Skip to main content
Erschienen in: Topics in Catalysis 12-14/2017

10.04.2017 | Original Paper

Carbon Surface Modifications by Plasma for Catalyst Support and Electrode Materials Applications

verfasst von: Lingfeng Zhang, Gullapelli Sadanandam, Xinying Liu, Mike S. Scurrell

Erschienen in: Topics in Catalysis | Ausgabe 12-14/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Plasma has been introduced in recent years as a promising method for modification of carbon materials in comparing with traditional wet chemical method, thanks to reduced energy combustion, shortened synthesis duration and undestroyed bulk structure. In this review, we present the modification of carbons on surface chemistry and the recent progress in the applications of these modified carbons in catalyst supports and electrode materials. Plasma methods show promise as a means of enhancing surface properties without destroying the bulk structure of the carbon. Interaction can occur with oxygen, nitrogen and halogens and the chemical modification at the surface can often lead to the provision of sites that can be used to anchor small (nano) particles of metals and active components. This in turn can lead to enhanced catalytic behavior, including electrocatalysis. Hydrophilic/hydrophobic properties can also be tuned via this approach, Carbons modified in this way have also shown promise as high performance electrode materials and pseudocapacitors. The review also mentions challenges and opportunities for further modification of carbons by plasma treatment and for broadening their applications.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Baughman RH, Zakhidov AA, de Heer WA (2002) Carbon nanotubes-the route toward applications. Science 297(5582):787–792CrossRef Baughman RH, Zakhidov AA, de Heer WA (2002) Carbon nanotubes-the route toward applications. Science 297(5582):787–792CrossRef
2.
Zurück zum Zitat Mauter MS, Elimelech M (2008) Environmental applications of carbon-based nanomaterials. Environ Sci Technol 42(16):5843–5859CrossRef Mauter MS, Elimelech M (2008) Environmental applications of carbon-based nanomaterials. Environ Sci Technol 42(16):5843–5859CrossRef
3.
Zurück zum Zitat Bessel CA, Laubernds K, Rodriguez NM, Baker, R. T. K. (2001) Graphite nanofibers as an electrode for fuel cell applications. J Phys Chem B 105(6):1115–1118CrossRef Bessel CA, Laubernds K, Rodriguez NM, Baker, R. T. K. (2001) Graphite nanofibers as an electrode for fuel cell applications. J Phys Chem B 105(6):1115–1118CrossRef
4.
Zurück zum Zitat Yoo E, Kim J, Hosono E, Zhou HS, Kudo T, Honma I (2008) Large reversible Li storage of graphene nanosheet families for use in rechargeable lithium ion batteries. Nano Lett 8(8):2277–2282CrossRef Yoo E, Kim J, Hosono E, Zhou HS, Kudo T, Honma I (2008) Large reversible Li storage of graphene nanosheet families for use in rechargeable lithium ion batteries. Nano Lett 8(8):2277–2282CrossRef
5.
Zurück zum Zitat Prasad KE, Das B, Maitra U, Ramamurty U, Rao, C. N. R. (2009) Extraordinary synergy in the mechanical properties of polymer matrix composites reinforced with 2 nanocarbons. Proc Natl Acad Sci 106(32):13186–13189CrossRef Prasad KE, Das B, Maitra U, Ramamurty U, Rao, C. N. R. (2009) Extraordinary synergy in the mechanical properties of polymer matrix composites reinforced with 2 nanocarbons. Proc Natl Acad Sci 106(32):13186–13189CrossRef
6.
Zurück zum Zitat Fernández-Rossier J, Palacios JJ (2007) Magnetism in graphene nanoislands. Phys Rev Lett 99(17):177204CrossRef Fernández-Rossier J, Palacios JJ (2007) Magnetism in graphene nanoislands. Phys Rev Lett 99(17):177204CrossRef
7.
