Skip to main content
Erschienen in: Strength of Materials 2/2019

30.05.2019 | SCIENTIFIC AND TECHNICAL SECTION

Rapid Method of Predicting the Subsonic Flutter Stability of AGTE Axial-Flow Compressor Blade Cascades. Part 1. Physical Backgrounds of the Method

verfasst von: A. L. Stel’makh, A. P. Zinkovskii, S. N. Kabannik

Erschienen in: Strength of Materials | Ausgabe 2/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Generalization of experimental investigation results for direct compressor cascades of blade profiles at a subsonic (continuous and separated) gas flow with bending, torsional, and bending-torsional vibrations created the basis for defining the physical mechanisms of subsonic flutter initiation in AGTE axial-flow compressor blade cascades. Such a combination of reduced frequencies and angles of attack is possible when the aerodynamic blade vibration decrement equals zero. It corresponds to the critical reduced vibration frequency value below which the aeroexcitation of blade vibrations and an increase in its level are observed, i.e., the dynamic subsonic cascade flutter loss is taking place. Known methods of evaluating these critical loss conditions are analyzed. The rapid method of predicting the dynamic subsonic flutter stability for compressor blade cascades is described. The scheme of critical reduced blade vibration frequency data base generation is tabulated as the critical values at fixed geometric cascade parameters (pitch-chord ratio and deflection angle), angles of attack, and coefficients of bending-torsional coupling. An example of such a data base for specific compressor blade cascades is given.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat E. K. Armstrong and R. E. Stevenson, “Some practical aspects of compressor blade vibration,” J. R. Aeronaut. Soc., 64, No. 591, 117–130 (1960).CrossRef E. K. Armstrong and R. E. Stevenson, “Some practical aspects of compressor blade vibration,” J. R. Aeronaut. Soc., 64, No. 591, 117–130 (1960).CrossRef
2.
Zurück zum Zitat A. V. Srinivasan, “Flutter and resonant vibrations characteristics of engine blades,” J. Eng. Gas Turb. Power, 119, 742–775 (1997).CrossRef A. V. Srinivasan, “Flutter and resonant vibrations characteristics of engine blades,” J. Eng. Gas Turb. Power, 119, 742–775 (1997).CrossRef
3.
Zurück zum Zitat E. A. Lokshtanov, V. M. Mikhailov, and A. A. Khorikov, Statistical Flutter Prediction for Turbomachine Blades. Aeroelasticity of Turbomachines [in Russian], Naukova Dumka, Kiev (1980), pp. 73–81. E. A. Lokshtanov, V. M. Mikhailov, and A. A. Khorikov, Statistical Flutter Prediction for Turbomachine Blades. Aeroelasticity of Turbomachines [in Russian], Naukova Dumka, Kiev (1980), pp. 73–81.
4.
Zurück zum Zitat Tszi and Srinivasan, “Some recent advances in studying the nature of stall flutter in turbomachines,” Énerg. Mash. Ustan., 107, No. 2, 113–124 (1985). Tszi and Srinivasan, “Some recent advances in studying the nature of stall flutter in turbomachines,” Énerg. Mash. Ustan., 107, No. 2, 113–124 (1985).
5.
Zurück zum Zitat V. R. Capece and Y. M. El-Aini, “Stall flutter prediction techniques for fan and compressor blades,” J. Propul. Power, 12, 800–806 (1996).CrossRef V. R. Capece and Y. M. El-Aini, “Stall flutter prediction techniques for fan and compressor blades,” J. Propul. Power, 12, 800–806 (1996).CrossRef
6.
Zurück zum Zitat J. D. Jeffers II and C. E. Meece, Jr, “F100 fan stall flutter problem review and solution,” AAIA J. Aircraft, 12, No. 1, 350–357 (1975).CrossRef J. D. Jeffers II and C. E. Meece, Jr, “F100 fan stall flutter problem review and solution,” AAIA J. Aircraft, 12, No. 1, 350–357 (1975).CrossRef
7.
