Skip to main content
Erschienen in: Strength of Materials 2/2020

11.06.2020

Interlayer Gap Effect on the Dynamics and Strength of Two-Layer Metal Composite Cylinders under Internal Explosion

verfasst von: P. P. Lepikhin, V. A. Romashchenko, Yu. N. Babich

Erschienen in: Strength of Materials | Ausgabe 2/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The effect of contact conditions and the gap between the metal and composite layers on the stress-strain state and strength of a two-layer metal composite cylinder under internal explosive loading in air is numerically studied. It is accepted that in the absence of a gap between the metal and composite layers, there is no interference. The problem was considered on the basis of the general equations of theories of elasticity and plasticity in a one-dimensional formulation (plane strain state), which makes it possible to neglect the peculiarities of loading and deformation along the cylinder length. In the absence of an initial gap, the case of perfect contact between the layers was also studied. The inner layer is made of one or another isotropic elastoplastic steel with significantly different yield strengths (steels 20 and 40KhNMA), the outer one is made of an elastic-to-failure cylindrically transtropic circumferentially reinforced composite The dynamic 1D boundary-value problem was solved using the training version of the LS-DYNA software, which is part of the ANSYS commercial application package. The solution method is the Wilkins finitedifference integro-interpolation algorithm included in above software version. It has been established that the strength of the metal composite cylinder under internal explosion is determined by the strength of the outer composite layer under tension in the radial direction and depends nonlinearly and nonmonotonically on the initial gap between the layers. The maximum strength is realized under perfect or non-perfect contact with zero initial gap, and the minimum strength is realized at the initial gap that is roughly equal to a half of the maximum displacement of the inner steel shell in the case of absence of the outer composite layer. To make the reinforcing inner layer, it is inexpedient to use, in terms of strength, structural alloy steels with high yield strength; the steels with low yield strength are more efficient.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat P. P. Lepikhin and V. A. Romashchenko, Strength of Inhomogeneous Anisotropic Hollow Cylinders under Impulsive Loading [in Russian], Naukova Dumka, Kiev (2014). P. P. Lepikhin and V. A. Romashchenko, Strength of Inhomogeneous Anisotropic Hollow Cylinders under Impulsive Loading [in Russian], Naukova Dumka, Kiev (2014).
2.
Zurück zum Zitat O. S. Vorontsova, M. A. Syrunin, A. G. Fedorenko, et al., “Experimental investigation of the coefficients of variation of the strength characteristics of glass plastic cylindrical shells under internal impulsive loading,” Mekh. Kompozit. Mater., No. 4, 642–646 (1987). O. S. Vorontsova, M. A. Syrunin, A. G. Fedorenko, et al., “Experimental investigation of the coefficients of variation of the strength characteristics of glass plastic cylindrical shells under internal impulsive loading,” Mekh. Kompozit. Mater., No. 4, 642–646 (1987).
3.
Zurück zum Zitat A. G. Fedorenko, M. A. Syrunin, and A. G. Ivanov, “Ultimate strains of shells made of oriented glass plastic under internal explosive loading,” Fiz. Goren. Vzryv., No. 2, 87–93 (1992). A. G. Fedorenko, M. A. Syrunin, and A. G. Ivanov, “Ultimate strains of shells made of oriented glass plastic under internal explosive loading,” Fiz. Goren. Vzryv., No. 2, 87–93 (1992).