Zurück zum Zitat Pourfayaz F, Jafari SH, Khodadadi AA, Mortazavi Y, Khonakdar HA (2013) On the dispersion of CNTs in polyamide 6 matrix via solution methods: assessment through electrical, rheological, thermal and morphological analyses. Polym Bull 70(8):2387–2398CrossRef Pourfayaz F, Jafari SH, Khodadadi AA, Mortazavi Y, Khonakdar HA (2013) On the dispersion of CNTs in polyamide 6 matrix via solution methods: assessment through electrical, rheological, thermal and morphological analyses. Polym Bull 70(8):2387–2398CrossRef
8.
Zurück zum Zitat Boiani M, Gonzalez M (2005) Imidazole and benzimidazole derivatives as chemotherapeutic agents. Mini Rev Med Chem 5(4):409–424CrossRef Boiani M, Gonzalez M (2005) Imidazole and benzimidazole derivatives as chemotherapeutic agents. Mini Rev Med Chem 5(4):409–424CrossRef
9.
Zurück zum Zitat Datsyuk V, Kalyva M, Papagelis K, Parthenios J, Tasis D, Siokou A, Kallitsis I, Galiotis C (2008) Chemical oxidation of multiwalled carbon nanotubes. Carbon 46(6):833–840CrossRef Datsyuk V, Kalyva M, Papagelis K, Parthenios J, Tasis D, Siokou A, Kallitsis I, Galiotis C (2008) Chemical oxidation of multiwalled carbon nanotubes. Carbon 46(6):833–840CrossRef
10.
Zurück zum Zitat Chin, C. J. M., Shih LC, Tsai HJ, Liu TK (2007) Adsorption of o-xylene and p-xylene from water by SWCNTs. Carbon 45(6):1254–1260CrossRef Chin, C. J. M., Shih LC, Tsai HJ, Liu TK (2007) Adsorption of o-xylene and p-xylene from water by SWCNTs. Carbon 45(6):1254–1260CrossRef
11.
Zurück zum Zitat Marshall MW, Popa-Nita S, Shapter JG (2006) Measurement of functionalised carbon nanotube carboxylic acid groups using a simple chemical process. Carbon 44(7):1137–1141CrossRef Marshall MW, Popa-Nita S, Shapter JG (2006) Measurement of functionalised carbon nanotube carboxylic acid groups using a simple chemical process. Carbon 44(7):1137–1141CrossRef
12.
Zurück zum Zitat Wu ZX, Webley PA, Zhao DY (2012) Post-enrichment of nitrogen in soft-templated order mesoporous carbon materials for high efficient phenol removal and CO2 capture. J Mater Chem 22:11379CrossRef Wu ZX, Webley PA, Zhao DY (2012) Post-enrichment of nitrogen in soft-templated order mesoporous carbon materials for high efficient phenol removal and CO2 capture. J Mater Chem 22:11379CrossRef
13.
Zurück zum Zitat Liu L, Deng QF, Ma TY, Lin XZ, Hou XX, Liu YP, Yuan ZY (2011) Ordered mesoporous carbons: citric acid-catalyzed synthesis, nitrogen doping and CO2 capture. J Mater Chem 21:16001CrossRef Liu L, Deng QF, Ma TY, Lin XZ, Hou XX, Liu YP, Yuan ZY (2011) Ordered mesoporous carbons: citric acid-catalyzed synthesis, nitrogen doping and CO2 capture. J Mater Chem 21:16001CrossRef
14.
Zurück zum Zitat Meng FY, Ogata S, Xu DS, Shibutani Y, Shi SQ (2007) Thermal conductivity of an ultrathin carbon nanotube with an X-shaped junction. Phys Rev B 75(20):205403CrossRef Meng FY, Ogata S, Xu DS, Shibutani Y, Shi SQ (2007) Thermal conductivity of an ultrathin carbon nanotube with an X-shaped junction. Phys Rev B 75(20):205403CrossRef
15.
Zurück zum Zitat Rosca ID, Hoa SV (2009) Highly conductive multiwall carbon nanotube and epoxy composites produced by three-roll milling. Carbon 47(8):1958–1968CrossRef Rosca ID, Hoa SV (2009) Highly conductive multiwall carbon nanotube and epoxy composites produced by three-roll milling. Carbon 47(8):1958–1968CrossRef
16.
