Skip to main content
Erschienen in: Topics in Catalysis 12-14/2017

10.04.2017 | Original Paper

In Situ Regeneration of Au Nanocatalysts by Atmospheric-Pressure Air Plasma: Regeneration Characteristics of Square-Wave Pulsed Plasma

verfasst von: Bin Zhu, Jing-Lin Liu, Xiao-Song Li, Jin-Bao Liu, Xiaobing Zhu, Ai-Min Zhu

Erschienen in: Topics in Catalysis | Ausgabe 12-14/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Atmospheric-pressure air plasma, powered by alternating current (AC) sine-wave high voltage, can in-situ regenerate deactivated Au nanocatalysts during CO oxidation, but it needs high-humidity air as the discharge gas. To overcome the limitation on humidity for in-situ regeneration of air plasma, a square-wave pulsed plasma is applied in this work. Differently from the AC plasma, the pulsed plasma exhibits excellent regeneration performance at any humidity. Further, surface carbonate decomposition, nitrogen oxides poisoning species and electric discharge of the pulsed plasma regeneration are investigated. For the pulsed plasma regeneration at any humidity, the evolution of CO2 concentration with the regeneration time almost keeps the same profile, featuring zero-order kinetics for the carbonate decomposition; on the other hand, whether in the gas phase or on the catalyst surface, there are no formation of poisoning nitrogen oxides. The pulsed plasma at any humidity has the powerful ability in carbonate decomposition and simultaneously prevents the formation of poisoning nitrogen oxides, which is ascribed to its highly centralized energy deposition with high instantaneous power and long interval of instantaneous power. For practical application, normal air is also confirmed to be qualified for the pulsed plasma regeneration.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Haruta M, Kobayashi T, Sano H, Yamada N (1987) Novel gold catalysts for the oxidation of carbon monoxide at a temperature far below 0 °C. Chem Lett 16:405–408CrossRef Haruta M, Kobayashi T, Sano H, Yamada N (1987) Novel gold catalysts for the oxidation of carbon monoxide at a temperature far below 0 °C. Chem Lett 16:405–408CrossRef
2.
Zurück zum Zitat Bonmatí E, Casanovas A, Angurell I, Llorca J (2015) Hydrogen photoproduction from ethanol-water mixtures over Au–Cu alloy nanoparticles supported on TiO2. Top Catal 58:77–84CrossRef Bonmatí E, Casanovas A, Angurell I, Llorca J (2015) Hydrogen photoproduction from ethanol-water mixtures over Au–Cu alloy nanoparticles supported on TiO2. Top Catal 58:77–84CrossRef
3.
Zurück zum Zitat Kipnis M (2014) Gold in CO oxidation and PROX: the role of reaction exothermicity and nanometer-scale particle size. Appl Catal B 152–153:38–45CrossRef Kipnis M (2014) Gold in CO oxidation and PROX: the role of reaction exothermicity and nanometer-scale particle size. Appl Catal B 152–153:38–45CrossRef
4.
Zurück zum Zitat Hashmi ASK, Hutchings GJ (2006) Gold catalysis. Angew Chem Int Ed 45:7896–7936CrossRef Hashmi ASK, Hutchings GJ (2006) Gold catalysis. Angew Chem Int Ed 45:7896–7936CrossRef
5.
Zurück zum Zitat Scirè S, Liotta LF (2012) Supported gold catalysts for the total oxidation of volatile organic compounds. Appl Catal B 125:222–246CrossRef Scirè S, Liotta LF (2012) Supported gold catalysts for the total oxidation of volatile organic compounds. Appl Catal B 125:222–246CrossRef
6.
Zurück zum Zitat Chen MS, Goodman DW (2004) The structure of catalytically active gold on titania. Science 306:252–255CrossRef Chen MS, Goodman DW (2004) The structure of catalytically active gold on titania. Science 306:252–255CrossRef
7.
