Skip to main content
Erschienen in: Strength of Materials 6/2018

23.01.2019

Experimental Investigation of Viscoelastic Characteristics of Rubber-Cord Composites Considering the Process of Their Self-Heating

verfasst von: A. A. Larin, Yu. A. Vyazovichenko, E. Barkanov, M. Itskov

Erschienen in: Strength of Materials | Ausgabe 6/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The dissipative characteristics of rubber-cord composites under the action of cyclic load considering the features of their self-heating have been experimentally investigated. Full-scale uniaxial tension experiments are performed on the plane specimens along the reinforcement fibers of the unidirectional rubber-cord composites. In compliance with the test results, stress–strain curves for the specimens are determined, which form the hysteresis loops under cyclic loading. The tensile testing of the specimens is performed under long-term cyclic loading using the experimental setup INSTRON ElectroPuls E3000 Test System. The process of significant self-heating of the specimens under their long-term cyclic deformation has been experimentally established and studied. Using the non-contact methods, the variation in the specimen temperature in time is measured. The mechanisms of their non-stationary heating are obtained, as well as the dependences of the stabilization temperature of the thermal state on the loading conditions. It has been determined that the area of hysteresis loops, which is formed when specimens undergo deformation in the temperature-stabilized state, depends nonlinearly on the amplitude of strains. The qualitative and quantitative dependences of the loss modulus, as well as the dissipation coefficients and relaxation times on the loading frequency, strain amplitude and temperature due to the material self-heating, are determined. The approximation dependences of the loss modulus of the composite on the loading frequency and self-heating temperature are constructed on the basis of the generalized three-parameter linear (Zener) model and the exponential temperature-dependent initial elastic modulus.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat A. K. Kondé, L. Rosu, F. Lebon, et. al., “Thermomechanical analysis of an aircraft tire in cornering using coupled ale and lagrangian formulations,” Cent. Eur. J. Eng., 3, No. 2, 191–205 (2013). A. K. Kondé, L. Rosu, F. Lebon, et. al., “Thermomechanical analysis of an aircraft tire in cornering using coupled ale and lagrangian formulations,” Cent. Eur. J. Eng., 3, No. 2, 191–205 (2013).
2.
Zurück zum Zitat A. Gonçalves De Lima, D. Rade, H. Lacerda, et. al., “Influence of the combined dynamic and static strains on the self-heating phenomenon in viscoelastic dampers,” in: Proc. of the 22nd Int. Congr. on Mechanical Engineering – COBEM 2013 (November 3–7, 2013, Ribeirao Preto, Brazil) (2013), pp. 9739– 9747. A. Gonçalves De Lima, D. Rade, H. Lacerda, et. al., “Influence of the combined dynamic and static strains on the self-heating phenomenon in viscoelastic dampers,” in: Proc. of the 22nd Int. Congr. on Mechanical Engineering – COBEM 2013 (November 3–7, 2013, Ribeirao Preto, Brazil) (2013), pp. 9739– 9747.
3.
Zurück zum Zitat D. A. Hguyen, J. Dang, Y. Okui, et al., “An improved rheology model for the description of the rate-dependent cyclic behavior of high damping rubber bearings,” Soil Dyn. Earthq. Eng., 77, 416–431 (2015).CrossRef D. A. Hguyen, J. Dang, Y. Okui, et al., “An improved rheology model for the description of the rate-dependent cyclic behavior of high damping rubber bearings,” Soil Dyn. Earthq. Eng., 77, 416–431 (2015).CrossRef
4.
Zurück zum Zitat Y. Koutsawa, W. L. Azoti, S. Belouettar, et al., “Loss behavior of viscoelastic sandwich structures: A statistical-continuum multi-scale approach,” Compos. Struct., 94, No. 4, 1391–1397 (2012).CrossRef Y. Koutsawa, W. L. Azoti, S. Belouettar, et al., “Loss behavior of viscoelastic sandwich structures: A statistical-continuum multi-scale approach,” Compos. Struct., 94, No. 4, 1391–1397 (2012).CrossRef
5.