Zurück zum Zitat Bogoeva-Gaceva G, Mäder E, Haüssler,L, Dekanski A (1997) Characterization of the surface and interphase of plasma-treated HM carbon fibres. Composites Part A 28(5):445–452CrossRef Bogoeva-Gaceva G, Mäder E, Haüssler,L, Dekanski A (1997) Characterization of the surface and interphase of plasma-treated HM carbon fibres. Composites Part A 28(5):445–452CrossRef
17.
Zurück zum Zitat De Torre LC, Bottani EJ, Martinez-Alonso A, Cuesta A, Garcia AB, Tascon JMD (1998) Effects of oxygen plasma treatment on the surface of graphitized carbon black. Carbon 36(3):277–282CrossRef De Torre LC, Bottani EJ, Martinez-Alonso A, Cuesta A, Garcia AB, Tascon JMD (1998) Effects of oxygen plasma treatment on the surface of graphitized carbon black. Carbon 36(3):277–282CrossRef
18.
Zurück zum Zitat Takada T, Nakahara M, Kumagai H, Sanada Y (1996) Surface modification and characterization of carbon black with oxygen plasma. Carbon 34(9):1087–1091CrossRef Takada T, Nakahara M, Kumagai H, Sanada Y (1996) Surface modification and characterization of carbon black with oxygen plasma. Carbon 34(9):1087–1091CrossRef
19.
Zurück zum Zitat Montes-Morán MA, Martınez-Alonso A, Tascón JMD, Paiva MC, Bernardo CA (2001) Effects of plasma oxidation on the surface and interfacial properties of carbon fibres/polycarbonate composites. Carbon 39(7):1057–1068CrossRef Montes-Morán MA, Martınez-Alonso A, Tascón JMD, Paiva MC, Bernardo CA (2001) Effects of plasma oxidation on the surface and interfacial properties of carbon fibres/polycarbonate composites. Carbon 39(7):1057–1068CrossRef
20.
Zurück zum Zitat Zhi CY, Bai XD, Wang EG (2002) Enhanced field emission from carbon nanotubes by hydrogen plasma treatment. Appl Phys Lett 81(9):1690–1692CrossRef Zhi CY, Bai XD, Wang EG (2002) Enhanced field emission from carbon nanotubes by hydrogen plasma treatment. Appl Phys Lett 81(9):1690–1692CrossRef
21.
Zurück zum Zitat Ávila-Orta CA, Cruz-Delgado VJ, Neira-Velázquez MG, Hernández-Hernández E, Méndez-Padilla MG, Medellín-Rodríguez FJ (2009) Surface modification of carbon nanotubes with ethylene glycol plasma. Carbon 47(8):1916–1921CrossRef Ávila-Orta CA, Cruz-Delgado VJ, Neira-Velázquez MG, Hernández-Hernández E, Méndez-Padilla MG, Medellín-Rodríguez FJ (2009) Surface modification of carbon nanotubes with ethylene glycol plasma. Carbon 47(8):1916–1921CrossRef
22.
Zurück zum Zitat Boudou JP, Paredes JI, Cuesta A, Martınez-Alonso A, Tascon JMD (2003) Oxygen plasma modification of pitch-based isotropic carbon fibres. Carbon 41(1):41–56CrossRef Boudou JP, Paredes JI, Cuesta A, Martınez-Alonso A, Tascon JMD (2003) Oxygen plasma modification of pitch-based isotropic carbon fibres. Carbon 41(1):41–56CrossRef
23.
Zurück zum Zitat Kyung SJ, Park JB, Voronko M, Lee JH, Yeom GY (2007) The effect of atmospheric pressure plasma treatment on the field emission characteristics of screen printed carbon nanotubes. Carbon 45(3):649–654CrossRef Kyung SJ, Park JB, Voronko M, Lee JH, Yeom GY (2007) The effect of atmospheric pressure plasma treatment on the field emission characteristics of screen printed carbon nanotubes. Carbon 45(3):649–654CrossRef
24.