Zurück zum Zitat Liu X, He L, Liu Y-M, Cao Y (2013) Supported gold catalysis: from small molecule activation to green chemical synthesis. Acc Chem Res 47:793–804CrossRef Liu X, He L, Liu Y-M, Cao Y (2013) Supported gold catalysis: from small molecule activation to green chemical synthesis. Acc Chem Res 47:793–804CrossRef
8.
Zurück zum Zitat Zhang S, Li XS, Chen BB, Zhu X, Shi C, Zhu AM (2014) CO oxidation activity at room temperature over Au/CeO2 catalysts: disclosure of induction period and humidity effect. ACS Catal 4:3481–3489CrossRef Zhang S, Li XS, Chen BB, Zhu X, Shi C, Zhu AM (2014) CO oxidation activity at room temperature over Au/CeO2 catalysts: disclosure of induction period and humidity effect. ACS Catal 4:3481–3489CrossRef
9.
Zurück zum Zitat Zhao KF, Tang HL, Qiao BT, Li L, Wang JH (2015) High activity of Au/γ-Fe2O3 for CO oxidation: effect of support crystal phase in catalyst design. ACS Catal 5:3528–3539CrossRef Zhao KF, Tang HL, Qiao BT, Li L, Wang JH (2015) High activity of Au/γ-Fe2O3 for CO oxidation: effect of support crystal phase in catalyst design. ACS Catal 5:3528–3539CrossRef
10.
Zurück zum Zitat Li W, Comotti M, Schüth F (2006) Highly reproducible syntheses of active Au/TiO2 catalysts for CO oxidation by deposition-precipitation or impregnation. J Catal 237:190–196CrossRef Li W, Comotti M, Schüth F (2006) Highly reproducible syntheses of active Au/TiO2 catalysts for CO oxidation by deposition-precipitation or impregnation. J Catal 237:190–196CrossRef
11.
Zurück zum Zitat Wu KC, Tung YL, Chen YL, Chen YW (2004) Catalytic oxidation of carbon monoxide over gold/iron hydroxide catalyst at ambient conditions. Appl Catal B 53:111–116CrossRef Wu KC, Tung YL, Chen YL, Chen YW (2004) Catalytic oxidation of carbon monoxide over gold/iron hydroxide catalyst at ambient conditions. Appl Catal B 53:111–116CrossRef
12.
Zurück zum Zitat Chen BB, Zhu X, Crocker M, Wang Y, Shi C (2014) FeOx-supported gold catalysts for catalytic removal of formaldehyde at room temperature. Appl Catal B 154–155:73–81CrossRef Chen BB, Zhu X, Crocker M, Wang Y, Shi C (2014) FeOx-supported gold catalysts for catalytic removal of formaldehyde at room temperature. Appl Catal B 154–155:73–81CrossRef
13.
Zurück zum Zitat Denkwitz Y, Makosch M, Geserick J, Hörmann U, Selve S, Kaiser U, Hüsing N, Behm RJ (2009) Influence of the crystalline phase and surface area of the TiO2 support on the CO oxidation activity of mesoporous Au/TiO2 catalysts. Appl Catal B 91:470–480CrossRef Denkwitz Y, Makosch M, Geserick J, Hörmann U, Selve S, Kaiser U, Hüsing N, Behm RJ (2009) Influence of the crystalline phase and surface area of the TiO2 support on the CO oxidation activity of mesoporous Au/TiO2 catalysts. Appl Catal B 91:470–480CrossRef
14.
Zurück zum Zitat Karpenko A, Leppelt R, Cai J, Plzak V, Chuvilin A, Kaiser U, Behm RJ (2007) Deactivation of a Au/CeO2 catalyst during the low-temperature water-gas shift reaction and its reactivation: a combined TEM, XRD, XPS, DRIFTS, and activity study. J Catal 250:139–150CrossRef Karpenko A, Leppelt R, Cai J, Plzak V, Chuvilin A, Kaiser U, Behm RJ (2007) Deactivation of a Au/CeO2 catalyst during the low-temperature water-gas shift reaction and its reactivation: a combined TEM, XRD, XPS, DRIFTS, and activity study. J Catal 250:139–150CrossRef
15.
