Skip to main content
Erschienen in: The Journal of Supercomputing 6/2019

25.05.2018

A cluster prediction model-based data collection for energy efficient wireless sensor network

verfasst von: S. Diwakaran, B. Perumal, K. Vimala Devi

Erschienen in: The Journal of Supercomputing | Ausgabe 6/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Wireless sensor networks (WSN) are expected to cover the major portion of the earth’s surface in the coming years. In the era of IoT, the WSN is the major data collection framework. To manage with the energy efficient data collection paradigm in WSN, numerous techniques have been suggested by the research community. In this paper, a data-aware energy conservation technique is proposed. Here, the inherent correlation between the consecutive observations of the sensor node and the data trend similarity between the neighboring sensor nodes are utilized to reduce the data transmission. A prediction-based data collection framework reduces the temporal data redundancy. ARIMA modeling is used to predict the data. The model is constructed by the (Clusterhead) CH node and is communicated to the cluster nodes. On every data collection round, the nodes compare the model predicted data and the observed data of the instant. If there is a deviation beyond the specified threshold, the nodes communicate the data difference to the CH. The data differences collected by the CH are compressed by using PCA technique. The compressed data are then sent to the sink node. Using this method, a huge portion of redundant data transmission is cut off. The method also maintains the collected data’s accuracy within the predefined error threshold. Being a data reduction-based energy conservation technique, this results in reduced data collision. This method conserves 82% of energy with the error threshold of minimum level.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Mao S et al (2014) Joint energy allocation for sensing and transmission in rechargeable wireless sensor networks. IEEE Trans Veh Technol 63(6):2862–2875CrossRef Mao S et al (2014) Joint energy allocation for sensing and transmission in rechargeable wireless sensor networks. IEEE Trans Veh Technol 63(6):2862–2875CrossRef
2.
Zurück zum Zitat Hong YW, Scaglione A (2006) Energy-efficient broadcasting with cooperative transmissions in wireless sensor networks. IEEE Trans Wirel Commun 5(10):2844–2855CrossRef Hong YW, Scaglione A (2006) Energy-efficient broadcasting with cooperative transmissions in wireless sensor networks. IEEE Trans Wirel Commun 5(10):2844–2855CrossRef
3.
Zurück zum Zitat Elhoseny M et al (2015) Balancing energy consumption in heterogeneous wireless sensor networks using genetic algorithm. IEEE Commun Lett 19(12):2194–2197CrossRef Elhoseny M et al (2015) Balancing energy consumption in heterogeneous wireless sensor networks using genetic algorithm. IEEE Commun Lett 19(12):2194–2197CrossRef
4.
Zurück zum Zitat Cheng VW, Wang TY (2010) Performance analysis of distributed decision fusion using a censoring scheme in wireless sensor networks. IEEE Trans Veh Technol 59(6):2845–2851CrossRef Cheng VW, Wang TY (2010) Performance analysis of distributed decision fusion using a censoring scheme in wireless sensor networks. IEEE Trans Veh Technol 59(6):2845–2851CrossRef
5.
Zurück zum Zitat Rago C, Willett PK, Bar-Shalom Y (1996) Censoring sensors: a low-communication-rate scheme for distributed detection. IEEE Trans Aerosp Electron Syst 32(2):554–568CrossRef Rago C, Willett PK, Bar-Shalom Y (1996) Censoring sensors: a low-communication-rate scheme for distributed detection. IEEE Trans Aerosp Electron Syst 32(2):554–568CrossRef
6.
Zurück zum Zitat Jiang R, Chen B (2005) Fusion of censored decisions in wireless sensor networks. IEEE Trans Wireless Commun 4(6):2668–2673CrossRef Jiang R, Chen B (2005) Fusion of censored decisions in wireless sensor networks. IEEE Trans Wireless Commun 4(6):2668–2673CrossRef
7.
Zurück zum Zitat Pai H-T (2000) Equal-gain combination for adaptive distributed classification in wireless sensor networks. Int J Ad Hoc Ubiquitous Comput 4(2):115–121CrossRef Pai H-T (2000) Equal-gain combination for adaptive distributed classification in wireless sensor networks. Int J Ad Hoc Ubiquitous Comput 4(2):115–121CrossRef
8.
Zurück zum Zitat Cetin M, Chen L, Fisher JW III, Ihler AT, Moses RL, Wainwright MJ, Willsky AS (2006) Distributed fusion in sensor networks: a graphical models perspective. IEEE Signal Process Mag 23(4):42–55CrossRef Cetin M, Chen L, Fisher JW III, Ihler AT, Moses RL, Wainwright MJ, Willsky AS (2006) Distributed fusion in sensor networks: a graphical models perspective. IEEE Signal Process Mag 23(4):42–55CrossRef
9.
Zurück zum Zitat Yiu S, Schober R (2009) Nonorthogonal transmission and noncoherent fusion of censored decisions. IEEE Trans Veh Technol 58(1):263–273CrossRef Yiu S, Schober R (2009) Nonorthogonal transmission and noncoherent fusion of censored decisions. IEEE Trans Veh Technol 58(1):263–273CrossRef
10.
Zurück zum Zitat Krause A, Singh A, Guestrin C (2008) Near-optimal sensor placements in Gaussian processes: theory, efficient algorithms and empirical studies. J Mach Learn Res 9:235–284MATH Krause A, Singh A, Guestrin C (2008) Near-optimal sensor placements in Gaussian processes: theory, efficient algorithms and empirical studies. J Mach Learn Res 9:235–284MATH