Zurück zum Zitat Lin CC, Huang HC (2009) Radio frequency oxygen–plasma treatment of carbon nanotube electrodes for electrochemical capacitors. J Power Sources 188(1):332–337CrossRef Lin CC, Huang HC (2009) Radio frequency oxygen–plasma treatment of carbon nanotube electrodes for electrochemical capacitors. J Power Sources 188(1):332–337CrossRef
25.
Zurück zum Zitat Ghamouss F, Luais E, Thobie-Gautier C, Tessier PY, Boujtita M (2009) Argon plasma treatment to enhance the electrochemical reactivity of screen-printed carbon surfaces. Electrochim Acta 54(11):3026–3032CrossRef Ghamouss F, Luais E, Thobie-Gautier C, Tessier PY, Boujtita M (2009) Argon plasma treatment to enhance the electrochemical reactivity of screen-printed carbon surfaces. Electrochim Acta 54(11):3026–3032CrossRef
26.
Zurück zum Zitat Tang Z, Li Q, Lu G (2007) The effect of plasma pre-treatment of carbon used as a Pt catalyst support for methanol electrooxidation. Carbon 45(1):41–46CrossRef Tang Z, Li Q, Lu G (2007) The effect of plasma pre-treatment of carbon used as a Pt catalyst support for methanol electrooxidation. Carbon 45(1):41–46CrossRef
27.
Zurück zum Zitat Jiang Z, Jiang ZJ (2011) Improvements of electrocatalytic activity of PtRu nanoparticles on multi-walled carbon nanotubes by a H2 plasma treatment in methanol and formic acid oxidation. Electrochim Acta 56(24):8662–8673CrossRef Jiang Z, Jiang ZJ (2011) Improvements of electrocatalytic activity of PtRu nanoparticles on multi-walled carbon nanotubes by a H2 plasma treatment in methanol and formic acid oxidation. Electrochim Acta 56(24):8662–8673CrossRef
28.
Zurück zum Zitat Ionescu R, Espinosa EH, Sotter E, Llobet E, Vilanova X, Correig X, Felten A, Bittencourt C, Van Lier G, Charlier J-C, Pireaux JJ (2006) Oxygen functionalisation of MWNT and their use as gas sensitive thick-film layers. Sens Actuators B 113(1):36–46CrossRef Ionescu R, Espinosa EH, Sotter E, Llobet E, Vilanova X, Correig X, Felten A, Bittencourt C, Van Lier G, Charlier J-C, Pireaux JJ (2006) Oxygen functionalisation of MWNT and their use as gas sensitive thick-film layers. Sens Actuators B 113(1):36–46CrossRef
29.
Zurück zum Zitat Okpalugo, TIT, Papakonstantinou P, Murphy H, Mclaughlin J, Brown NMD (2005) Oxidative functionalization of carbon nanotubes in atmospheric pressure filamentary dielectric barrier discharge (APDBD). Carbon 43(14):2951–2959CrossRef Okpalugo, TIT, Papakonstantinou P, Murphy H, Mclaughlin J, Brown NMD (2005) Oxidative functionalization of carbon nanotubes in atmospheric pressure filamentary dielectric barrier discharge (APDBD). Carbon 43(14):2951–2959CrossRef
30.
Zurück zum Zitat Hinokuma S, Misumi S, Yoshida H, Machida M (2015) Nanoparticle catalyst preparation using pulsed arc plasma deposition. Catal Sci Technol 5(9):4249–4257CrossRef Hinokuma S, Misumi S, Yoshida H, Machida M (2015) Nanoparticle catalyst preparation using pulsed arc plasma deposition. Catal Sci Technol 5(9):4249–4257CrossRef
31.
Zurück zum Zitat Wang Q, Wang X, Chai Z, Hu W (2013) Low-temperature plasma synthesis of carbon nanotubes and graphene based materials and their fuel cell applications. Chem Soc Rev 42(23):8821–8834CrossRef Wang Q, Wang X, Chai Z, Hu W (2013) Low-temperature plasma synthesis of carbon nanotubes and graphene based materials and their fuel cell applications. Chem Soc Rev 42(23):8821–8834CrossRef
32.