Zurück zum Zitat G. S. Pisarenko, A. P. Yakovlev, and V. V. Matveev, Vibration Absorbing Properties of Constructional Materials [in Russian], Naukova Dumka, Kiev (1971). G. S. Pisarenko, A. P. Yakovlev, and V. V. Matveev, Vibration Absorbing Properties of Constructional Materials [in Russian], Naukova Dumka, Kiev (1971).
6.
Zurück zum Zitat G. S. Pisarenko, Energy Dissipation under Mechanical Oscillations [in Russian], AN USSR Publ., Kiev (1962). G. S. Pisarenko, Energy Dissipation under Mechanical Oscillations [in Russian], AN USSR Publ., Kiev (1962).
7.
Zurück zum Zitat A. P. Zinkovskii, I. G. Tokar’, V. A. Kruts, et al., “Influence of dissipation of energy in material on vibrations of structural elements with nonuniformities,” Aviats. Kosm. Tekhn. Tekhnol., No. 9 (96), 132–137 (2012). A. P. Zinkovskii, I. G. Tokar’, V. A. Kruts, et al., “Influence of dissipation of energy in material on vibrations of structural elements with nonuniformities,” Aviats. Kosm. Tekhn. Tekhnol., No. 9 (96), 132–137 (2012).
8.
Zurück zum Zitat C. S. Woo, S. S. Choi, S. B. Lee, and H. S. Kim, “Useful lifetime prediction of rubber components using accelerated testing,” IEEE T. Reliab., 59, No. 1, 11–17 (2010).CrossRef C. S. Woo, S. S. Choi, S. B. Lee, and H. S. Kim, “Useful lifetime prediction of rubber components using accelerated testing,” IEEE T. Reliab., 59, No. 1, 11–17 (2010).CrossRef
9.
Zurück zum Zitat S. Lejeunes, D. Eyheramendy, A. A. Boukamel, et al., “A constitutive multiphysics modeling for nearly incompressible dissipative materials: application to thermo–chemo-mechanical aging of rubbers,” Mech. Time-Depend. Mater., 22, No. 1, 51–66 (2018).CrossRef S. Lejeunes, D. Eyheramendy, A. A. Boukamel, et al., “A constitutive multiphysics modeling for nearly incompressible dissipative materials: application to thermo–chemo-mechanical aging of rubbers,” Mech. Time-Depend. Mater., 22, No. 1, 51–66 (2018).CrossRef
10.
Zurück zum Zitat O. Larin and O. Vodka, “A probability approach to the estimation of the process of accumulation of the high-cycle fatigue damage considering the natural aging of a material,” Int. J. Damage Mech., 24, No. 2, 294–310 (2015).CrossRef O. Larin and O. Vodka, “A probability approach to the estimation of the process of accumulation of the high-cycle fatigue damage considering the natural aging of a material,” Int. J. Damage Mech., 24, No. 2, 294–310 (2015).CrossRef
11.
Zurück zum Zitat O. O. Larin, “Probabilistic model of fatigue damage accumulation in rubberlike materials,” Strength Mater., 47, No. 6, 849–858 (2015).CrossRef O. O. Larin, “Probabilistic model of fatigue damage accumulation in rubberlike materials,” Strength Mater., 47, No. 6, 849–858 (2015).CrossRef
12.
Zurück zum Zitat O. O. Larin, O. I. Trubayev, and O. O. Vodka, “The fatigue life-time propagation of the connection elements of long-term operated hydro turbines considering material degradation,” Vestnik PNIPU. Mekhanika, No. 1, 167–193 (2014). O. O. Larin, O. I. Trubayev, and O. O. Vodka, “The fatigue life-time propagation of the connection elements of long-term operated hydro turbines considering material degradation,” Vestnik PNIPU. Mekhanika, No. 1, 167–193 (2014).