Zurück zum Zitat Konova P, Naydenov A, Tabakova T, Mehandjiev D (2004) Deactivation of nanosize gold supported on zirconia in CO oxidation. Catal Commun 5:537–542CrossRef Konova P, Naydenov A, Tabakova T, Mehandjiev D (2004) Deactivation of nanosize gold supported on zirconia in CO oxidation. Catal Commun 5:537–542CrossRef
16.
Zurück zum Zitat Saavedra J, Powell C, Panthi B, Pursell CJ, Chandler BD (2013) CO oxidation over Au/TiO2 catalyst: pretreatment effects, catalyst deactivation, and carbonates production. J Catal 307:37–47CrossRef Saavedra J, Powell C, Panthi B, Pursell CJ, Chandler BD (2013) CO oxidation over Au/TiO2 catalyst: pretreatment effects, catalyst deactivation, and carbonates production. J Catal 307:37–47CrossRef
17.
Zurück zum Zitat Tripathi A, Kamble V, Gupta N (1999) Microcalorimetry, adsorption, and reaction studies of CO, O2, and CO + O2 over Au/Fe2O3, Fe2O3, and polycrystalline gold catalysts. J Catal 187:332–342CrossRef Tripathi A, Kamble V, Gupta N (1999) Microcalorimetry, adsorption, and reaction studies of CO, O2, and CO + O2 over Au/Fe2O3, Fe2O3, and polycrystalline gold catalysts. J Catal 187:332–342CrossRef
18.
Zurück zum Zitat Konova P, Naydenov A, Venkov C, Mehandjiev D, Andreeva D, Tabakova T (2004) Activity and deactivation of Au/TiO2 catalyst in CO oxidation. J Mol Catal A 213:235–240CrossRef Konova P, Naydenov A, Venkov C, Mehandjiev D, Andreeva D, Tabakova T (2004) Activity and deactivation of Au/TiO2 catalyst in CO oxidation. J Mol Catal A 213:235–240CrossRef
19.
Zurück zum Zitat Oh HS, Costello CK, Cheung C, Kung HH, Kung MC (2001) Regeneration of Au/γ-Al2O3 deactivated by CO oxidation. Stud Surf Sci Catal 139:375–381CrossRef Oh HS, Costello CK, Cheung C, Kung HH, Kung MC (2001) Regeneration of Au/γ-Al2O3 deactivated by CO oxidation. Stud Surf Sci Catal 139:375–381CrossRef
20.
Zurück zum Zitat Kim HH, Tsubota S, Daté M, Ogata A, Futamura S (2007) Catalyst regeneration and activity enhancement of Au/TiO2 by atmospheric pressure nonthermal plasma. Appl Catal A 329:93–98CrossRef Kim HH, Tsubota S, Daté M, Ogata A, Futamura S (2007) Catalyst regeneration and activity enhancement of Au/TiO2 by atmospheric pressure nonthermal plasma. Appl Catal A 329:93–98CrossRef
21.
Zurück zum Zitat Fan HY, Shi C, Li XS, Zhang S, Liu JL, Zhu AM (2012) In-situ plasma regeneration of deactivated Au/TiO2 nanocatalysts during CO oxidation and effect of N2 content. Appl Catal B 119–120:49–55CrossRef Fan HY, Shi C, Li XS, Zhang S, Liu JL, Zhu AM (2012) In-situ plasma regeneration of deactivated Au/TiO2 nanocatalysts during CO oxidation and effect of N2 content. Appl Catal B 119–120:49–55CrossRef
22.