Zurück zum Zitat Bo Z, Yang Y, Chen J, Yu K, Yan J, Cen K (2013) Plasma-enhanced chemical vapor deposition synthesis of vertically oriented graphene nanosheets. Nanoscale 5(12):5180–5204CrossRef Bo Z, Yang Y, Chen J, Yu K, Yan J, Cen K (2013) Plasma-enhanced chemical vapor deposition synthesis of vertically oriented graphene nanosheets. Nanoscale 5(12):5180–5204CrossRef
33.
Zurück zum Zitat Chu W, Xu J, Hong J, Lin T, Khodakov A (2015) Design of efficient Fischer Tropsch cobalt catalysts via plasma enhancement: reducibility and performance (Review). Catal Today 256:41–48CrossRef Chu W, Xu J, Hong J, Lin T, Khodakov A (2015) Design of efficient Fischer Tropsch cobalt catalysts via plasma enhancement: reducibility and performance (Review). Catal Today 256:41–48CrossRef
34.
Zurück zum Zitat Tendero C, Tixier C, Tristant P, Desmaison J, Leprince P (2006) Atmospheric pressure plasmas: A review. Spectrochim Acta Part B 61(1):2–30CrossRef Tendero C, Tixier C, Tristant P, Desmaison J, Leprince P (2006) Atmospheric pressure plasmas: A review. Spectrochim Acta Part B 61(1):2–30CrossRef
35.
Zurück zum Zitat Chen C, Liang B, Ogino A, Wang X, Nagatsu M (2009) Oxygen functionalization of multiwall carbon nanotubes by microwave-excited surface-wave plasma treatment. J Phys Chem C 113(18):7659–7665CrossRef Chen C, Liang B, Ogino A, Wang X, Nagatsu M (2009) Oxygen functionalization of multiwall carbon nanotubes by microwave-excited surface-wave plasma treatment. J Phys Chem C 113(18):7659–7665CrossRef
36.
Zurück zum Zitat Ago H, Kugler T, Cacialli F, Salaneck WR, Shaffer MS, Windle AH, Friend RH (1999) Work functions and surface functional groups of multiwall carbon nanotubes. J Phys Chem B 103(38):8116–8121CrossRef Ago H, Kugler T, Cacialli F, Salaneck WR, Shaffer MS, Windle AH, Friend RH (1999) Work functions and surface functional groups of multiwall carbon nanotubes. J Phys Chem B 103(38):8116–8121CrossRef
37.
Zurück zum Zitat Tang S, Lu N, Wang JK, Ryu SK, Choi HS (2007) Novel effects of surface modification on activated carbon fibers using a low pressure plasma treatment. J Phys Chem C 111(4):1820–1829CrossRef Tang S, Lu N, Wang JK, Ryu SK, Choi HS (2007) Novel effects of surface modification on activated carbon fibers using a low pressure plasma treatment. J Phys Chem C 111(4):1820–1829CrossRef
38.
Zurück zum Zitat Lee H, Ohsawa I, Takahashi J (2015) Effect of plasma surface treatment of recycled carbon fiber on carbon fiber-reinforced plastics (CFRP) interfacial properties. Appl Surf Sci 328:241–246CrossRef Lee H, Ohsawa I, Takahashi J (2015) Effect of plasma surface treatment of recycled carbon fiber on carbon fiber-reinforced plastics (CFRP) interfacial properties. Appl Surf Sci 328:241–246CrossRef
39.
Zurück zum Zitat Naseh MV, Khodadadi AA, Mortazavi Y, Pourfayaz F, Alizadeh O, Maghrebi M (2010) Fast and clean functionalization of carbon nanotubes by dielectric barrier discharge plasma in air compared to acid treatment. Carbon 48(5):1369–1379CrossRef Naseh MV, Khodadadi AA, Mortazavi Y, Pourfayaz F, Alizadeh O, Maghrebi M (2010) Fast and clean functionalization of carbon nanotubes by dielectric barrier discharge plasma in air compared to acid treatment. Carbon 48(5):1369–1379CrossRef
40.