13.
Zurück zum Zitat S. Seichter, T. Koch, V.-M. Archodoulaki, et al., “Investigation of different influences on the fatigue behaviour of industrial rubbers,” Polym. Test., 59, 99–106 (2017).CrossRef S. Seichter, T. Koch, V.-M. Archodoulaki, et al., “Investigation of different influences on the fatigue behaviour of industrial rubbers,” Polym. Test., 59, 99–106 (2017).CrossRef
14.
Zurück zum Zitat D. Cardone and G. Gesualdi, “Experimental evaluation of the mechanical behavior of elastomeric materials for seismic applications at different air temperatures,” Int. J. Mech. Sci., 64, No. 1, 127–143 (2012).CrossRef D. Cardone and G. Gesualdi, “Experimental evaluation of the mechanical behavior of elastomeric materials for seismic applications at different air temperatures,” Int. J. Mech. Sci., 64, No. 1, 127–143 (2012).CrossRef
15.
Zurück zum Zitat W. Luo, X. Hu, C. Wang, and Q. Li, “Frequency- and strain-amplitude-dependent dynamical mechanical properties and hysteresis loss of CB-filled vulcanized natural rubber,” Int. J. Mech. Sci., 52, No. 2, 168–174 (2010).CrossRef W. Luo, X. Hu, C. Wang, and Q. Li, “Frequency- and strain-amplitude-dependent dynamical mechanical properties and hysteresis loss of CB-filled vulcanized natural rubber,” Int. J. Mech. Sci., 52, No. 2, 168–174 (2010).CrossRef
16.
Zurück zum Zitat C. Ovalle Rodas, F. Zaïri, M. A. Naït-Abdelaziz, and P. Charrier, “Thermo-visco-hyperelastic model for the heat build-up during low-cycle fatigue of filled rubbers: Formulation, implementation and experimental verification,” Int. J. Plasticity, 79, 217–236 (2014). C. Ovalle Rodas, F. Zaïri, M. A. Naït-Abdelaziz, and P. Charrier, “Thermo-visco-hyperelastic model for the heat build-up during low-cycle fatigue of filled rubbers: Formulation, implementation and experimental verification,” Int. J. Plasticity, 79, 217–236 (2014).
17.
Zurück zum Zitat J. R. Cho, H. W. Lee, W. B. Jeong, et al., “Numerical estimation of rolling resistance and temperature distribution of 3-D periodic patterned tire,” Int. J. Solids Struct., 50, No. 1, 86–96 (2013).CrossRef J. R. Cho, H. W. Lee, W. B. Jeong, et al., “Numerical estimation of rolling resistance and temperature distribution of 3-D periodic patterned tire,” Int. J. Solids Struct., 50, No. 1, 86–96 (2013).CrossRef
18.
Zurück zum Zitat M. H. R. Ghoreishy, M. Firouzbakht, and G. Naderi, “Parameter determination and experimental verification of Bergström–Boyce hysteresis model for rubber compounds reinforced by carbon black blends,” Mater. Design, 53, 457–465 (2014).CrossRef M. H. R. Ghoreishy, M. Firouzbakht, and G. Naderi, “Parameter determination and experimental verification of Bergström–Boyce hysteresis model for rubber compounds reinforced by carbon black blends,” Mater. Design, 53, 457–465 (2014).CrossRef
19.
Zurück zum Zitat S. V. Sheshenin, P. V. Chistyakov, and I. M. Zakalyukina, “Application of the Maxwell model of viscoelasticity for rubber-cord composite,” Naukovedenie, No. 4, 21–35 (2017). S. V. Sheshenin, P. V. Chistyakov, and I. M. Zakalyukina, “Application of the Maxwell model of viscoelasticity for rubber-cord composite,” Naukovedenie, No. 4, 21–35 (2017).