Zurück zum Zitat Zhu B, Li XS, Liu JL, Liu JB, Zhu X, Zhu AM (2015) In-situ regeneration of Au nanocatalysts by atmospheric-pressure air plasma: significant contribution of water vapor. Appl Catal B 179:69–77CrossRef Zhu B, Li XS, Liu JL, Liu JB, Zhu X, Zhu AM (2015) In-situ regeneration of Au nanocatalysts by atmospheric-pressure air plasma: significant contribution of water vapor. Appl Catal B 179:69–77CrossRef
23.
Zurück zum Zitat Kim HH, Ogata A, Futamura S (2008) Oxygen partial pressure-dependent behavior of various catalysts for the total oxidation of VOCs using cycled system of adsorption and oxygen plasma. Appl Catal B 79:356–367CrossRef Kim HH, Ogata A, Futamura S (2008) Oxygen partial pressure-dependent behavior of various catalysts for the total oxidation of VOCs using cycled system of adsorption and oxygen plasma. Appl Catal B 79:356–367CrossRef
24.
Zurück zum Zitat Kim HH, Teramoto Y, Negishi N, Ogata A (2015) A multidisciplinary approach to understand the interactions of nonthermal plasma and catalyst: a review. Catal Today 256:13–22CrossRef Kim HH, Teramoto Y, Negishi N, Ogata A (2015) A multidisciplinary approach to understand the interactions of nonthermal plasma and catalyst: a review. Catal Today 256:13–22CrossRef
25.
Zurück zum Zitat Delannoy L, Hassan NE, Musi A, Le To NN, Krafft J-M, Louis C (2006) Preparation of supported gold nanoparticles by a modified incipient wetness impregnation method. J Phys Chem B 110:22471–22478CrossRef Delannoy L, Hassan NE, Musi A, Le To NN, Krafft J-M, Louis C (2006) Preparation of supported gold nanoparticles by a modified incipient wetness impregnation method. J Phys Chem B 110:22471–22478CrossRef
26.
Zurück zum Zitat Ojeda M, Zhan BZ, Iglesia E (2012) Mechanistic interpretation of CO oxidation turnover rates on supported Au clusters. J Catal 285:92–102CrossRef Ojeda M, Zhan BZ, Iglesia E (2012) Mechanistic interpretation of CO oxidation turnover rates on supported Au clusters. J Catal 285:92–102CrossRef
27.
Zurück zum Zitat Haruta M, Tsubota S, Kobayashi T, Kageyama H, Genet MJ, Delmon B (1993) Low-temperature oxidation of CO over gold supported on TiO2, α-Fe2O3, and Co3O4. J Catal 144:175–192CrossRef Haruta M, Tsubota S, Kobayashi T, Kageyama H, Genet MJ, Delmon B (1993) Low-temperature oxidation of CO over gold supported on TiO2, α-Fe2O3, and Co3O4. J Catal 144:175–192CrossRef
28.
Zurück zum Zitat Bollinger MA, Vannice MA (1996) A kinetic and DRIFTS study of low-temperature carbon monoxide oxidation over Au/TiO2 catalysts. Appl Catal B 8:417–443 Bollinger MA, Vannice MA (1996) A kinetic and DRIFTS study of low-temperature carbon monoxide oxidation over Au/TiO2 catalysts. Appl Catal B 8:417–443
29.
Zurück zum Zitat Liu H, Kozlov AI, Kozlova AP, Shido T, Asakura K, Iwasawa Y (1999) Active oxygen species and mechanism for low-temperature CO oxidation reaction on a TiO2-supported Au catalyst prepared from Au (PPh3)(NO3) and as-precipitated titanium hydroxide. J Catal 185:252–264CrossRef Liu H, Kozlov AI, Kozlova AP, Shido T, Asakura K, Iwasawa Y (1999) Active oxygen species and mechanism for low-temperature CO oxidation reaction on a TiO2-supported Au catalyst prepared from Au (PPh3)(NO3) and as-precipitated titanium hydroxide. J Catal 185:252–264CrossRef
30.