Zurück zum Zitat Rider AN, Yeo E, Gopalakrishna J, Thostenson ET, Brack N (2015) Hierarchical composites with high-volume fractions of carbon nanotubes: Influence of plasma surface treatment and thermoplastic nanophase-modified epoxy. Carbon 94:971–981CrossRef Rider AN, Yeo E, Gopalakrishna J, Thostenson ET, Brack N (2015) Hierarchical composites with high-volume fractions of carbon nanotubes: Influence of plasma surface treatment and thermoplastic nanophase-modified epoxy. Carbon 94:971–981CrossRef
41.
Zurück zum Zitat Yook JY, Jun J, Kwak S (2010) Amino functionalization of carbon nanotube surfaces with NH 3 plasma treatment. Appl Surf Sci 256(23):6941–6944CrossRef Yook JY, Jun J, Kwak S (2010) Amino functionalization of carbon nanotube surfaces with NH 3 plasma treatment. Appl Surf Sci 256(23):6941–6944CrossRef
42.
Zurück zum Zitat Chen C, Liang B, Lu D, Ogino A, Wang X, Nagatsu M (2010) Amino group introduction onto multiwall carbon nanotubes by NH3/Ar plasma treatment. Carbon 48(4):939–948CrossRef Chen C, Liang B, Lu D, Ogino A, Wang X, Nagatsu M (2010) Amino group introduction onto multiwall carbon nanotubes by NH3/Ar plasma treatment. Carbon 48(4):939–948CrossRef
43.
Zurück zum Zitat Inagaki N, Narushima K, Hashimoto H, Tamura K (2007) Implantation of amino functionality into amorphous carbon sheet surfaces by NH3 plasma. Carbon 45(4):797–804CrossRef Inagaki N, Narushima K, Hashimoto H, Tamura K (2007) Implantation of amino functionality into amorphous carbon sheet surfaces by NH3 plasma. Carbon 45(4):797–804CrossRef
44.
Zurück zum Zitat Abdelkader VK, Scelfo S, García-Gallarín C, Godino-Salido ML, Domingo-García M, López-Garzón FJ, Pérez-Mendoza M (2013) Carbon tetrachloride cold plasma for extensive chlorination of carbon nanotubes. J Phys Chem C 117(32):16677–16685CrossRef Abdelkader VK, Scelfo S, García-Gallarín C, Godino-Salido ML, Domingo-García M, López-Garzón FJ, Pérez-Mendoza M (2013) Carbon tetrachloride cold plasma for extensive chlorination of carbon nanotubes. J Phys Chem C 117(32):16677–16685CrossRef
45.
Zurück zum Zitat Abdelkader VK, Domingo-García M, Gutiérrez-Valero MD, López-Garzón R, Melguizo M, García-Gallarín C, Javier Lopez-Garzon F, Pérez-Mendoza MJ (2014) Sidewall chlorination of carbon nanotubes by iodine trichloride. J Phys Chem C 118(5):2641–2649CrossRef Abdelkader VK, Domingo-García M, Gutiérrez-Valero MD, López-Garzón R, Melguizo M, García-Gallarín C, Javier Lopez-Garzon F, Pérez-Mendoza MJ (2014) Sidewall chlorination of carbon nanotubes by iodine trichloride. J Phys Chem C 118(5):2641–2649CrossRef
46.
Zurück zum Zitat Shioyama H, Honjo K, Kiuchi M, Yamada Y, Ueda A, Kuriyama N, Kobayashi T (2006) C2F6 plasma treatment of a carbon support for a PEM fuel cell electrocatalyst. J Power Sources 161(2):836–838CrossRef Shioyama H, Honjo K, Kiuchi M, Yamada Y, Ueda A, Kuriyama N, Kobayashi T (2006) C2F6 plasma treatment of a carbon support for a PEM fuel cell electrocatalyst. J Power Sources 161(2):836–838CrossRef
47.