4.
Zurück zum Zitat A. G. Ivanov, A. G. Fedorenko, and M. A. Syrunin, “Effect of reinforcement structure on the ultimate deformability and strength of shells made of oriented glass plastic under internal explosive loading,” Prikl. Mekh. Teoret. Fiz., No. 4, 130–135 (1992). A. G. Ivanov, A. G. Fedorenko, and M. A. Syrunin, “Effect of reinforcement structure on the ultimate deformability and strength of shells made of oriented glass plastic under internal explosive loading,” Prikl. Mekh. Teoret. Fiz., No. 4, 130–135 (1992).
5.
Zurück zum Zitat M. A. Syrunin, A. G. Fedorenko, and A. G. Ivanov, “Dynamic strength of shells made of oriented composites based on fibers of different composition,” Prikl. Mekh. Teoret. Fiz., No. 4, 141–145 (1995). M. A. Syrunin, A. G. Fedorenko, and A. G. Ivanov, “Dynamic strength of shells made of oriented composites based on fibers of different composition,” Prikl. Mekh. Teoret. Fiz., No. 4, 141–145 (1995).
6.
Zurück zum Zitat A. I. Abakumov, P. N. Nizovtsev, V. P. Solov’ev, et al,, “Computational and experimental investigation of the stress-strain state of composite shells of revolution under dynamic loading taking into account high strains,” Mekh. Kompozit. Mater., No. 1, 28–37 (1998). A. I. Abakumov, P. N. Nizovtsev, V. P. Solov’ev, et al,, “Computational and experimental investigation of the stress-strain state of composite shells of revolution under dynamic loading taking into account high strains,” Mekh. Kompozit. Mater., No. 1, 28–37 (1998).
7.
Zurück zum Zitat V. A. Ryzhanskii, V. N. Rusak, and A. G. Ivanov, “Assessment of the explosion resistance of cylindrical composite shells,” Fiz. Goren. Vzryv., No. 1, 115–121 (1999). V. A. Ryzhanskii, V. N. Rusak, and A. G. Ivanov, “Assessment of the explosion resistance of cylindrical composite shells,” Fiz. Goren. Vzryv., No. 1, 115–121 (1999).
8.
Zurück zum Zitat V. N. Rusak, A. G. Fedorenko, M. A. Syrunin, et al., “Ultimate deformability and strength of basalt plastic shells under internal explosive loading,” Prikl. Mekh. Teoret. Fiz., No. 1, 189–195 (2002). V. N. Rusak, A. G. Fedorenko, M. A. Syrunin, et al., “Ultimate deformability and strength of basalt plastic shells under internal explosive loading,” Prikl. Mekh. Teoret. Fiz., No. 1, 189–195 (2002).
9.
Zurück zum Zitat N. A. Abrosimov and N. A. Novosel’tseva, “The identification of material parameters in nonlinear deformation madels of metallic-plastic cylindrical shells under pulsed loading,” Mater. Phys. Mech., 23, 66–70 (2015). N. A. Abrosimov and N. A. Novosel’tseva, “The identification of material parameters in nonlinear deformation madels of metallic-plastic cylindrical shells under pulsed loading,” Mater. Phys. Mech., 23, 66–70 (2015).
10.
Zurück zum Zitat N. A. Abrosimov and N.A. Novosel’tseva, “Numerical analysis of the progressive failure of metal-filled plastic shells under impulsive loading,” in: Proc. of the XUth Int. Conf. on Nonequilibrium Processes in Nozzles and Jets (NPNJ’ 2016) (May 25–31, 2016, Alushta), MAI, Moscow (2016). N. A. Abrosimov and N.A. Novosel’tseva, “Numerical analysis of the progressive failure of metal-filled plastic shells under impulsive loading,” in: Proc. of the XUth Int. Conf. on Nonequilibrium Processes in Nozzles and Jets (NPNJ’ 2016) (May 25–31, 2016, Alushta), MAI, Moscow (2016).
11.