Zurück zum Zitat Debeila MA, Coville NJ, Scurrell MS, Hearne GR (2005) The effect of calcination temperature on the adsorption of nitric oxide on Au–TiO2: drifts studies. Appl Catal A 291:98–115CrossRef Debeila MA, Coville NJ, Scurrell MS, Hearne GR (2005) The effect of calcination temperature on the adsorption of nitric oxide on Au–TiO2: drifts studies. Appl Catal A 291:98–115CrossRef
31.
Zurück zum Zitat Debeila MA, Coville NJ, Scurrell MS, Hearne GR, Witcomb MJ (2004) Effect of pretreatment variables on the reaction of nitric oxide (NO) with Au–TiO2: DRIFTS studies. J Phys Chem B 108:18254–18260CrossRef Debeila MA, Coville NJ, Scurrell MS, Hearne GR, Witcomb MJ (2004) Effect of pretreatment variables on the reaction of nitric oxide (NO) with Au–TiO2: DRIFTS studies. J Phys Chem B 108:18254–18260CrossRef
32.
Zurück zum Zitat Chen C, Bai H, Chang C (2007) Effect of plasma processing gas composition on the nitrogen-doping status and visible light photocatalysis of TiO2. J Phys Chem C 111:15228–15235CrossRef Chen C, Bai H, Chang C (2007) Effect of plasma processing gas composition on the nitrogen-doping status and visible light photocatalysis of TiO2. J Phys Chem C 111:15228–15235CrossRef
33.
Zurück zum Zitat Dailey BP, Shoolery JN (1955) The electron withdrawal power of substituent groups. J Am Chem Soc 77:3977–3981CrossRef Dailey BP, Shoolery JN (1955) The electron withdrawal power of substituent groups. J Am Chem Soc 77:3977–3981CrossRef
34.
Zurück zum Zitat Ráhel J, Sherman DM (2005) The transition from a filamentary dielectric barrier discharge to a diffuse barrier discharge in air at atmospheric pressure. J Phys D 38:547–554CrossRef Ráhel J, Sherman DM (2005) The transition from a filamentary dielectric barrier discharge to a diffuse barrier discharge in air at atmospheric pressure. J Phys D 38:547–554CrossRef
35.
Zurück zum Zitat Rajasekaran P, Mertmann P, Bibinov N, Wandke D, Viöl W, Awakowicz P (2010) Filamentary and homogeneous modes of dielectric barrier discharge (DBD) in air: investigation through plasma characterization and simulation of surface irradiation. Plasma Process Polym 7:665–675CrossRef Rajasekaran P, Mertmann P, Bibinov N, Wandke D, Viöl W, Awakowicz P (2010) Filamentary and homogeneous modes of dielectric barrier discharge (DBD) in air: investigation through plasma characterization and simulation of surface irradiation. Plasma Process Polym 7:665–675CrossRef
36.
Zurück zum Zitat Williamson JM, Trump DD, Bletzinger P, Ganguly BN (2006) Comparison of high-voltage ac and pulsed operation of a surface dielectric barrier discharge. J Phys D 39:4400–4406CrossRef Williamson JM, Trump DD, Bletzinger P, Ganguly BN (2006) Comparison of high-voltage ac and pulsed operation of a surface dielectric barrier discharge. J Phys D 39:4400–4406CrossRef
37.
Zurück zum Zitat Fang Z, Yang H, Qiu Y (2010) Surface treatment of polyethylene terephthalate films using a microsecond pulse homogeneous dielectric barrier discharges in atmospheric air. IEEE Trans Plasma Sci 38:1615–1623CrossRef Fang Z, Yang H, Qiu Y (2010) Surface treatment of polyethylene terephthalate films using a microsecond pulse homogeneous dielectric barrier discharges in atmospheric air. IEEE Trans Plasma Sci 38:1615–1623CrossRef
38.