Zurück zum Zitat S. N. Smith, Discrete Frequency Sound Generation in Axial Flow Turbomachines, Aeronautical Research Council Reports and Memoranda, No. 3709, Her Majesty’s Stationery Office, London (1973). S. N. Smith, Discrete Frequency Sound Generation in Axial Flow Turbomachines, Aeronautical Research Council Reports and Memoranda, No. 3709, Her Majesty’s Stationery Office, London (1973).
8.
Zurück zum Zitat F. O. Carta, “Coupled blade-disk-shroud flutter instabilities in turbojet engine rotors,” J. Eng. Power, 89, No. 3, 419–426 (1967). F. O. Carta, “Coupled blade-disk-shroud flutter instabilities in turbojet engine rotors,” J. Eng. Power, 89, No. 3, 419–426 (1967).
9.
Zurück zum Zitat A. Bölcs and T. H. Fransson, Aeroelasticity in Turbomachines. Comparison of Theoretical and Experimental Cascade Results, Communications de Laboratoire de Thermique Appliquée et de Turbomachines No. 13, EPFL, Lausanne (1986). A. Bölcs and T. H. Fransson, Aeroelasticity in Turbomachines. Comparison of Theoretical and Experimental Cascade Results, Communications de Laboratoire de Thermique Appliquée et de Turbomachines No. 13, EPFL, Lausanne (1986).
10.
Zurück zum Zitat J. G. Marshall and M. Imregun, “A review of aeroelasticity methods with emphasis on turbomachinery applications,” J. Fluid. Struct., 10, 237–267 (1996).CrossRef J. G. Marshall and M. Imregun, “A review of aeroelasticity methods with emphasis on turbomachinery applications,” J. Fluid. Struct., 10, 237–267 (1996).CrossRef
11.
Zurück zum Zitat L. Sbardella, A. I. Sayma, and M. Imregun, “Semi-structured meshes for axial turbomachinery blades,” Int. J. Numer. Meth. Fl., 32, No. 5, 569–584 (2000).CrossRef L. Sbardella, A. I. Sayma, and M. Imregun, “Semi-structured meshes for axial turbomachinery blades,” Int. J. Numer. Meth. Fl., 32, No. 5, 569–584 (2000).CrossRef
12.
Zurück zum Zitat M. Imregun and M. Vahdati, “Aeroelasticity analysis of a bird-damaged fan assembly using a large numerical model,” Aeronaut. J., 103, No. 1030, 569–578 (1999).CrossRef M. Imregun and M. Vahdati, “Aeroelasticity analysis of a bird-damaged fan assembly using a large numerical model,” Aeronaut. J., 103, No. 1030, 569–578 (1999).CrossRef
13.
Zurück zum Zitat M. Vahdati, A. I. Sayma, M. Imregun, and G. Simpson, “Core-compressor rotating stall simulation with a multi-bladerow model,” in: K. C. Hall, R. E. Kielb, and J. P. Thomas (Eds.), Unsteady Aerodynamics, Aeroacoustics and Aeroelasticity of Turbomachines, Springer (2006), pp. 313–329. M. Vahdati, A. I. Sayma, M. Imregun, and G. Simpson, “Core-compressor rotating stall simulation with a multi-bladerow model,” in: K. C. Hall, R. E. Kielb, and J. P. Thomas (Eds.), Unsteady Aerodynamics, Aeroacoustics and Aeroelasticity of Turbomachines, Springer (2006), pp. 313–329.
14.
Zurück zum Zitat F. Sisto, S. Thangam, and A. Abdel-Rahimi, “Computational prediction of stall flutter in cascaded airfoils,” AAIA J., 29, No. 7, 1161–1167 (1991).CrossRef F. Sisto, S. Thangam, and A. Abdel-Rahimi, “Computational prediction of stall flutter in cascaded airfoils,” AAIA J., 29, No. 7, 1161–1167 (1991).CrossRef
15.
Zurück zum Zitat V. I. Gnesin and Yu. A. Bykov, “Numerical studies on aeroelastic characteristics of the turbomachine blade cascade operating under abnormal conditions,” Probl. Mashinostr., 7, No. 1, 31–40 (2004). V. I. Gnesin and Yu. A. Bykov, “Numerical studies on aeroelastic characteristics of the turbomachine blade cascade operating under abnormal conditions,” Probl. Mashinostr., 7, No. 1, 31–40 (2004).