11.
Zurück zum Zitat Pukelsheim F (2006) Optimal design of experiments. Society for Industrial and Applied Mathematics, PhiladelphiaCrossRefMATH Pukelsheim F (2006) Optimal design of experiments. Society for Industrial and Applied Mathematics, PhiladelphiaCrossRefMATH
12.
Zurück zum Zitat Msechu EJ, Giannakis GB (2011). Distributed measurement censoring for estimation with wireless sensor networks. In: IEEE 12th International Workshop on Signal Processing Advances in Wireless Communications Msechu EJ, Giannakis GB (2011). Distributed measurement censoring for estimation with wireless sensor networks. In: IEEE 12th International Workshop on Signal Processing Advances in Wireless Communications
13.
Zurück zum Zitat Appadwedula S, Veeravalli VV, Jones DL (2008) Decentralized detection with censoring sensors. IEEE Trans Signal Process 56:1362–1373MathSciNetCrossRefMATH Appadwedula S, Veeravalli VV, Jones DL (2008) Decentralized detection with censoring sensors. IEEE Trans Signal Process 56:1362–1373MathSciNetCrossRefMATH
14.
Zurück zum Zitat Rago C, Willett P, Bar-Shalom Y (1996) Censoring sensors: a low-communication-rate scheme for distributed detection. IEEE Trans Aerosp Electron Syst 32:554–568CrossRef Rago C, Willett P, Bar-Shalom Y (1996) Censoring sensors: a low-communication-rate scheme for distributed detection. IEEE Trans Aerosp Electron Syst 32:554–568CrossRef
15.
Zurück zum Zitat Wang H et al (2008) Network lifetime maximization with cross-layer design in wireless sensor networks. IEEE Trans Wirel Commun 7(10):3759–3768CrossRef Wang H et al (2008) Network lifetime maximization with cross-layer design in wireless sensor networks. IEEE Trans Wirel Commun 7(10):3759–3768CrossRef
16.
Zurück zum Zitat Wei G, Ling Y, Guo B, Xiao B, Vasilakos AV (2011) Prediction-based data aggregation in wireless sensor networks: combining grey model and Kalman Filter. Comput Commun 34(6):793–802CrossRef Wei G, Ling Y, Guo B, Xiao B, Vasilakos AV (2011) Prediction-based data aggregation in wireless sensor networks: combining grey model and Kalman Filter. Comput Commun 34(6):793–802CrossRef
17.
Zurück zum Zitat Zhang B et al (2013) An energy efficient sampling method through joint linear regression and compressive sensing. In: Intelligent Control and Information Processing (ICICIP), Fourth International Conference on. IEEE Zhang B et al (2013) An energy efficient sampling method through joint linear regression and compressive sensing. In: Intelligent Control and Information Processing (ICICIP), Fourth International Conference on. IEEE
18.
Zurück zum Zitat Tharini C, Ranjan PV (2011) An energy efficient spatial correlation based data gathering algorithm for wireless sensor networks. Int J Distrib Parallel Syst 2(3):16–24CrossRef Tharini C, Ranjan PV (2011) An energy efficient spatial correlation based data gathering algorithm for wireless sensor networks. Int J Distrib Parallel Syst 2(3):16–24CrossRef
19.
Zurück zum Zitat Yoon S, Shahabi C (2007) The clustered aggregation (CAG) technique leveraging spatial and temporal correlations in wireless sensor networks. ACM Trans Sens Netw (TOSN) 3(1):3CrossRef Yoon S, Shahabi C (2007) The clustered aggregation (CAG) technique leveraging spatial and temporal correlations in wireless sensor networks. ACM Trans Sens Netw (TOSN) 3(1):3CrossRef
20.
Zurück zum Zitat Masiero R, Quer G, Munaretto D, Rossi M, Widmer J, Zorzi M (2009, November) Data acquisition through joint compressive sensing and principal component analysis. In: Global Telecommunications Conference, 2009. GLOBECOM 2009. IEEE, pp 1–6 Masiero R, Quer G, Munaretto D, Rossi M, Widmer J, Zorzi M (2009, November) Data acquisition through joint compressive sensing and principal component analysis. In: Global Telecommunications Conference, 2009. GLOBECOM 2009. IEEE, pp 1–6
21.
Zurück zum Zitat Macua SV, Belanovic P, Zazo S (2010, June) Consensus-based distributed principal component analysis in wireless sensor networks. In: Signal Processing Advances in Wireless Communications (SPAWC), 2010 IEEE Eleventh International Workshop on. IEEE, pp 1–5 Macua SV, Belanovic P, Zazo S (2010, June) Consensus-based distributed principal component analysis in wireless sensor networks. In: Signal Processing Advances in Wireless Communications (SPAWC), 2010 IEEE Eleventh International Workshop on. IEEE, pp 1–5
22.
Zurück zum Zitat Le Borgne YA, Raybaud S, Bontempi G (2008) Distributed principal component analysis for wireless sensor networks. Sensors 8(8):4821–4850CrossRef Le Borgne YA, Raybaud S, Bontempi G (2008) Distributed principal component analysis for wireless sensor networks. Sensors 8(8):4821–4850CrossRef
Metadaten
Titel
A cluster prediction model-based data collection for energy efficient wireless sensor network
verfasst von
S. Diwakaran
B. Perumal
K. Vimala Devi
Publikationsdatum
25.05.2018
Verlag
Springer US
Erschienen in
The Journal of Supercomputing / Ausgabe 6/2019
Print ISSN: 0920-8542
Elektronische ISSN: 1573-0484
DOI
https://doi.org/10.1007/s11227-018-2437-z

Weitere Artikel der Ausgabe 6/2019

The Journal of Supercomputing 6/2019 Zur Ausgabe