Zurück zum Zitat Abdelkader VK, Domingo-García M, Melguizo M, López-Garzón R, López-Garzón FJ, Pérez-Mendoza M (2015) Covalent bromination of multi-walled carbon nanotubes by iodine bromide and cold plasma treatments. Carbon 93:276–285CrossRef Abdelkader VK, Domingo-García M, Melguizo M, López-Garzón R, López-Garzón FJ, Pérez-Mendoza M (2015) Covalent bromination of multi-walled carbon nanotubes by iodine bromide and cold plasma treatments. Carbon 93:276–285CrossRef
48.
Zurück zum Zitat Vinu A, Hossian KZ, Srinivasu P, Miyahara M, Anandan S, Gokulakrishnan N, Mori T, Ariga K, Balasubramanian VV (2007) Carboxy-mesoporous carbon and its excellent adsorption capability for proteins. J Mater Chem 17(18):1819–1825CrossRef Vinu A, Hossian KZ, Srinivasu P, Miyahara M, Anandan S, Gokulakrishnan N, Mori T, Ariga K, Balasubramanian VV (2007) Carboxy-mesoporous carbon and its excellent adsorption capability for proteins. J Mater Chem 17(18):1819–1825CrossRef
49.
Zurück zum Zitat Ma TY, Liu L, Yuan ZY (2013) Direct synthesis of ordered mesoporous carbons. Chem Soc Rev 42(9):3977–4003CrossRef Ma TY, Liu L, Yuan ZY (2013) Direct synthesis of ordered mesoporous carbons. Chem Soc Rev 42(9):3977–4003CrossRef
50.
Zurück zum Zitat Liu L, Zhu YP, Su M, Yuan ZY (2015) Metal-Free carbonaceous materials as promising heterogeneous catalysts. ChemCatChem 7(18):2765–2787CrossRef Liu L, Zhu YP, Su M, Yuan ZY (2015) Metal-Free carbonaceous materials as promising heterogeneous catalysts. ChemCatChem 7(18):2765–2787CrossRef
51.
Zurück zum Zitat Liu L, Deng QF, Liu YP, Ren TZ, Yuan ZY (2011) HNO3-activated mesoporous carbon catalyst for direct dehydrogenation of propane to propylene. Catal Commun 16(1):81–85CrossRef Liu L, Deng QF, Liu YP, Ren TZ, Yuan ZY (2011) HNO3-activated mesoporous carbon catalyst for direct dehydrogenation of propane to propylene. Catal Commun 16(1):81–85CrossRef
52.
Zurück zum Zitat Loganathan K, Bose D, Weinkauf D (2014) Surface modification of carbon black by nitrogen and allylamine plasma treatment for fuel cell electrocatalyst. Int J Hydrogen Energy 39(28):15766–15771CrossRef Loganathan K, Bose D, Weinkauf D (2014) Surface modification of carbon black by nitrogen and allylamine plasma treatment for fuel cell electrocatalyst. Int J Hydrogen Energy 39(28):15766–15771CrossRef
53.
Zurück zum Zitat Ruelle B, Felten A, Ghijsen J, Drube W, Johnson RL, Liang D, Erni R, Tendeloo GV, Dubois P, Hecq M, Bittencourt C (2008) Functionalization of MWCNTs with atomic nitrogen: electronic structure. J Phys D 41(4):045202CrossRef Ruelle B, Felten A, Ghijsen J, Drube W, Johnson RL, Liang D, Erni R, Tendeloo GV, Dubois P, Hecq M, Bittencourt C (2008) Functionalization of MWCNTs with atomic nitrogen: electronic structure. J Phys D 41(4):045202CrossRef
54.
Zurück zum Zitat Kim S, Cho MH, Lee JR, Park SJ (2006) Influence of plasma treatment of carbon blacks on electrochemical activity of Pt/carbon blacks catalysts for DMFCs. J Power Sources 159(1):46–48CrossRef Kim S, Cho MH, Lee JR, Park SJ (2006) Influence of plasma treatment of carbon blacks on electrochemical activity of Pt/carbon blacks catalysts for DMFCs. J Power Sources 159(1):46–48CrossRef
55.