16.
Zurück zum Zitat V. I. Gnesin and L. V. Kolodyazhnaya, “Numerical simulation of the aeroelastic state of the vibrating turbomachine blade cascade in the three-dimensional transonic nonviscous gas flow,” Probl. Mashinostr., 1, No. 2, 65–76 (1998). V. I. Gnesin and L. V. Kolodyazhnaya, “Numerical simulation of the aeroelastic state of the vibrating turbomachine blade cascade in the three-dimensional transonic nonviscous gas flow,” Probl. Mashinostr., 1, No. 2, 65–76 (1998).
17.
Zurück zum Zitat V. A. Tsymbalyuk, A. P. Zinkovskii, and A. V. Poberezhnikov, “Experimental-calculation determination of dynamic stability of blade assemblies of GTE compressor rotor wheels,” Strength Mater., 33, No. 6, 516–525 (2001).CrossRef V. A. Tsymbalyuk, A. P. Zinkovskii, and A. V. Poberezhnikov, “Experimental-calculation determination of dynamic stability of blade assemblies of GTE compressor rotor wheels,” Strength Mater., 33, No. 6, 516–525 (2001).CrossRef
18.
Zurück zum Zitat A. Pajak and R. Rzadkowski, “Influence of mesh density and turbulence models on 2D viscous flutter in 11th standard configuration,” in: ASME Turbo Expo 2012: Turbine Technical Conference and Exposition (June 11–15, 2012, Copenhagen, Denmark), Vol. 7: Structures and Dynamics, Paper No. GT2012-68393, doi: https://doi.org/10.1115/GT2012-68393 (2012), pp. 1431–1439. A. Pajak and R. Rzadkowski, “Influence of mesh density and turbulence models on 2D viscous flutter in 11th standard configuration,” in: ASME Turbo Expo 2012: Turbine Technical Conference and Exposition (June 11–15, 2012, Copenhagen, Denmark), Vol. 7: Structures and Dynamics, Paper No. GT2012-68393, doi: https://​doi.​org/​10.​1115/​GT2012-68393 (2012), pp. 1431–1439.
19.
Zurück zum Zitat A. Rougerald-Sens and A. Dugeai, “Numerical unsteady aerodynamics for turbomachinery aeroelasticity,” in: K. C. Hall, R. E. Kielb, and J. P. Thomas (Eds.), Unsteady Aerodynamics, Aeroacoustics and Aeroelasticity of Turbomachines, Springer (2006), pp. 423–436. A. Rougerald-Sens and A. Dugeai, “Numerical unsteady aerodynamics for turbomachinery aeroelasticity,” in: K. C. Hall, R. E. Kielb, and J. P. Thomas (Eds.), Unsteady Aerodynamics, Aeroacoustics and Aeroelasticity of Turbomachines, Springer (2006), pp. 423–436.
20.
Zurück zum Zitat A. L. Stel’makh, Ya. A. Stel’makh, and A. P. Zinkovskii, “Rapid assessment technique for dynamic subsonic cascade flutter stability of gas turbine engine compressor blades,” Aviats.-Kosm. Tekhn. Tekhnol., Issue 5 (40), 71–75 (2003). A. L. Stel’makh, Ya. A. Stel’makh, and A. P. Zinkovskii, “Rapid assessment technique for dynamic subsonic cascade flutter stability of gas turbine engine compressor blades,” Aviats.-Kosm. Tekhn. Tekhnol., Issue 5 (40), 71–75 (2003).
21.
Zurück zum Zitat A. A. Kaminer and A. L. Stel’makh, “Effect of the aerodynamic connectedness between blades on the aerodynamic damping of their vibrations, and origin of cascade flutter,” Strength Mater., 14, No. 12, 1667–1672 (1982).CrossRef A. A. Kaminer and A. L. Stel’makh, “Effect of the aerodynamic connectedness between blades on the aerodynamic damping of their vibrations, and origin of cascade flutter,” Strength Mater., 14, No. 12, 1667–1672 (1982).CrossRef
22.
