back-propagation neural networks for modelling complex systems,” Artif. Intell. Eng., 9, No. 3, 143–151 (1995).CrossRef A. T. C. Goh, “Back-propagation neural networks for modelling complex systems,” Artif. Intell. Eng., 9, No. 3, 143–151 (1995).CrossRef
30.
Zurück zum Zitat A. T. C. Goh, “Seismic liquefaction potential Assessed by neural networks,” J. Geotech. Eng., 120, No. 9, 1467–1480 (1995).CrossRef A. T. C. Goh, “Seismic liquefaction potential Assessed by neural networks,” J. Geotech. Eng., 120, No. 9, 1467–1480 (1995).CrossRef
31.
Zurück zum Zitat P. Sklavounos and M. Sakellariou, “Intelligent classification of rock masses,” in: G. Rzevski, R. A. Adey, and C. Tasso (Eds.), Applications of Artificial Intelligence in Engineering (Proc. of the Tenth Int. Conf. on Applications of Artificial Intelligence in Engineering, July, 1995, Udine, Italy), Computational Mechanics Publications (1995), pp. 387–393. P. Sklavounos and M. Sakellariou, “Intelligent classification of rock masses,” in: G. Rzevski, R. A. Adey, and C. Tasso (Eds.), Applications of Artificial Intelligence in Engineering (Proc. of the Tenth Int. Conf. on Applications of Artificial Intelligence in Engineering, July, 1995, Udine, Italy), Computational Mechanics Publications (1995), pp. 387–393.
32.
Zurück zum Zitat Y. M. Najjar and I. A. Basheer, “Utilising computational neural networks for evaluating the permeability of compacted clay liners,” Geotech. Geol. Eng., 14, 193–212 (1996). Y. M. Najjar and I. A. Basheer, “Utilising computational neural networks for evaluating the permeability of compacted clay liners,” Geotech. Geol. Eng., 14, 193–212 (1996).
33.
Zurück zum Zitat S. Gangopadhyay, T. R. Gautam, A. D. Gupta, “Subsurface characterisation using artificial neural network and GIS,” J. Comput. Civil Eng., 13, No 3, 153–161 (1999).CrossRef S. Gangopadhyay, T. R. Gautam, A. D. Gupta, “Subsurface characterisation using artificial neural network and GIS,” J. Comput. Civil Eng., 13, No 3, 153–161 (1999).CrossRef
34.
Zurück zum Zitat J. H. Deng and C. F. Lee, “Displacement back analysis for a steep slope at the three gorges project site,” Int. J. Rock Mech. Min. Sci., 38, 259–268 (2001).CrossRef J. H. Deng and C. F. Lee, “Displacement back analysis for a steep slope at the three gorges project site,” Int. J. Rock Mech. Min. Sci., 38, 259–268 (2001).CrossRef
35.
Zurück zum Zitat H.-C. Chang, D. C. Kopaska-Merkel, and H. C. Chen, “Identification of lithofacies using Kohonen self-organising maps,” Comput. Geosci., 28, No. 2, 223–229 (2002).CrossRef H.-C. Chang, D. C. Kopaska-Merkel, and H. C. Chen, “Identification of lithofacies using Kohonen self-organising maps,” Comput. Geosci., 28, No. 2, 223–229 (2002).CrossRef
36.
Zurück zum Zitat Y. Yang and M. S. Rosenbaum, “The artificial neural network as a tool for assessing geotechnical properties,” Geotech. Geol. Eng., 20, 149–168 (2001).CrossRef Y. Yang and M. S. Rosenbaum, “The artificial neural network as a tool for assessing geotechnical properties,” Geotech. Geol. Eng., 20, 149–168 (2001).CrossRef
37.
Zurück zum Zitat J. J. Hopfield, “Neural networks and physical systems with emergent collective properties,” P. Natl. Acad. Sci. USA, 79, No. 8, 2554–2558 (1982).CrossRef J. J. Hopfield, “Neural networks and physical systems with emergent collective properties,” P. Natl. Acad. Sci. USA, 79, No. 8, 2554–2558 (1982).CrossRef
38.
Zurück zum Zitat D. E. Rumelhart, “Learning representations by back-propagating errors,” Nature, 323, 533–536 (1986).CrossRef D. E. Rumelhart, “Learning representations by back-propagating errors,” Nature, 323, 533–536 (1986).CrossRef
39.
Zurück zum Zitat F. Rosenblatt, “The perceptron: a probabilistic model for information storage and organization in the brain,” Psychol. Rev., 65, 386–408 (1958).CrossRef F. Rosenblatt, “The perceptron: a probabilistic model for information storage and organization in the brain,” Psychol. Rev., 65, 386–408 (1958).CrossRef
40.
Zurück zum Zitat I. Flood and N. Kartan, “Neural networks in civil engineering. I: Principles and understanding,” J. Comput. Civil Eng., 8, No. 2, 131–148 (1994).CrossRef I. Flood and N. Kartan, “Neural networks in civil engineering. I: Principles and understanding,” J. Comput. Civil Eng., 8, No. 2, 131–148 (1994).CrossRef
41.
Zurück zum Zitat S. Haykin, Neural Networks – A Comprehensive Foundation, Prentice-Hall (1994). S. Haykin, Neural Networks – A Comprehensive Foundation, Prentice-Hall (1994).
42.
Zurück zum Zitat K. Takeuchi, Mixed-Mode Fracture Initiation in Granular Brittle Materials, M.S. Thesis, Massachusetts Institute of Technology, Cambridge (1991). K. Takeuchi, Mixed-Mode Fracture Initiation in Granular Brittle Materials, M.S. Thesis, Massachusetts Institute of Technology, Cambridge (1991).
43.
Zurück zum Zitat A. Ghazvinian, M. R. Nikudel, and V. Sarfarazi, “Determination of sliding path in rock slopes containing coplanar non-persistent open discontinuity,” World Appl. Sci. J., 3, No. 4, 577–589 (2008). A. Ghazvinian, M. R. Nikudel, and V. Sarfarazi, “Determination of sliding path in rock slopes containing coplanar non-persistent open discontinuity,” World Appl. Sci. J., 3, No. 4, 577–589 (2008).
Metadaten
Titel
Analysis of Crack Coalescence in Concrete Using Neural Networks
verfasst von
H. Haeri
V. Sarfarazi
Z. Zhu
Publikationsdatum
08.02.2017
Verlag
Springer US
Erschienen in
Strength of Materials / Ausgabe 6/2016
Print ISSN: 0039-2316
Elektronische ISSN: 1573-9325
DOI
https://doi.org/10.1007/s11223-017-9831-2

Weitere Artikel der Ausgabe 6/2016

Strength of Materials 6/2016 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.