Zurück zum Zitat Chen G, Neupane S, Li W, Chen L, Zhang J (2013) An increase in the field emission from vertically aligned multiwalled carbon nanotubes caused by NH3 plasma treatment. Carbon 52:468–475CrossRef Chen G, Neupane S, Li W, Chen L, Zhang J (2013) An increase in the field emission from vertically aligned multiwalled carbon nanotubes caused by NH3 plasma treatment. Carbon 52:468–475CrossRef
56.
Zurück zum Zitat Felten A, Ghijsen J, Pireaux JJ, Johnson RL, Whelan CM, Liang D, Tendeloo GV, Bittencourt C (2008) Photoemission study of CF4 rf-Plasma treated multi-wall carbon nanotubes. Carbon 46(10):1271–1275CrossRef Felten A, Ghijsen J, Pireaux JJ, Johnson RL, Whelan CM, Liang D, Tendeloo GV, Bittencourt C (2008) Photoemission study of CF4 rf-Plasma treated multi-wall carbon nanotubes. Carbon 46(10):1271–1275CrossRef
57.
Zurück zum Zitat Friedrich JF, Wettmarshausen S, Hanelt S, Mach R, Mix R, Zeynalov EB, Meyer-Plath A (2010) Plasma-chemical bromination of graphitic materials and its use for subsequent functionalization and grafting of organic molecules. Carbon 48(13):3884–3894CrossRef Friedrich JF, Wettmarshausen S, Hanelt S, Mach R, Mix R, Zeynalov EB, Meyer-Plath A (2010) Plasma-chemical bromination of graphitic materials and its use for subsequent functionalization and grafting of organic molecules. Carbon 48(13):3884–3894CrossRef
58.
Zurück zum Zitat Okajima K, Ohta K, Sudoh M (2005) Capacitance behavior of activated carbon fibers with oxygen-plasma treatment. Electrochim Acta 50(11):2227–2231CrossRef Okajima K, Ohta K, Sudoh M (2005) Capacitance behavior of activated carbon fibers with oxygen-plasma treatment. Electrochim Acta 50(11):2227–2231CrossRef
59.
Zurück zum Zitat Ma C, Song Y, Shi J, Zhang D, Zhai X, Zhong M, Guo Q, Liu L (2013) Preparation and one-step activation of microporous carbon nanofibers for use as supercapacitor electrodes. Carbon 51:290–300CrossRef Ma C, Song Y, Shi J, Zhang D, Zhai X, Zhong M, Guo Q, Liu L (2013) Preparation and one-step activation of microporous carbon nanofibers for use as supercapacitor electrodes. Carbon 51:290–300CrossRef
60.
Zurück zum Zitat Hsieh CT, Teng H (2002) Influence of oxygen treatment on electric double-layer capacitance of activated carbon fabrics. Carbon 40(5):667–674CrossRef Hsieh CT, Teng H (2002) Influence of oxygen treatment on electric double-layer capacitance of activated carbon fabrics. Carbon 40(5):667–674CrossRef
61.
Zurück zum Zitat Bahr JL, Tour JM (2002) Covalent chemistry of single-wall carbon nanotubes. J Mater Chem 12(7):1952–1958CrossRef Bahr JL, Tour JM (2002) Covalent chemistry of single-wall carbon nanotubes. J Mater Chem 12(7):1952–1958CrossRef
Metadaten
Titel
Carbon Surface Modifications by Plasma for Catalyst Support and Electrode Materials Applications
verfasst von
Lingfeng Zhang
Gullapelli Sadanandam
Xinying Liu
Mike S. Scurrell
Publikationsdatum
10.04.2017
Verlag
Springer US
Erschienen in
Topics in Catalysis / Ausgabe 12-14/2017
Print ISSN: 1022-5528
Elektronische ISSN: 1572-9028
DOI
https://doi.org/10.1007/s11244-017-0747-7

Weitere Artikel der Ausgabe 12-14/2017

Topics in Catalysis 12-14/2017 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.