Zurück zum Zitat A. L. Stel’makh and A. A. Kaminer, “Experimental study on cascade flutter-induced bending compressor blade vibrations,” in: Aeroelasticity of Turbomachines [in Russian], Proc. of Central Institute of Aviation Motors, No. 1064 (1983), pp. 273–284. A. L. Stel’makh and A. A. Kaminer, “Experimental study on cascade flutter-induced bending compressor blade vibrations,” in: Aeroelasticity of Turbomachines [in Russian], Proc. of Central Institute of Aviation Motors, No. 1064 (1983), pp. 273–284.
23.
Zurück zum Zitat A. L. Stel’makh and A. A. Kaminer, “Effect of the geometrical parameters of a compressor cascade on the limit of bending self-oscillations of blades caused by cascade flatter,” Strength Mater., 15, No. 1, 104–109 (1983).CrossRef A. L. Stel’makh and A. A. Kaminer, “Effect of the geometrical parameters of a compressor cascade on the limit of bending self-oscillations of blades caused by cascade flatter,” Strength Mater., 15, No. 1, 104–109 (1983).CrossRef
24.
Zurück zum Zitat A. D. Len, A. A. Kaminer, A. L. Stel’makh, and V. A. Balalaev, “Loss of dynamic stability of torsional vibrations of blades due to cascade flutter,” Strength Mater., 18, No. 1, 76–80 (1986).CrossRef A. D. Len, A. A. Kaminer, A. L. Stel’makh, and V. A. Balalaev, “Loss of dynamic stability of torsional vibrations of blades due to cascade flutter,” Strength Mater., 18, No. 1, 76–80 (1986).CrossRef
25.
Zurück zum Zitat A. A. Kaminer, A. L. Stel’makh, and A. D. Len, “Experimental study on flutter-induced torsional autovibration limits for compressor blades,” in: Aeroelasticity of Turbomachines [in Russian], Proc. of Central Institute of Aviation Motors, No. 1127 (1985), pp. 96–104. A. A. Kaminer, A. L. Stel’makh, and A. D. Len, “Experimental study on flutter-induced torsional autovibration limits for compressor blades,” in: Aeroelasticity of Turbomachines [in Russian], Proc. of Central Institute of Aviation Motors, No. 1127 (1985), pp. 96–104.
26.
Zurück zum Zitat A. L. Stel’makh, “Aerodamping and stability of fan and compressor cascades under continuous and separated flow conditions,” Vibr. Tekhn. Tekhnol., No. 1 (10), 45–51 (1999). A. L. Stel’makh, “Aerodamping and stability of fan and compressor cascades under continuous and separated flow conditions,” Vibr. Tekhn. Tekhnol., No. 1 (10), 45–51 (1999).
27.
Zurück zum Zitat A. L. Stel’makh, A. P. Zinkovskii, and Ya. A. Stel’makh, “Experimental-numerical investigation of the dynamic stability of flexural-torsional vibrations of compressor blades under conditions of attached and separated flow. Part 3. Mutual aerodynamic couplings,” Strength Mater., 42, No. 3, 304–312 (2010).CrossRef A. L. Stel’makh, A. P. Zinkovskii, and Ya. A. Stel’makh, “Experimental-numerical investigation of the dynamic stability of flexural-torsional vibrations of compressor blades under conditions of attached and separated flow. Part 3. Mutual aerodynamic couplings,” Strength Mater., 42, No. 3, 304–312 (2010).CrossRef
Metadaten
Titel
Rapid Method of Predicting the Subsonic Flutter Stability of AGTE Axial-Flow Compressor Blade Cascades. Part 1. Physical Backgrounds of the Method
verfasst von
A. L. Stel’makh
A. P. Zinkovskii
S. N. Kabannik
Publikationsdatum
30.05.2019
Verlag
Springer US
Erschienen in
Strength of Materials / Ausgabe 2/2019
Print ISSN: 0039-2316
Elektronische ISSN: 1573-9325
DOI
https://doi.org/10.1007/s11223-019-00063-y

Weitere Artikel der Ausgabe 2/2019

Strength of Materials 2/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.