Zurück zum Zitat Fridman A (2008) Plasma chemistry. Cambridge University Press, New YorkCrossRef Fridman A (2008) Plasma chemistry. Cambridge University Press, New YorkCrossRef
39.
Zurück zum Zitat Liu S, Neiger M (2001) Excitation of dielectric barrier discharges by unipolar submicrosecond square pulses. J Phys D 34:1632–1638CrossRef Liu S, Neiger M (2001) Excitation of dielectric barrier discharges by unipolar submicrosecond square pulses. J Phys D 34:1632–1638CrossRef
40.
Zurück zum Zitat Min BK, Friend CM (2007) Heterogeneous gold-based catalysis for green chemistry: low-temperature CO oxidation and propene oxidation. Chem Rev 107:2709–2724CrossRef Min BK, Friend CM (2007) Heterogeneous gold-based catalysis for green chemistry: low-temperature CO oxidation and propene oxidation. Chem Rev 107:2709–2724CrossRef
41.
Zurück zum Zitat Widmann D, Behm RJ (2014) Activation of molecular oxygen and the nature of the active oxygen species for CO oxidation on oxide supported Au catalysts. Acc Chem Res 47:740–749CrossRef Widmann D, Behm RJ (2014) Activation of molecular oxygen and the nature of the active oxygen species for CO oxidation on oxide supported Au catalysts. Acc Chem Res 47:740–749CrossRef
42.
Zurück zum Zitat Lu XP, Ye T, Cao YG, Sun ZY, Xiong Q, Tang ZY, Xiong ZL, Hu J, Jiang ZH, Pan Y (2008) The roles of the various plasma agents in the inactivation of bacteria. J Appl Phys 104:053309CrossRef Lu XP, Ye T, Cao YG, Sun ZY, Xiong Q, Tang ZY, Xiong ZL, Hu J, Jiang ZH, Pan Y (2008) The roles of the various plasma agents in the inactivation of bacteria. J Appl Phys 104:053309CrossRef
43.
Zurück zum Zitat Peyrous R, Pignolet P, Held B (1989) Kinetic simulation of gaseous species created by an electrical discharge in dry or humid oxygen. J Phys D 22:1658–1667CrossRef Peyrous R, Pignolet P, Held B (1989) Kinetic simulation of gaseous species created by an electrical discharge in dry or humid oxygen. J Phys D 22:1658–1667CrossRef
44.
Zurück zum Zitat Kogelschatz U, Eliasson B, Hirth M (1988) Ozone generation from oxygen and air: discharge physics and reaction mechanisms. Ozone Sci Eng 10:367–378CrossRef Kogelschatz U, Eliasson B, Hirth M (1988) Ozone generation from oxygen and air: discharge physics and reaction mechanisms. Ozone Sci Eng 10:367–378CrossRef
45.
Zurück zum Zitat Eliasson B, Kogelschatz U (1986) N2O formation in ozonizers. J Chem Phys 83:279–282 Eliasson B, Kogelschatz U (1986) N2O formation in ozonizers. J Chem Phys 83:279–282
Metadaten
Titel
In Situ Regeneration of Au Nanocatalysts by Atmospheric-Pressure Air Plasma: Regeneration Characteristics of Square-Wave Pulsed Plasma
verfasst von
Bin Zhu
Jing-Lin Liu
Xiao-Song Li
Jin-Bao Liu
Xiaobing Zhu
Ai-Min Zhu
Publikationsdatum
10.04.2017
Verlag
Springer US
Erschienen in
Topics in Catalysis / Ausgabe 12-14/2017
Print ISSN: 1022-5528
Elektronische ISSN: 1572-9028
DOI
https://doi.org/10.1007/s11244-017-0756-6

Weitere Artikel der Ausgabe 12-14/2017

Topics in Catalysis 12-14/2017 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.