Zurück zum Zitat V. A. Romashchenko, Yu. N. Babich, E. V. Bakhtina, “Strength assessment for composite and metalcomposite cylinders under pulse loading. Part 2. Numerical evaluation of strength for multilayer cylinders of finite length under internal explosion,” Strength Mater., 44, No. 5, 502–511 (2012).CrossRef V. A. Romashchenko, Yu. N. Babich, E. V. Bakhtina, “Strength assessment for composite and metalcomposite cylinders under pulse loading. Part 2. Numerical evaluation of strength for multilayer cylinders of finite length under internal explosion,” Strength Mater., 44, No. 5, 502–511 (2012).CrossRef
12.
Zurück zum Zitat P. P. Lepikhin, V. A. Romashchenko, O. S. Beiner, et al., “A program for numerical calculation of dynamic stress-strain state and strength of hollow multilayer anisotropic cylinders and spheres. Part 2. Comparison of numerical results with experimental and theoretical for cylinders,” Strength Mater., 47, No. 3, 406–414 (2015).CrossRef P. P. Lepikhin, V. A. Romashchenko, O. S. Beiner, et al., “A program for numerical calculation of dynamic stress-strain state and strength of hollow multilayer anisotropic cylinders and spheres. Part 2. Comparison of numerical results with experimental and theoretical for cylinders,” Strength Mater., 47, No. 3, 406–414 (2015).CrossRef
13.
Zurück zum Zitat P. P. Lepikhin, V. A. Romashchenko, and O. S. Beiner, “A numerical study of 3D dynamics and strength of metal-composite cylinders under internal explosion loading,” Strength Mater., 49, No. 6, 796–808 (2017).CrossRef P. P. Lepikhin, V. A. Romashchenko, and O. S. Beiner, “A numerical study of 3D dynamics and strength of metal-composite cylinders under internal explosion loading,” Strength Mater., 49, No. 6, 796–808 (2017).CrossRef
14.
Zurück zum Zitat N. N. Malinin, Applied Theory of Plasticity and Creep [in Russian], Mashinostroenie, Moscow (1977). N. N. Malinin, Applied Theory of Plasticity and Creep [in Russian], Mashinostroenie, Moscow (1977).
15.
Zurück zum Zitat S. G. Lekhnitskii, Theory of Anisotropic Elasticity [in Russian], Nauka, Moscow (1977). S. G. Lekhnitskii, Theory of Anisotropic Elasticity [in Russian], Nauka, Moscow (1977).
16.
Zurück zum Zitat G. Randers-Pehrson and K. A. Bannister, Airblast Loading Model for DYNA2D and DYNA3D, ARL-TR-1310, Army Research Laboratory (1997). G. Randers-Pehrson and K. A. Bannister, Airblast Loading Model for DYNA2D and DYNA3D, ARL-TR-1310, Army Research Laboratory (1997).
18.
Zurück zum Zitat G. S. Pisarenko, A. P. Yakovlev, and V. V. Matveev, Handbook of Strength of Materials [in Russian], Delta, Kiev (2008). G. S. Pisarenko, A. P. Yakovlev, and V. V. Matveev, Handbook of Strength of Materials [in Russian], Delta, Kiev (2008).
19.
Zurück zum Zitat P. P. Lepikhin, V. A. Romashchenko, and O. S. Beiner, “Theoretical investigation of fracture in stress waves of anisotropic cylinder under internal explosion,” Strength Mater., 48, No. 5, 615–631 (2016).CrossRef P. P. Lepikhin, V. A. Romashchenko, and O. S. Beiner, “Theoretical investigation of fracture in stress waves of anisotropic cylinder under internal explosion,” Strength Mater., 48, No. 5, 615–631 (2016).CrossRef
Metadaten
Titel
Interlayer Gap Effect on the Dynamics and Strength of Two-Layer Metal Composite Cylinders under Internal Explosion
verfasst von
P. P. Lepikhin
V. A. Romashchenko
Yu. N. Babich
Publikationsdatum
11.06.2020
Verlag
Springer US
Erschienen in
Strength of Materials / Ausgabe 2/2020
Print ISSN: 0039-2316
Elektronische ISSN: 1573-9325
DOI
https://doi.org/10.1007/s11223-020-00168-9

Weitere Artikel der Ausgabe 2/2020

Strength of Materials 2/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.