20.
Zurück zum Zitat S. V. Sheshenin, P. V. Chistyakov, and V. V. Vakulyuk, “Investigation of visoelastic properties of cushion rubber,” in: Elasticity and Inelasticity (Proc. of the Int. Symp. on the Problems of Mechanics of Deformable Bodies, dedicated to the 105th Anniversary of A. A. Il’yushin, January 20–21, 2016, Moscow) [in Russian], Moscow University Publ., Moscow (2016), pp. 430–435. S. V. Sheshenin, P. V. Chistyakov, and V. V. Vakulyuk, “Investigation of visoelastic properties of cushion rubber,” in: Elasticity and Inelasticity (Proc. of the Int. Symp. on the Problems of Mechanics of Deformable Bodies, dedicated to the 105th Anniversary of A. A. Il’yushin, January 20–21, 2016, Moscow) [in Russian], Moscow University Publ., Moscow (2016), pp. 430–435.
21.
Zurück zum Zitat J. Diani, B. Fayolle, and P. Gilormini, “A review on the Mullins effect,” Eur. Polym. J., 45, No. 3, 601–612 (2009).CrossRef J. Diani, B. Fayolle, and P. Gilormini, “A review on the Mullins effect,” Eur. Polym. J., 45, No. 3, 601–612 (2009).CrossRef
22.
Zurück zum Zitat V. N. Khiêm, R. Dargazany, and M. Itskov, “Constitutive modeling of cyclic stress softening in filled elastomers,” PAMM - Proc. Appl. Math. Mech., 13, No. 1, 143–144 (2013).CrossRef V. N. Khiêm, R. Dargazany, and M. Itskov, “Constitutive modeling of cyclic stress softening in filled elastomers,” PAMM - Proc. Appl. Math. Mech., 13, No. 1, 143–144 (2013).CrossRef
23.
Zurück zum Zitat M. Itskov, A. Ehret, R. Kazakeviciutë-Makovska, and G. W. Weinhold, “A thermodynamically consistent phenomenological model of the anisotropic Mullins effect,” ZAMM - Z. Angew. Math. Me., 90, No. 5, 370–386 (2010).CrossRef M. Itskov, A. Ehret, R. Kazakeviciutë-Makovska, and G. W. Weinhold, “A thermodynamically consistent phenomenological model of the anisotropic Mullins effect,” ZAMM - Z. Angew. Math. Me., 90, No. 5, 370–386 (2010).CrossRef
24.
Zurück zum Zitat V. V. Matveev and O. E. Boginich, “Influence of inelastic resistance on vibrodiagnostic parameters of the presence of a closing crack in an elastic body under superharmonic resonance,” Strength Mater., 46, No. 4, 458–470 (2014)CrossRef V. V. Matveev and O. E. Boginich, “Influence of inelastic resistance on vibrodiagnostic parameters of the presence of a closing crack in an elastic body under superharmonic resonance,” Strength Mater., 46, No. 4, 458–470 (2014)CrossRef
25.
Zurück zum Zitat P. Haupt, Continuum Mechanics and Theory of Materials, Springer-Verlag, Berlin–Heidelberg (2002). P. Haupt, Continuum Mechanics and Theory of Materials, Springer-Verlag, Berlin–Heidelberg (2002).
Metadaten
Titel
Experimental Investigation of Viscoelastic Characteristics of Rubber-Cord Composites Considering the Process of Their Self-Heating
verfasst von
A. A. Larin
Yu. A. Vyazovichenko
E. Barkanov
M. Itskov
Publikationsdatum
23.01.2019
Verlag
Springer US
Erschienen in
Strength of Materials / Ausgabe 6/2018
Print ISSN: 0039-2316
Elektronische ISSN: 1573-9325
DOI
https://doi.org/10.1007/s11223-019-00030-7

Weitere Artikel der Ausgabe 6/2018

Strength of Materials 6/2018 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.